
RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Prof. Adam Teman
EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow
Section 5.1: SoC Overview

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 3

Introduction

• The previous parts of the series, covered ran RTL2GDS on a simple block:

• We understood the RTL.

• We ran directed tests to verify functionality.

• We ran synthesis to get a gatelevel netlist.

• We ran gatelevel simulation with timing backannotation.

• We ran vector-based power estimation.

• And we ran place and route.

• However, our place and route flow was a bit “too easy”:

• We didn’t have any macros to deal with.

• We didn’t have to create an I/O ring.

• Everything was small and simple.

• Now we will go for a slightly more complex design… an SoC.

January 13, 2026© Adam Teman, 4

Our SoC overview

• An SoC is a “system-on-chip”, which is basically a chip

with various different components, including control and memory.

• In this case, we are implementing a tiny SoC, consisting of:

• A CPU – in this case a small RISC-V core.

• Memories – instruction and data memories that are tightly coupled to the CPU.

• Inputs and Outputs – I/Os that let our chip communicate with the outside world.

• This is a very minimal and basic SoC, but it is a wonderful example:

• It is a real working system that can run compiled C code.

• It has RTL files made up of many modules and pieces.

• It has SRAM blocks that need to be placed in the floorplan.

• It has I/Os that need to be constructed into a functional I/O ring.

January 13, 2026© Adam Teman, 5

RISC-V core from PULP group = RI5CY

Instruction

memory

Data

memoryRI5CY core

sourcecode/rtl/riscv-master/riscv_core.svsourcecode/rtl/soc/lp_riscv_top.svsourcecode/rtl/soc/ioring.v

January 13, 2026© Adam Teman, 6

Wire bonding to package

January 13, 2026© Adam Teman, 7

The I/O Ring

• The I/O Ring connects the outside word (off-chip) to the SoC (on-chip)

• For this we need:

• Pads: big pieces of metal that we can connect wire bonds to.

• Digital I/Os: Buffers that contain level shifters and ESD protection.

• Analog I/Os: Wires with ESD protection that connect to the outside world.

• Power Supply cells: I/Os for connecting bias voltages to the chip.

• The Digital I/Os just propagate signals. They don’t usually carry out logic.

• The external signals connect to the Pad.
Therefore, we call the inputs/outputs “PAD_xxx” and use CAPITAL letters.

• The internal signal connects to the core.
Therefore, we call the internal wires “xxx_to_core”.

• The ioring.v file instantiates I/Os from the library and is not synthesized.

January 13, 20268 © Adam Teman,

Digital I/O cell

PORT

NAME

DESCRITPION

REN Pull-resistor enable

OEN Output enable

C Output signal to core

I Input signal from core

PAD Signal pin on pad side

Core

power

domain

I/O power

domain

PAD_MYINPUT

‘1’

myinput_to_core

not used

for an input

‘0’

January 13, 20269 © Adam Teman,

I/O cell with internal power stripes

Other

pins

Pad I/O
Ground

I/O
Power

Digital
Ground

Digital
Power

Power on
Connect

January 13, 202610 © Adam Teman,

I/O ring

Logic core

Corner cell

January 13, 202611 © Adam Teman,

I/O ring

Logic core

VDDIO

I/O Power

Supply cell

VSSIO + VSS

Combined

Ground Supply

Cell

January 13, 202612 © Adam Teman,

Logic core

Core VDD

Digital Supply

 cell

POC

Special POC

cell

B1

External VDD

Analog I/O

January 13, 2026© Adam Teman, 13

Compiled vs. STD cells memories

• A compiled memory is a large array of bitcells – generated automatically

• Compiled SRAM arrays have various options, such as:

• BIST

• ECC

• Redundancy

• Memory array might be folded for better aspect ratio

• Example: 2K word x 16 → 256 rows x 128 columns

• Select 16 output bits from the 128 columns

• Requires 8:1 column 16 bits wide multiplexer

• Memory compilers supply all needed views:

• .libs, .lefs, etc.

16 columns

2
5
6
 r

o
w

s

2K rows

16 x 8 = columns

8:1 MUX

256 rows

January 13, 2026© Adam Teman, 14

Wrappers

• Compiled memories (and other hard IPs) have specific features and interfaces.

• To abstract away the specific implementation, we often use a “wrapper”

• In the example:

• lp_riscv_top.v instantiates wrappers for instruction and data memories:

 sram_sp_instr_wrap.v sram_sp_data_wrap.v

These wrappers have generic memory interfaces (clk, address, data…)

• A second level of wrapper abstracts away the SRAM cut size.

For example, a 32k word data memory is composed of two 16k word cuts:
 sram_sp_16384x32_m16_be_wrap.v

This wrapper muxes the two cuts according to the address.

• The actual technology-specific memory cut is instantiated in a third wrapper:
 sram_sp_16384x32.v

This wrapper contains the specific interface with all the extra signals.

January 13, 202615 © Adam Teman,

riscv_core

sram_sp_*_wrap

sram_sp_hde_m*

IRAM0

sram_sp_*_wrap

sram_sp_hde_m*

IRAM1

sram_sp_*_wrap

sram_sp_hde_m*

DRAM1

sram_sp_*_wrap

sram_sp_hde_m*

DRAM0
ioring

lp_riscv_top

…

lp_riscv

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Section 5.2: Running Compilation

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 17

Running Compilation

• To demonstrate that we are using a real functional design,

we will now compile a simple C program, load it into the SoC and run it.

• To run a program, we need a software toolchain

• We will use GCC to compile, assemble, and link our program.

• We provide a set of bare-metal libraries for functions like printf.

• We provide some scripts and make files to run the compilation flow.

• In our workspace, we use the apps/ folder for running our toolchain

• sw_utils/ libs/ and ref/ folder contain scripts, libraries, link maps, etc.

• We’ll make a new folder for our program and write our C code in a file.

• To compile the program, go to the folder where the program is stored and:
 …/sw_utils/comp_app_local.sh <program name>

January 13, 2026© Adam Teman, 18

Simulating the (large) memories

• The memories are provided as hard macros, i.e., custom-designed blocks.

• For simulation, we are provided with a behavioral model (.v file)

• In the testbench RTL source list, we read in this file.

• In the synthesis source list, we provide a .lib of the memory.

• For simulation, we “preload” the memories:

• During compilation, we create images of the instruction

and data memory content needed to run the program.

• Writing data to all the memory content would take a long time in simulation.

• Instead, we provide a Verilog “task” that

reads the memory content from an initial state file.

• This is done by adding +MEMLOAD=PRELOAD to the xrun command.

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Section 5.3: Synthesis

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 20

Synthesis

• Before starting, we need to prepare

our workspace, as we did with the simple example.

• libraries/ folder:

• We already setup technology and standard cells in the previous example.

• We should now provide definitions for our I/O library in libraries.<IO>.tcl

• We also need to define the SRAMs we compiled in libraries.<SRAM>.tcl

• inputs/ folder:

• <top>.defines.tcl: As previously, set up target period, ports, etc.

• Also provide instance names of hard macros (SRAMs) in <top>.defines.tcl

• Setup SDC (<top>.sdc) and if any necessary change to MMMC (<top>.mmmc)

• And now you can go ahead to synthesis.

January 13, 2026© Adam Teman, 21

Some important things to check

• During synthesis, many things are reported

to the log file and/or written out as saved reports.

• Here are a few things that you should make sure to check carefully:

• Warnings during the init_design stage about things like libs, lefs, RTL.

• Unresolved instances following elaboration:
 check_design –unresolved

• General design checks after elaboration:
 check_design

• Timing linter on SDC after init_design:

 check_timing_intent

• And finally, you should check your timing very carefully after synthesis:
 report_timing

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Section 5.4: Moving on to Innovus

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 23

Moving on to Innovus

• Having finished Synthesis, it’s time to move to the physical domain:

 %> innovus –stylus

• And of course, we start with setting up our project definitions:

• Read our project definitions: <top>.defines.tcl

• Read in our library definitions for technology, standard cells, SRAMs,

IOs and any other IPs that we are integrating into our design.

• SRAM and I/O defines include paths to libs, lefs, etc.,

as well as names of PG pins and more.

January 13, 2026© Adam Teman, 24

The Innovus init_design stage

• Our defines file set up variables that contain all the data we need:

• Global net names: $design(all_power_nets), $design(all_ground_nets)

• Library definitions: $tech_files(ALL_LIBS_WC/BC/TC)

• LEF abstracts: $tech_files(ALL_LEFS)

• A pointer to our post-synthesis netlist: $design(postsyn_netlist)

• So we can move on to the init_design stage

• init_power_nets/init_ground_nets: define the global nets

• read_mmmc: create analysis views

• read_physical: read in techlef and LEF abstracts

• read_netlist: read in the post synthesis netlist

• And everything gets processed by running init_design.

January 13, 2026© Adam Teman, 25

The initialized design hierarchy

• After init_design, we can see the design structure with the Design Browser.

• The various levels of the design are divided into several categories:

• Terms: The ports/pins (terminals) of this hierarchy.

• Nets: The nets (wires) at this hierarchy.

• StdCells: Standard cells that are instantiated within this hierarchy.

• Hinsts: Hierarchical instances that were not flattened during synthesis.

• Blocks: Hard IPs, such as SRAMs, that are instantiated within this hierarchy.

• Pads: I/O cells that are instantiated within this hierarchy.

• PG Pins: Power/Ground pins of this hierarchy.

• We can traverse connectivity using the design browser:

• Each Term and StdCell/Block/Pad pin is connected to a single net.

• Each net is connected to one or more Terms and/or StdCell/Block/Pad pins

January 13, 2026© Adam Teman, 26

Path Groups

• It is common practice to categorize timing paths into four groups.

• These can be defined with a single command: create_basic_path_groups

• Sometimes we want to separate other paths into their own group.

• This is done with the group_path command.

• Each path group is treated independently during optimization and reporting.

D Q D Q

clk

in1
out1

in2
out2

reg2regin2reg reg2out

in2out

January 13, 2026© Adam Teman, 27

Connecting Global Nets

• In the previous video, we discussed global net connections

• We defined global power and ground nets

• We only had one of each and they connected to all standard cells.

• We now have additional global nets connected to the I/Os and SRAMs:

• The I/O ring usually has an additional higher voltage (VDDIO).

Global nets connect to Power Supply cells and are abutted to other I/Os

• SRAMs often have separate voltages for memory core and periphery.

VDD Power

Supply I/O

VDD

VSS Power

Supply I/O

VSS

VDDIO

Power

Supply I/O

VDDIO

VSSIO

Power

Supply I/O

VSSIO

Digital

I/O

Analog

I/O

PAD

C OEN

PAD

SRAM Block

Periph

VDD

Core

VDD
VSS

Remember to use the

Design Browser to check

that your Global Net

Connections worked!

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow
Section 5.5: Floorplanning

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 29

Full Chip Floorplanning

• At the block level, our design connected to the outside world through pins

• We used the edit_pins command to locate them around the block.

• At the full chip level, we have an I/O ring

• All of our ports are connected to instantiated I/Os.

• The I/Os usually have a particular site definition

and are placed around the perimeter of our chip.

• We define the location of each I/O with a special I/O file.

• The I/Os have power/ground rings running through them

• The rings are connected through abutment.

• We need to use I/O fillers to continue these connections in the empty space.

• We need special Corner cells to connect the rings around corners.

VDDVSS
VDDIOVSSIO

IO Cell

Corner

January 13, 2026© Adam Teman, 30

Placing Hard Macros

• The two primary ways of placing hard macros are:

• Manually placing them by using the “move” tool
(and copying the resulting update_floorplan_obj command)

• “Relative Floorplanning: Floorplan→Relative Floorplan→Edit Constraint

(or create_relative_floorplan)

• Place relative to a “reference object”

• Core/Die boundary

• Other object

• Place vertically/horizontally relative

to an edge with a given offset.

January 13, 2026© Adam Teman, 31

Adding Rings and Halos to Macros

• Adding a ring to a hard macro (e.g., SRAM) has the following benefits:

• Easy to connect macro PG pins to ring.

• Easy to terminate power mesh near macro.

• But this comes at the expense of wasted area

• Therefore, often SRAMs are connected

by dropping vias from above.

• To add rings to a macro:

• Select “Ring Type” = “Block ring(s) around”
add_rings –around selected –type block_rings ...

• Optionally add one set of rings around many macros.

• To ensure no standard cells close to macro edges, create a placement halo:
 create_place_halo –insts ...

January 13, 2026© Adam Teman, 32

Special Route Revisited

• SRoute is a router for making

PG connections to pins and stripes

• Follow Pins: Routes Standard Cell rails
route_special –connect core_pin

• Block Pins: Connects macro PG pins

 e.g., SRAM VDD/GND pins to rings.
route_special –connect block_pin

• Pad Pins: Connects I/Os to core ring
route_special –connect pad_pin

• Secondary Power Pins: For connecting pins

of level shifters that are not in the PG rails.

• Check connectivity of special route only:

 check_connectivity –type special

January 13, 2026© Adam Teman, 33

Reminder: End Caps and Well Taps

• End Caps (or boundary cells):

• Are cells required at the end of standard

cell rows (and in advanced processes,

at the top, bottom, corners, etc.)

• Include POLY, OD, NWELL

and other layers for DRC and density.

• Well Taps (or Tap Cells):

• Are cells that connect VDD/GND to

NWELL/PWELL to prevent latch up.

• DRC rules require tap cells

every several microns.

set_db add_endcaps_left_edge $ENDCAP_LEFT

set_db add_endcaps_right_edge $ENDCAP_RIGHT

add_endcaps -prefix ENDCAP

add_well_taps -cell $WELLTAPCELL \

 -skip_row 1 -prefix WELLTAP \

 -in_row_offset 3 -cell_interval 10 check_well_taps -max_distance 20

Source: OpenRoad

January 13, 2026© Adam Teman, 34

Power Planning

• One of the most important

The most important part of floorplanning

is creating the power grid.

• The goal of the power grid is to

provide VDD/GND to all circuits, while:

• Minimizing (static) IR Drop.

• Minimizing (dynamic) dI/dt drop.

• Meeting Electromigration requirements.

• Leaving enough room for signal routing.

• This is done with power rail analysis tools

(e.g., Voltus, RedHawk), but that is beyond

the scope of this demo. Source:

VLSI Back-end Adventure

Source:

Huang, Chang, TODAES

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Section 5.6: Placement

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 36

Placement

• After the floorplan is ready, it is time to move on to standard cell placement.

• This is done with the timing-aware GigaPlace tool:

place_opt_design

• Runs pre-placement optimization

• Runs standard cell placement

• Performs scan tracing and reordering

• The place_opt_design command replaces the legacy two-staged placement:

place_design

opt_design –pre_cts

January 13, 2026© Adam Teman, 37

Congestion and Blockages

• Following placement, we can evaluate congestion based on trial route:

• To fix congestion try:

• Running congestion-driven placement

• Adding padding to modules

• Creating placement blockages and module constraints

• There are three types of placement blockages:

• Hard blockages:

Areas that cannot be used for standard cell placement.

• Soft blockages: Blocked during placement, but can

be used during optimization, CTS, ECO, legalization

• Partial blockages:

Limits the placement density (utilization) in the area

report_density_map

set_db place_global_cong_effort high

set_db place_global_module_padding XXX

create_place_blockage \

 -polygon|rects XXX \

 -type hard|soft|partial

January 13, 2026© Adam Teman, 38

Module Constraints

• Beyond placement blockages, modules can be constrained to be placed within
a certain area using the create_boundary_constraint command.

• There are four types of module constraints:

• Guide: Guides the placer to locate the module in the specified area.

This is a “soft constraint”.

• Fence: Ensures that a module is placed inside the specified area.

This is a “hard constraint”. No cells from other modules can be placed here.

• Region: Like a Fence, ensures that the module is placed inside the specified

area, but allows placement of instances from other modules within the region.

• Soft Guide/Cluster: Similar to a guide, but there are no fixed locations.

create_boundary_constraint –hinst <hinst_name> \

 –polygon|rects XXX –type fence|region|guide|cluster

January 13, 2026© Adam Teman, 39

Post placement reporting

• Following placement, we should analyze the results.

• Innovus provides several reports and tools for this, including:

• check_place: Checks for overlaps, off-grid, and unplaced cells.

• report_area: Standard cell area in each hierarchical module.

• report_density_map: Generates a density map and report.

• report_pin_density_map: Generates a pin density map and report.

• report_congestion: Reports average congestion and hotspot score.

• And, of course, we should check timing.

At this point, setup timing with an ideal clock is usually sufficient.

report_timing time_design -pre_cts -ideal_clock

January 13, 2026© Adam Teman, 40

Check congestion

• After global routing (trial route) check the congestion report or visualize with:

VIEWS→PHYSICAL VIEW→

 →ALL COLORS→VIEW ONLY→

 →CONGESTION

January 13, 2026© Adam Teman, 41

Tie-Off Cells

• Following synthesis, there are various gates or

macro pins connected to constant values (‘0’ or ‘1’).

• However, in nanoscaled technologies, we are not allowed

to directly connect VDD/GND to gates of transistors.

• Thin oxides sensitive to surges, as well as antenna violations.

• Therefore, after placement, we need connect constants
with “tie cells” using the add_tieoffs command

• Tie-Hi – connect VDD (1’b1)

• Tie-Lo – connect GND (1’b0)

• Design considerations

• Maximum distance of tie cell from gate.

• Maximum fanout for a tie cell

Source:

Tomodachi Kushagra

Source: Team VLSI

January 13, 2026© Adam Teman, 42

• Timing optimization is applied throughout the flow after every major step:

• After Placement (a.k.a., Pre-CTS)

• After Clock Tree Synthesis

• After Route

• Depending on the stage, timing optimization includes:

• Adding buffers

• Resizing gates

• Restructuring the netlist

• Default timing categories:

• reg2reg

• in2reg, reg2out, in2out

• reg2cgate

in2
out2

Timing Optimization

opt_design –pre_cts

D Q D Q

clk

in1 out1reg2regin2reg reg2out

in2out

• Remapping logic

• Swapping pins

• Deleting buffers

• Moving instances

• Applying useful skew

CK GCK

ENreg2cgate

opt_design –post_cts

opt_design –post_route

January 13, 2026© Adam Teman, 43

Timing Optimization

• After running optimization,

a final summary will be printed out:

• Instances and nets that are added during

optimization are named according to a
convention, starting with “FE”*.

• For example:

• FE_OCP_RBC: Instance added by rebuffering

• FE_RC: Instance added by netlist reconstruction

• FE_RN: Net added by netlist reconstruction

• FE_USKC: Instance added for useful skew

 Note that these names can be customized using set_db commands

* This is legacy from one of the early versions of

Innovus that was then called “First Encounter”

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Section 5.7: Clock Tree Synthesis

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 46

Clock Tree Synthesis

• Until now, we had an ideal clock

• Max Delay:

• Min Delay:

cq logic setupT t t t + +

cq logic holdt t t+ 

• We now have to build a clock tree

• Max Delay:

• Min Delay:

skew jitter CQ logic setup margin2T t t t  + −  + + +

CQ logic margin hold skewt t t + −  +

January 13, 2026© Adam Teman, 47

Clock Tree Spec

• There are many attributes and constraints for guiding CTS.

• They can be created automatically with:

• Example commands in clock tree spec:
• create_clock_tree -name clock -source CLK -no_skew_group

• create_skew_group -name clock -sources CLK -auto_sinks

• set_db cts_buffer_cells {BUFX12 BUFX8 BUFX6 BUFX4 BUFX2}

• set_db cts_inverter_cells {INVX12 INVX8 INVX6 INVX4 INVX2}

• set_db cts_clock_gating_cells {ICGX12 ICGX8 ICGX6 ICGX4}

• set_db cts_use_inverters true

• set_db cts_max_fanout 20

• set_db cts_target_max_capacitance 0.1

• set_db cts_target_max_transition_time 100ps

• set_db cts_target_skew 50ps

• set_db opt_useful_skew_ccopt extreme

• In addition, various components of the clock tree can be defined.

create_clock_tree_spec

January 13, 202648 © Adam Teman,

Clock Tree Components

CLK PLL

Clock

Tree

Skew

Group 1

Skew

Group 2

Clock

Source
Clock

Sinks

Implicit

Stop Pins

Implicit

Ignore Pin

CLKGATE

Implicit

Through Pin

Insertion

Delay Pin

set_db pin:$pin .cts_sink_type

 stop/ignore/exclude

set_db pin:mem1/CK

 .cts_pin_insertion_delay 1.2ns

January 13, 202649 © Adam Teman,

Shielding and Non-Default Routing Rules

Create

Route Rules

Create

Route Type

Set Route

Type for:

Top

Trunk

Leaf

Double Width

Double Spacing

…

Preferred Routing Layers

Shielding

…

create_route_rule –name CTS_2W2S \

 –spacing_multiplier 2 –width_multiplier 2

create_route_type –name trunk_rule –non_default_rule CTS_2W2S \

 -top_preferred_layer M7 –bottom_preferred_layer M6 \

 -shield_net VSS –bottom_shield_layer M6

set_db cts_route_type_top top_rule

set_db cts_route_type_trunk trunk_rule

set_db cts_route_type_leaf leaf_rule

set_db cts_top_fanout_threshold 10000

Leaf: Any clock net connected

 directly to a sink.

Trunk: Any other clock net.

Top: Clock nets with
 Fanout > cts_top_fanout_threshold

January 13, 2026© Adam Teman, 50

Some CTS Recommendations

• Don’t forget to specify buffers, inverters, and clock gating cells.

• Prefer LVT cells → Lower insertion delay, better for corners/OCV.

• Stay away from largest and smallest clock cells:

• Largest ones result in higher power and can lead to EM problems.

• Smallest ones (e.g., <= X3) are more sensitive to corners, SI, routing jogs.

• Medium-sized cells (e.g., X4) are important so large ones aren’t always used.

• Buffers or Inverters? Often inverters result in lower insertion delay and power.

• Limiting the number of cells (e.g., 5 per type) can improve runtime.

• Use multi-cut vias to reduce electromigration.

• Often add padding near clock cells and flip flops to add decap.

January 13, 2026© Adam Teman, 51

Running and Debugging CTS

• CTS is run with the clock_opt_design command*:

• CCOopt runs “Clock Concurrent Optimization”

• In other words, it builds the clock tree and runs timing optimization.

• Before CTS, run check_design –type cts to find possible problems.

• To run standalone CTS, use the clock_design command,

which will build a balanced clock tree without optimizing timing.

• After CTS the clock is changed into “propagated” mode.

• In addition, average insertion delay is subtracted from the primary inputs.

• In other words, your source latency will now be negative!

• To remove this, use: set_db cts_update_clock_latency false

• After CTS, run opt_design –post_cts –hold to fix hold violations.

reset_ccopt_config

source my_cts_spec.tcl

check_design –type cts

clock_opt_design

* clock_opt_design

 replaced ccopt_design

January 13, 2026© Adam Teman, 55

Post CTS Reports

• Some useful post CTS reports:

• report_clock_trees: Reports a summary of all defined clock trees.

• report_clock_tree_structure: Reports the structure of the clock network.

• check/report_clock_tree_convergence: Many paths leading to one output

• report_skew_groups: Info about skew and insertion delays in skew groups.

• report_pin_insertion_delays: Reports insertion delays at clock sinks.

• report_ccopt_worst_chain: Reports clock chain with path with WNS.

• report_clock_tree_drv: Reports DRVs in the clock network.

• Of course, timing reports should be generated, including hold timing:
report_timing time_design –post_cts

report_timing -early time_design –post_cts -hold

January 13, 2026© Adam Teman, 56

Clock Tree Debugger

• Open with gui_open_ctd or Clock→CCOpt Clock Tree Debugger

Clock Root

Clock Buffers

Clock Logic

Clock Sinks

In
s
e

rt
io

n
 D

e
la

y

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Section 5.8: Routing and Timing Reports

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 59

Routing
• At this point:

• All cells have been placed.

• Clock buffers have been inserted and clock tree has been routed.

• Timing (setup and hold) is evaluated based on global route parasitics.

• Concurrent routing and optimization is done with route_opt_design:

• The NanoRoute router features:
• Timing Driven

• SI-Aware

• Aware of manufacturing technology features and constraints (DRCs)

• Routing is carried out in two steps:
• Global routing assigns nets to GCells, after which congestion can be analyzed.

• Detailed routing lays down actual wires and connects to pins.

• ECO routing is used for incremental fixes after detailed routing.

set_db route_with_timing_driven true

set_db route_with_si_driven true

route_opt_design

January 13, 2026© Adam Teman, 60

Timing Reports
• Perhaps the most important analysis after any stage is timing.

Data
Arrival

Launch Path

Data
Required

Capture Path

Data
Arrival
Time

Data
Required

Time

D Q D Q

clk

FF1 FF2

FF1/CK

FF2/CK

FF2/D

report_timing

Header

L
a

u
n

c
h

 P
a

th

FF
setup
Time

skew jitter CQ logic setup margin2T t t t  + −  + + +

January 13, 202661 © Adam Teman,

Data
Arrival

Launch Path

Data
Required

Capture Path

D Q D Q

clk

FF1 FF2
Report Timing - Header

Path # - ordered by WNS Did we meet timing? Setup or Hold?

Rising or fallingEndpoint

Start Point

Path Group

Flop Setup Time

Clock Uncertainty (Jitter)

Required Time = Arrival – Setup – Jitter

Data Path arrival time

Final Slack Calculation

Clock Edges

Source Latency

Clock Net Latency

January 13, 2026© Adam Teman, 62

Report Timing – Launch Path

• Standard timing report only shows the data delay

of the launch path and very basic information.

Instance name

Arrival Time

rising/falling

Timing Arc

Gate + Wire Delay

Fanout

Transition

Launch clock

insertion delay

January 13, 2026© Adam Teman, 63

• To get more data about the clock
propagation, use the full_clock option:

• Pay attention –

launch path now has

many more details!

Report Timing – Full Clock

report_timing \

 –path_type full_clock

Clock Port

Launch Clock

Data Start Point

Timing report continues…

Source insertion delay is calculated

to average out I/O clocking

Clock Port

Data Start

Point

Average Insertion

Delay = 0.916ns

-0.916ns

Actual starting time is

Src Latency+DRV Adjust+Delay

January 13, 2026© Adam Teman, 64

Report Timing – Full Clock (2)

• We also get to see

the Capture Path.
Continued

from last slide

Launch path endpoint

Capture Clock

Same Clock Port

Endpoint

clock pin

Endpoint

data pin

Launch Path

End Point

Clock Port

Capture Clock

5.084nsClock Period – Avg. Insertion Delay =

Endpoint

clock pin

Actual starting time is

Src Latency+DRV Adjust+Delay

January 13, 2026© Adam Teman, 65

• To debug timing, we would like more information, for example,

the net name, the wire capacitance, the pin capacitance, etc.

• Use the –fields option to get the info you really need.

• For example:

Report Timing – fields option

report_timing -fields "timing_point cell arc edge fanout load pin_load transition delay arrival"

“Timing point”

“cell” – standard

cell name

“edge” – falling

or rising signal
“transition” – rise/fall

time on the net

“delay” – total delay

through the cell

“arc” – timing arc

“load” - wire and input

capacitances on the net
“arrival” – arrival time

at the timing point

January 13, 2026© Adam Teman, 66

• To report hold timing, just add the –early option

Report Timing - Hold

report_timing –early
Now it’s a hold check!

Register hold constraint

Launch and capture clock at the

same edge

Now, it’s

Slack=Arrival – Required

The analysis view changed

to the Best Case corner

January 13, 2026© Adam Teman, 67

Report Timing Debugger

• A very good GUI option is to use the Innovus “Debug Timing” tool.

• This tool lets you explore the

timing report interactively, even

showing path schematics, SDC,

and highlighting the path in the

layout.

January 13, 2026© Adam Teman, 68

Post Route Reporting and Checks

• The primary report for routing analysis is report_route:

• Congestion, Track utilization and DRCs

• Wire length and Wire density

• Single-cut/Multi-cut vias

• EM coverage

• Additional reports include report_wires and report_congested_area.

• At this point, you can run physical verification checks:

• check_drc: Runs a DRC check (based on the techlef)

• check_connectivity: Runs an Innovus internal LVS

• check_antenna: Verifies that there are no antenna violations.

• check_metal_density: Checks for density violations.

RTL2GDS Demo Part 5:

Simple SoC Example
Full RTL2GDS Flow

Section 5.9: Post Route and SignOff

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

www.enicslabs.com

http://www.enicslabs.com/

January 13, 2026© Adam Teman, 70

Post Route Optimization and Signoff

• At this point we have a fully routed design and we are ready to finish the

physical design stage of our design.

• In this final section of our small SoC demonstration, we will briefly go over:

• Post route optimizations, including design for manufacturing (DFM)

• DRC fixing within Innovus

• Applying ECOs within Innovus

• Finishing up the design (fillers, metal fill, and design cleanup)

• Signoff timing

• Exporting the design

January 13, 2026© Adam Teman, 71

Post-Route Optimizations

• Post-route timing optimization is run with:

• Several options can be set for specific optimizations:

• Fixing SI slew violations:
• (note that SI glitch violations are fixed by default)

• Fixing Signal EM violations:
• Wire Widening

• Driver Downsizing

• Buffering

• Optimizing power:
• Ratio 0.0 for dynamic power optimization

• Ratio 1.0 for leakage power optimization

• Post-route useful skew:

opt_design –post_route –setup -hold

set_db opt_post_route_fix_si_transitions true

fix_ac_limit_violations \

 –allow_down_size true \

 –allow_add_buffer true

set_db design_power_effort <none|low|high>

set_db opt_leakage_to_dynamic_ratio <0.0 – 1.0>

set_db opt_skew_post_route true

January 13, 2026© Adam Teman, 72

Post-Route DFM Optimization

• At this point we can run some optimizations for improving yield:

• Wire optimization

(straightening,

widening, spreading)

• Via optimization

(via reduction, multi-cut)

• Lithography-aware routing
set_db route_design_detail_post_route_litho_repair true

route_design

set_db route_design_reserve_space_for_multi_cut true

route_design

set_db route_design_detail_post_route_swap_via true

set_db route_design_with_timing_driven false

route_design -via_opt

set_db route_design_detail_post_route_spread_wire true

route_design -wire_opt

set_db route_design_detail_post_route_wire_widen_rule <ruleName>

set_db route_design_detail_post_route_wire_widen widen

route_design -wire_opt

set_db route_concurrent_minimize_via_count_effort high

route_design -via_opt

January 13, 2026© Adam Teman, 73

Post Route DRC Fixing

• After routing, there are often DRC violations.

• To fix DRCs, use ECO routing:

• If that doesn’t work, try deleting and re-routing

the nets with violations

• To save runtime try routing only selected nets:

• Delete all gap, notch and hole geometries

• Remove or trim dangling wires.

• If you have DRC violations that you only see in your signoff tool

(e.g., PVS/Calibre):

check_drc -limit 1000000000

delete_routes -regular_wire_with_drc

route_design

read_markers <file> -rule_map_file <rule_file> -type <pvs/Calibre/..>

route_fix_signoff_drc ;# Optional -fix_rules or -exclude_rules

set_db route_with_eco true

route_design

route_eco –fix_drc

set_db route_selected_net_only true

route_design

delete_notch_fill

edit_trim_routes

check_drc -limit 1000000000

January 13, 2026© Adam Teman, 74

Applying ECOs

• ECOs (Engineering Change Order) are small modifications made to

the design at a very late stage. These usually are applied in two cases:

1. After routing on a large design to save time of rerunning the whole flow.

2. To implement a metal fix after tape out (possibly before backend fabrication)

• ECOs can be implemented automatically

(e.g., through Tempus ECO flow) or manually:

• Start by turning off automatic ECO:

• Manually add buffer:

• Manually upsize/downsize cell:

• Manually change the cell:

• Then run placement legalization:

eco_add_repeater -cells <libcell> -net <net> \

 -location {<xcoord> <ycoord>}

set_db eco_refine_place false

set_db eco_update_timing false

eco_update_cell -insts <inst name> \

 -up_size/-down_size

eco_update_cell -insts <inst name> -cell <libcell>

place_detail

January 13, 2026© Adam Teman, 75

Finishing the Design

• At this point, we need to finish the design and clean things up:

• Add fillers, wherever there are no standard cells placed:

• Alternatively, add decap cells:

• Add and check metal fill within Innovus:

• Fix timing violations due to metal fill:

• Clean up netlist:

add_fillers

add_decap_cell_candidates DECAP10 10

add_decaps -total_cap 1000 -cells DECAP10 DECAP8

add_metal_fill –net vdd

check_metal_density

trim_metal_fill_near_net -slack_threshold XXX \

 -min_trim_density XXX -spacing XXX \

 -spacing_above XXX -spacing_below XXX

delete_assigns

delete_empty_hinsts

delete_dangling_ports

delete_floating_constants

January 13, 2026© Adam Teman, 76

Signoff Timing

• For signoff, use the opt_signoff and time_design_signoff commands:

• time_design_signoff calls the Tempus signoff timing tool.

• For signoff timing, advanced timing analysis modes should be used.

• This is a bit complex and beyond the scope of this tutorial but it includes

• On-chip Variation (OCV) with

Clock Path Pessimism Removal (CPPR)

• Advanced OCV (AOCV)

• Liberty Variation Format (LVF) files

and Statistical OCV (SOCV)

• Need to define AOCV/SOCV

in MMMC

opt_signoff –drv/-setup/-hold time_design_signoff

set_timing_derate -late 1 -early 0.9 -clock

set_db timing_analysis_type ocv

set_db timing_analysis_cppr both

set_db timing_analysis_socv true

set_timing_derate -sigma/mean \

 -cell_delay/net_delay 1.2 [get_lib_cells */*]

set_db timing_analysis_aocv true

create_library_set –name XXX \

 –timing <LVF .lib files> –aocv/socv <aocv/socv side files>

January 13, 2026© Adam Teman, 77

Exporting the Design

• Once everything is finished within Innovus, it is time to export the design:

• write_netlist: Exports Verilog netlist (.v) of the design.

• write_def: Export DEF file including floorplan, placement, routing, etc.

• write_lef_abstract: Generates abstract (LEF) of the current block.

• write_timing_model: Builds a Liberty (.lib) format model for the top cell.

• write_stream: Exports the layout to a GDSII Stream file.

• write_db: Export design database in the native Innovus .db format

• write_sdf: Exports timing delays to a Standard Delay Format (.SDF) file.

• write_design: Exports the design for loading in Tempus.

• write_do_lec: Creates .dofile for Conformal LEC.

January 13, 2026© Adam Teman, 78

Summary

• In this demo, we saw how a simple, albeit full SoC is implemented from RTL to GDS:
• We started by introducing the SoC Architecture and showing that the provided RTL

can run a full high-level language (C) compilation toolchain.

• We explored the SoC, including instantiated hard macros, such as SRAMs and I/Os.

• We ran full-chip synthesis with Genus.

• We moved the design over to Innovus for physical implementation.

• We created a full-chip floorplan, including macro placement and I/O ring.

• We ran standard cell placement.

• We synthesized the clock tree.

• We routed the design and fixed DRCs.

• We examined the timing reports.

• We finished the design and exported our final files.

• This was a simple example, run in a mature process node, but it included the majority
of what goes into a large design in an advanced process.

	Default Section
	Slide 1: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow

	Part 1 SoC Overview
	Slide 2: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.1: SoC Overview
	Slide 3: Introduction
	Slide 4: Our SoC overview
	Slide 5: RISC-V core from PULP group = RI5CY
	Slide 6: Wire bonding to package
	Slide 7: The I/O Ring
	Slide 8: Digital I/O cell
	Slide 9: I/O cell with internal power stripes
	Slide 10: I/O ring
	Slide 11: I/O ring
	Slide 12
	Slide 13: Compiled vs. STD cells memories
	Slide 14: Wrappers
	Slide 15

	Running Compilation
	Slide 16: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.2: Running Compilation
	Slide 17: Running Compilation
	Slide 18: Simulating the (large) memories

	Synthesis
	Slide 19: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.3: Synthesis
	Slide 20: Synthesis
	Slide 21: Some important things to check

	Innovus
	Slide 22: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.4: Moving on to Innovus
	Slide 23: Moving on to Innovus
	Slide 24: The Innovus init_design stage
	Slide 25: The initialized design hierarchy
	Slide 26: Path Groups
	Slide 27: Connecting Global Nets

	Floorplanning
	Slide 28: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.5: Floorplanning
	Slide 29: Full Chip Floorplanning
	Slide 30: Placing Hard Macros
	Slide 31: Adding Rings and Halos to Macros
	Slide 32: Special Route Revisited
	Slide 33: Reminder: End Caps and Well Taps
	Slide 34: Power Planning

	Placement
	Slide 35: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.6: Placement
	Slide 36: Placement
	Slide 37: Congestion and Blockages
	Slide 38: Module Constraints
	Slide 39: Post placement reporting
	Slide 40: Check congestion
	Slide 41: Tie-Off Cells
	Slide 42: Timing Optimization
	Slide 43: Timing Optimization

	CTS
	Slide 45: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.7: Clock Tree Synthesis
	Slide 46: Clock Tree Synthesis
	Slide 47: Clock Tree Spec
	Slide 48: Clock Tree Components
	Slide 49: Shielding and Non-Default Routing Rules
	Slide 50: Some CTS Recommendations
	Slide 51: Running and Debugging CTS
	Slide 55: Post CTS Reports
	Slide 56: Clock Tree Debugger

	Routing
	Slide 58: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.8: Routing and Timing Reports
	Slide 59: Routing
	Slide 60: Timing Reports
	Slide 61: Report Timing - Header
	Slide 62: Report Timing – Launch Path
	Slide 63: Report Timing – Full Clock
	Slide 64: Report Timing – Full Clock (2)
	Slide 65: Report Timing – fields option
	Slide 66: Report Timing - Hold
	Slide 67: Report Timing Debugger
	Slide 68: Post Route Reporting and Checks

	DRC Debug
	Slide 69: RTL2GDS Demo Part 5: Simple SoC Example Full RTL2GDS Flow Section 5.9: Post Route and SignOff
	Slide 70: Post Route Optimization and Signoff
	Slide 71: Post-Route Optimizations
	Slide 72: Post-Route DFM Optimization
	Slide 73: Post Route DRC Fixing
	Slide 74: Applying ECOs
	Slide 75: Finishing the Design
	Slide 76: Signoff Timing
	Slide 77: Exporting the Design
	Slide 78: Summary

