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Introduction

* The previous parts of the series, covered ran RTL2GDS on a simple block:

We understood the RTL.

We ran directed tests to verify functionality.

We ran synthesis to get a gatelevel netlist.

We ran gatelevel simulation with timing backannotation.
We ran vector-based power estimation.

And we ran place and route.

* However, our place and route flow was a bit “too easy”:

« We didn’t have any macros to deal with.
« We didn’t have to create an |/O ring.
« Everything was small and simple.

* Now we will go for a slightly more complex design... an SoC.



Our SoC overview

* An SoC is a “system-on-chip”, which is basically a chip
with various different components, including control and memory.

* In this case, we are implementing a tiny SoC, consisting of:

A CPU —in this case a small RISC-V core.
» Memories — instruction and data memories that are tightly coupled to the CPU.
* |Inputs and Outputs — I/Os that let our chip communicate with the outside world.

* This is a very minimal and basic SoC, but it is a wonderful example:
It is a real working system that can run compiled C code.
It has RTL files made up of many modules and pieces.

It has SRAM blocks that need to be placed in the floorplan.
It has |/Os that need to be constructed into a functional I/O ring.
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Wire bonding to package




The 1/0O Ring

 The I/O Ring connects the outside word (off-chip) to the SoC (on-chip)

* For this we need:

Pads: big pieces of metal that we can connect wire bonds to.

Digital 1/0Os: Buffers that contain level shifters and ESD protection.
Analog I/0Os: Wires with ESD protection that connect to the outside world.
Power Supply cells: I/Os for connecting bias voltages to the chip.

* The Digital I/Os just propagate signals. They don’t usually carry out logic.

 The external signals connect to the Pad.
Therefore, we call the inputs/outputs “PAD xxx” and use CAPITAL letters.

* The internal signal connects to the core.
Therefore, we call the internal wires “xxx to core”.

 The ioring.v file instantiates I/0Os from the library and is not synthesized.



Digital 1/0 cell PAD MYINPUT-

Core
PORT | DESCRITPION sower
NAME vl %

~

REN  Pull-resistor enable \0/ —»REN B d

OEN  Output enable > T v

C Output signal to core . 1 e
P J myinput to core A—J _E

I Input signal from core - \

I
PAD Signal pin on pad side not used A jj
9 P P for an input /0 povyer
OEN domain

\1/ —
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/O ring
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Core VDD
Digital Supply
cell

External VDD
Analog 1/O

e A A A A A S S S R S S S S S S S 55 5

[
>
\

AR,

¥
RN

N
iy

(s
0

AR

ASSSNSSANNANANS .
ARALALAAARRRRRREN

3 NN

"
'4

-]

i

!
<y

N ()
3

RSN

NN
NGRS

SENAANNRRRRRRRRNT

X

\

ANEAAARARRANNNNNNY

Lo
€
R RN

RSN ESRY

% POC
¢ Special POC
cell



13

Compiled vs. STD cells memories

* A compiled memory is a large array of bitcells — generated automatically

« Compiled SRAM arrays have various options, such as:

o BIST
« ECC
 Redundancy

* Memory array might be folded for better aspect ratio
« Example: 2K word x 16 = 256 rows x 128 columns

2K rows

» Select 16 output bits from the 128 columns 16 x 8 = columns
* Requires 8:1 column 16 bits wide multiplexer -

* Memory compilers supply all needed views: M I 256 rows
* .1libs, .lefs, etc. N 4

___________

16 columns

>

256 rows
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Wrappers

« Compiled memories (and other hard IPs) have specific features and interfaces.
* To abstract away the specific implementation, we often use a “wrapper”

* In the example:
 1lp riscv top.v instantiates wrappers for instruction and data memories:
N Sram:sp_instr_wrap.v sram sp data wrap.v
These wrappers have generic memory interfaces (clk, address, data...)
« A second level of wrapper abstracts away the SRAM cut size.

For example, a 32k word data memory is composed of two 16k word cuts:
sram sp 16384x32 ml6o be wrap.v

This wrapper muxes the two cuts according to the address.

« The actual technology-specific memory cut is instantiated in a third wrapper:
sram sp 16384x32.v
This wrapper contains the specific interface with all the extra signals.
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1p_riscv_top
sram_sp_* wrap

ioring

sram_sp_* wrap

/{m

g;_ riscv_core

sram_sp_* wrap \*k._,\\_//f~’/

sram_sp_* wrap

© Adam Teman, 2026
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Running Compilation

 To demonstrate that we are using a real functional design,
we will now compile a simple C program, load it into the SoC and run it.

* To run a program, we need a software toolchain

« We will use GCC to compile, assemble, and link our program.
* We provide a set of bare-metal libraries for functions like printf.

« We provide some scripts and make files to run the compilation flow.

* In our workspace, we use the apps/ folder for running our toolchain
* sw utils/ libs/ and ref/ folder contain scripts, libraries, link maps, etc.
« We'll make a new folder for our program and write our C code in a file.

 To compile the program, go to the folder where the program is stored and:
../sw utils/comp app local.sh <program name>

17



Simulating the (large) memories

* The memories are provided as hard macros, i.e., custom-designed blocks.
* For simulation, we are provided with a behavioral model ( . v file)

* In the testbench RTL source list, we read in this file.
* In the synthesis source list, we provide a . 11ib of the memory.

 For simulation, we “preload” the memories:

« During compilation, we create images of the instruction
and data memory content needed to run the program.
« Writing data to all the memory content would take a long time in simulation.
 Instead, we provide a Verilog “task” that
reads the memory content from an initial state file.
* This is done by adding +MEMLOAD=PRELOAD to the xrun command.

18
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[ Project Root J

Synthesis (3 ) (7o) [somse | s [sesire] [ spne | repore] s ] sce |

space code

— — saesizn0 | [ stem) |
- Before starting, we need to prepare =2 ) pemon ]
our workspace, as we did with the simple example.
- libraries/ folder:

« We already setup technology and standard cells in the previous example.
* We should now provide definitions for our I/O library in 1ibraries.<10>.tcl
* We also need to define the SRAMs we compiled in 1ibraries.<sSrRaM>.tcl

- inputs/ folder:
- <top>.defines.tcl: As previously, set up target period, ports, etc.

 Also provide instance names of hard macros (SRAMS) in <top>.defines.tcl
« Setup SDC (<top>.sdc) and if any necessary change to MMMC (<top> . mmmc)

« And now you can go ahead to synthesis.
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Some important things to check

* During synthesis, many things are reported
to the log file and/or written out as saved reports.

* Here are a few things that you should make sure to check carefully:

« Warnings during the init design stage about things like 1ibs, 1efs, RTL.

Unresolved instances following elaboration:
check design —unresolved

General design checks after elaboration:
check design

Timing linter on SDC after init design:
check timing intent

And finally, you should check your timing very carefully after synthesis:
report timing
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Moving on to Innovus

 Having finished Synthesis, it’s time to move to the physical domain:

%> 1nnovus -—-stylus

 And of course, we start with setting up our project definitions:

« Read our project definitions: <top>.defines.tcl
« Read in our library definitions for technology, standard cells, SRAMs,
|Os and any other IPs that we are integrating into our design.

« SRAM and I/O defines include paths to libs, lefs, etc.,
as well as names of PG pins and more.

[ Project Root }

P
work source . i i .
[ space } [ code } [1nputs} \11b rrrrrr } [scrlptS] [ apps } [reports] [export} [ docs }
|

' ' [ $design() ] [ $tech () ]
[ rtl } [ tb } : debug.txt

$paths() | | $tech files() |
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The Innovus init design stage

* Our defines file set up variables that contain all the data we need:
* Global net names: $design(all power nets), $design(all ground nets)
 Library definitions: $tech files(ALL LIBS WC/BC/TC)
 LEF abstracts: stech files (ALL LEFS)
A pointer to our post-synthesis netlist: sdesign (postsyn netlist)
* So we can move on to the init design stage
* init power nets/init ground nets:define the global nets
* read mmmc: create analysis views

* read physical:read in techlef and LEF abstracts
* read netlist:read in the post synthesis netlist

* And everything gets processed by running init design.
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The initialized design hierarchy

* After init design, we can see the design structure with the Design Browser.

* The various levels of the design are divided into several categories:

Terms: The ports/pins (terminals) of this hierarchy.

Nets: The nets (wires) at this hierarchy.

StdCells: Standard cells that are instantiated within this hierarchy.

Hinsts: Hierarchical instances that were not flattened during synthesis.
Blocks: Hard IPs, such as SRAMs, that are instantiated within this hierarchy.
Pads: I/O cells that are instantiated within this hierarchy.

« PG Pins: Power/Ground pins of this hierarchy.

» We can traverse connectivity using the design browser:

« Each Term and StdCell/Block/Pad pin is connected to a single net.
» Each net is connected to one or more Terms and/or StdCell/Block/Pad pins
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Path Groups

* It is common practice to categorize timing paths into four groups.
* These can be defined with a single command: create basic path groups

« Sometimes we want to separate other paths into their own group.
 This is done with the group path command.

« Each path group is treated independently during optimization and reporting.

out2 >

in2

in2out

b «Q reg2out outt)

reg2reg

in1 in2reg

clk
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Connecting Global Nets

* In the previous video, we discussed global net connections |

« We defined global power and ground nets

4 N

Remember to use the
Design Browser to check
that your Global Net

Connections worked!

* We only had one of each and they connected to all standard cells.
« We now have additional global nets connected to the I/0Os and SRAMs:

* The I/O ring usually has an additional higher voltage (VDDIO).
Global nets connect to Power Supply cells and are abutted to other I/Os

« SRAMs often have separate voltages for memory core and periphery.

C OEN
H N ||
VDD Power | VSS Power Digital Analog VDDIO VSSIO
Supply I1/0 | Supply I/O I/O I/O Power Power
Supply I1/0 | Supply I/O
| | | N | |
VDD VSS PAD PAD VDDIO VSSIO

Periph  Core
vDD VDD

SRAM Block

VSS
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Full Chip Floorplanning

« At the block level, our design connected to the outside world through pins
* We used the edit pins command to locate them around the block.

______

At Lh”e full chip level, we have an I/Q ring | //// :Q\\\:
. of our ports are connected to instantiated |/Os. L )L
« The |/Os usually have a particular site definition __ -

and are placed around the perimeter of our chip. - i
* We define the location of each I/O with a special |/O file.

 The 1/Os have power/ground rings running through them N 220000 7

* The rings are connected through abutment.
* We need to use |/O fillers to continue these connections in the empty space.

* We need special Corner cells to connect the rings around corners.

29



Placing Hard Macros

* The two primary ways of placing hard macros are:

« Manually placing them by using the “move” tool
(and copying the resulting update floorplan obj command)

« “Relative Floorplanning: Floorplan—>Relative Floorplan—>Edit Constraint

(or create relative floorplan )

o Relative Floorplan — ip-10-70-172-55.il-central-1.con miil

* Place relative to a “reference object”
® CO re/D | e bo u n d a ry Target Object: “m_ram_wrapper_iccm_ram_1_sram_sp_16384x32 | Get Selected

Reference Object Type:

o Ot h ero bJ e Ct & Object Yame: Get Selected

. Core Boundary

* Place vertically/horizontally relative e s SR

— Orientation:

to an edge with a given offset.
Reference Edge: Object Edge: Offset:
Vertical Edge Separate:

Reference Edge: Object Edge: Offset:

Ssave. _Gancel _Help

30




Adding Rings and Halos to Macros

* Adding a ring to a hard macro (e.g., SRAM) has the following benefits:

« Easy to connect macro PG pins to ring.
« Easy to terminate power mesh near macro.

* But this comes at the expense of wasted area _,, Block
« Therefore, often SRAMs are connected ' - L
by dropping vias from above. pamaall | [N
* To add rings to a macro:

« Select “Ring Type” = “Block ring(s) around”

add rings -—-around selected —-type block rings ...

« Optionally add one set of rings around many macros.
* To ensure no standard cells close to macro edges, create a placement halo:

create place halo —-insts ...

31
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Special Route Revisited

» SRoute is a router for making
PG connections to pins and stripes

 Follow Pins: Routes Standard Cell rails
route specilal —connect core pin

* Block Pins: Connects macro PG pins
e.g., SRAM VDD/GND pins to rings.

route specilal —-connect block pin

« Pad Pins: Connects I/Os to core ring
route specilal —-connect pad pin

« Secondary Power Pins: For connecting pins
of level shifters that are not in the PG rails.

 Check connectivity of special route only:

check connectivity —type special

SRoute — sjecvl-brijk

Basic  Advanced | Via Generation

Met(s):
SRoute

¥ Rlock Pins | # Pad Rings ¥ Floating Stripes
v Pad Pins ¢ Follow Pins _ Secondary Power Pins

Routing Control
Layer Change Control
Top Layer: | Metal6(6) ¢ Bottom Layer:, Metal1(1) »

¥ Allow jogging ¥ Allow Layer Change

— Specify Area

Power Domain Selection
s Al ~ Selected
— Named:

__ Delete Existing Routes

_Mode Setup _ _Jarget Editing Options _

_ Apply _Defaults _Lancel

- Help -~
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Reminder: End Caps and Well Taps

« End Caps (or boundary cells):

 Are cells required at the end of standard
cell rows (and in advanced processes,
at the top, bottom, corners, etc.)

* Include POLY, OD, NWELL
and other layers for DRC and density.

« Well Taps (or Tap Cells):

 Are cells that connect VDD/GND to
NWELL/PWELL to prevent latch up.

 DRC rules require tap cells
every several microns.

add well taps -cell $WELLTAPCELL \
-skip row 1 -prefix WELLTAP \
-in row offset 3 -cell interval 10

set db add endcaps left edge $SENDCAP LEFT
set db add endcaps right edge $ENDCAP RIGHT
add endcaps -prefix ENDCAP

I T
distance

endcag

.

endcap

Source: OpenRoad

check well taps -max distance 20
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Power Planning
» One-of the- most-important

The most important part of floorplanning
is creating the power grid.

A

Source: |

* The goal of the power grid is to

Huang, Chang, TODAES

Stacked
via

Grid Offset

provide VDD/GND to all circuits, while:

* Minimizing (static) IR Drop.

« Minimizing (dynamic) dl/dt drop.

* Meeting Electromigration requirements.
« Leaving enough room for signal routing.

* This is done with power rail analysis tools

Core Boundary

Chip Boundary

Core Area

\

T~
|l

(e.g., Voltus, RedHawk), but that is beyond

- - -
NEiIEIEIEIEIEI

SN L s =mwr

T i
i E == N
- - - - L L}

— — [—— — — - pR— —

.Esﬁsgszgéigig.il

Grid Steps

NN\

Grid Spacing

N\

Ring Width

N\

Ring Spacing

\

the scope of this demo.

Source:

VLS| Back-end Adventure  CoreRing  Stripes

/ o/ Ay
Horizontal Horizontal Vertical

Stripes

A
Vertical

Core Ring
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Placement

« After the floorplan is ready, it is time to move on to standard cell placement.

* This is done with the timing-aware GigaPlace tool:
place opt design
* Runs pre-placement optimization
* Runs standard cell placement
« Performs scan tracing and reordering
* The place opt design command replaces the legacy two-staged placement:

place design
opt design —-pre cts
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Congestion and Blockages

* Following placement, we can evaluate congestion based on trial route:

» To fix congestion try: report_density map

* Running congestion-driven placement |set_db place global cong effort high

« Adding padding to modules

set db place global module padding XXX

» Creating placement blockages and module constraints
* There are three types of placement blockages:
 Hard blockages:

Areas that cannot be used for standard cell placement.

« Soft blockages: Blocked during placement, but can
be used during optimization, CTS, ECO, legalization
- Partial blockages:
Limits the placement density (utilization) in the area

create place blockage \
-polygon|rects XXX \
-type hard|soft|partial
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Module Consiraints

 Beyond placement blockages, modules can be constrained to be placed within
a certain area using the create boundary constraint command.

create boundary constraint -hinst <hinst name> \
—polygon|rects XXX —-type fence|region|guide|cluster

* There are four types of module constraints:

Guide: Guides the placer to locate the module in the specified area.
This is a “soft constraint”.

Fence: Ensures that a module is placed inside the specified area.
This is a “hard constraint”. No cells from other modules can be placed here.

Region: Like a Fence, ensures that the module is placed inside the specified
area, but allows placement of instances from other modules within the region.

Soft Guide/Cluster: Similar to a guide, but there are no fixed locations.



Post placement reporting

* Following placement, we should analyze the results.

* Innovus provides several reports and tools for this, including:

- check place: Checks for overlaps, off-grid, and unplaced cells.

- report area: Standard cell area in each hierarchical module.

- report density map: Generates a density map and report.

- report pin density map: Generates a pin density map and report.
- report congestion: Reports average congestion and hotspot score.

 And, of course, we should check timing.
At this point, setup timing with an ideal clock is usually sufficient.

report timing

time design -pre cts -ideal clock

39




Check congestion

« After global routing (trial route) check the congestion report or visualize with:
VIEWS—> PHYSICAL VIEW—>

> ALL COLORS=2>VIEW ONLY—>

—> CONGESTION

Congestion Analysis:

OverCon OverCon OverCon OverCon

$Geell $Geell #Geell $Geell tGeell Slue means no congastion
Layer (1-2) (3-4) 5-6) (7-12) OverCon and one under-used frack
___________________________________________________________________________ Graen means no congestion
Metal 1 22 (0.01%) 10(0.00%) D(0.00%) 0(0.00%) (0.01%) and all fracks are used
Metal 2 5531 (2.39%) 1680(0.73%) 370(0.16%) 123(0.05%) (3.33%) Black means nOCC'nQESﬁOf'\
Metal 3 4114(1.78%) 19(0.01%) 0{0.00%) 0{0.00%) (1.79%) and several under-used
Metal 4 1333(0.58%) 137(0.06%) 0(0.00%) 0(0.00%) (0.64%) tracks
Metal 3 5852 (2.53%) 4(0.00%) 0(0.00%) 0(0.00%) (2.53%) Red and yellow mean
Metal & 27(0.01%) 0(0.00%) 0{0.00%) 0{0.00%) (0.01%) :ongestion

Total 16B792(1.22%) 1850(0.13%) 370(0.03%) 123(0.01%) (1.39%)

#Max overcon = 1Z tracks.
#Total overcon = 1.39%
#Worst layer Geell overcon rate = 2.53%

40



Tie-Off Cells

* Following synthesis, there are various gates or
macro pins connected to constant values (‘0’ or ‘1°).

vCC vCC

| EEEEE— " QUT

* However, in nanoscaled technologies, we are not allowed N |
to directly connect VDD/GND to gates of transistors. - —
« Thin oxides sensitive to surges, as well as antenna violations. 5 5
* Therefore, after placement, we need connect constants R e, R
with “tie cells” using the add tieoffs command Tomodachi Kushagra
* Tie-Hi — connect VDD (1’ b1) Vo oD
» Tie-Lo — connect GND (1’ b0) l
- Design considerations 4 [E =
« Maximum distance of tie cell from gate. VSS” VSS

* Maximum fanout for a tie cell

41



Timing Optimization

* Timing optimization is applied throughout the flow after every major step:
« After Placement (a.k.a., Pre-CTS) |cpt_design —pre cts
 After Clock Tree Synthesis opt_design -post cts
» After Route opt design -post route

 Depending on the stage, timing optimization includes:

« Adding buffers
* Resizing gates
« Restructuring the netlist

« Default timing categories:

. reg2reg TN

* in2reg, reg2out, in2out W
* reg2cgate

clk

* Remapping logic « Deleting buffers
e Swapping pins * Moving instances
* Applying useful skew

>
reg2out outt)




Timing Optimization R

Setup 556G mi0c_0OpElv_ Cworst_ccwors

e +——— —t—— +
| Setup mode | all reg2reg |regZcgate| default |

* After running optimization, LT L e e e

I WHS (ns):| -0.875 0.204 0. | -0.6875 |
o L u | TS (ns):| -1453.1 |-532.&862 -5.301 | -1078.5 |
a final summary will be printed out: | Violssing taha:l s | Smn | 72 | s |
| A1l Paths:| 45955 | 5404 |
e +——— - +
- +—— +

* Instances and nets that are added during e —_—_——

optimization are named according to a Dm0 o000 1 a1
convention, starting with “FE"*, | e ol o

* For example: oo vitlow amsmasony
* FE OCP_RBC: Instance added by rebuffering * This is legacy from one of the early versions of
- FE_RC: Instance added by netlist reconstruction '""°vus inatwas then called TFirst Encounter’
- FE RN: Net added by netlist reconstruction

- FE_USKC: Instance added for useful skew
Note that these names can be customized using set db commands
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Clock Tree Synthesis — o ol
 Until now, we had an ideal clock A A
-

« Max Delay:

T > th T ZLlogic + ZLsetup

 We now have to build a clock tree

« Max Delay:
* Min Delay:
I+ 5skew -2 5jitter > ZLCQ T tlogic T tsetup T 5margin
th T tlogic > thold « Min Delav:
y- tCQ + tlogic o 5margin > ZLhold + 5skew

Y

¥ )
PLLLLLLELD




Clock Tree Spec

 There are many attributes and constraints for guiding CTS.
* They can be created automatically with: | create ciock tree spec
« Example commands in clock tree spec:

* create clock tree -name clock -source CLK -no_skew group
* create skew group -name clock -sources CLK -auto sinks

* set db
* set db
* set db
* set db
* set db
* set db
* set db
* set db
* set db

cts buffer cells {BUFX1l2 BUFX8 BUFX6 BUFX4 BUFX2}
cts _inverter cells {INVX12 INVX8 INVX6 INVX4 INVX2}
cts _clock gating cells {ICGX12 ICGX8 ICGX6 ICGX4}
cts use inverters true

cts_max fanout 20

cts target max capacitance 0.1

cts_target max transition time 100ps

cts_target skew 50ps

opt useful skew ccopt extreme

* In addition, various components of the clock tree can be defined.
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Clock Tree Components s pinimem/cx

Clock
Source

N
CLK

>

PLL

Clock
Sinks

\

Clock
Tree
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.cts_pin insertion delay 1l.2ns

Insertion
Delay Pin

Implicit
Stop Pins

y

macro m0

I

>

1\

Implicit
Ignore Pin

Insertion delay

Implicit
Through Pin

CLKGATE

set db pin:$pin .cts_sink type
stop/ignore/exclude




Shielding and Non-Default Routing Rules

Create Double Width create route rule —name CTS 2W2S \
Route Rules| Double Spacing —spacing multiplier 2 —width multiplier 2
Create Preferred Routing Layers

Shieldin
Route Type 9 create route type —name trunk rule -non default rule CTS 2W2S \

—top_preferred layer M7 -bottom_preferred layer M6 \
-shield net VSS -bottom shield layer M6

\ 4

STi,th?g:;e Leaf: Any Clgfrl;;?; fg gnseiﬁ’:(e.d set db cts_route type top top rule
Top Trunk: Any other clock net set db cts_route type trunk trunk rule
Trunk ' _ ' set db cts _route type leaf leaf rule
Leaf TOP:F Clock nets with set db cts top fanout threshold 10000

) anout > cts top fanout threshold




50

Some CTS Recommendations

* Don’t forget to specify buffers, inverters, and clock gating cells.
* Prefer LVT cells > Lower insertion delay, better for corners/OCV.

- Stay away from largest and smallest clock cells:

« Largest ones result in higher power and can lead to EM problems.
« Smallest ones (e.g., <= X3) are more sensitive to corners, Sl, routing jogs.
* Medium-sized cells (e.g., X4) are important so large ones aren’t always used.

» Buffers or Inverters? Often inverters result in lower insertion delay and power.
e Limiting the number of cells (e.g., 5 per type) can improve runtime.

 Use multi-cut vias to reduce electromigration.

« Often add padding near clock cells and flip flops to add decap.



Running and Debugging CTS

reset ccopt config
source my cts spec.tcl

* CTS is run with the clock opt design command® | ...k design “type cts
clock opt design

« CCOopt runs “Clock Concurrent Optimization”

 |In other words, it builds the clock tree and runs timing optimization.
* Before CTS, run check design -type cts to find possible problems.

*clock opt design

* To run standalone CTS, use the c1lock design command, replaced ccopt_design
which will build a balanced clock tree without optimizing timing.

« After CTS the clock is changed into “propagated” mode.

* In addition, average insertion delay is subtracted from the primary inputs.

* |In other words, your source latency will now be negative!
 To remove this, use: set db cts update clock latency false

 After CTS, run opt design -post cts -hold to fix hold violations.
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Post CTS Reports

« Some useful post CTS reports:

report clock trees: Reports a summary of all defined clock trees.
report clock tree structure: Reports the structure of the clock network.
check/report clock tree convergence: Many paths leading to one output
report skew groups: INfo about skew and insertion delays in skew groups.
report pin insertion delays: Reports insertion delays at clock sinks.
report ccopt worst chain! Reports clock chain with path with WNS.
report clock tree drv: Reports DRVs in the clock network.

* Of course, timing reports should be generated, including hold timing:
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report timing time design -post cts

report timing -early time design -post cts -hold




Clock Tree Debugger

* Open with gui open ctd or Clock->CCOpt Clock Tree Debugger

Menu Bar Control Panel

nnnnnn

Key Panél = / Clock Buffers
£
Ei - Clock Logic

ua(:wr:egim Clock Sinks
E

World Viewer
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Routing

« At this point:
 All cells have been placed.

* Clock buffers have been inserted and clock tree has been routed.
« Timing (setup and hold) is evaluated based on global route parasitics.

* Concurrent routing and optimization is done with route opt design:

° The NanOROUte rOUter features: set db route with timing driven true
o T|m|ng Driven set db route with si driven true

« S|-Aware route opt design
« Aware of manufacturing technology features and constraints (DRCs)
 Routing is carried out in two steps:

 Global routing assigns nets to GCells, after which congestion can be analyzed.
» Detalled routing lays down actual wires and connects to pins.

« ECO routing is used for incremental fixes after detailed routing.




Timing Reports

* Perhaps the most important analysis after any stage is timing.

T+0

skew

—D0 Q Launch Path_ _ D
FF1 }~ Data | FF2
/’ Arrival
/X /\
7’
N T <__ I\ /A
— = _ _L/ - Required
Capture Path
Data
Ar_rival
FF1/CK A Time
N / Data
—_— \ Required
S~ —)'/ Time
XXX
FF
setup
FF2/CK Time

—20... >t ot

jitter logic

+t. +0

setup

Data

Launch Path
A

margin

: VIOLATED (-8.803 ns) Setup Che
View: wc analysis view
G FDIJ p:

with Pin id stage i/

) id_stage i/mult_sel subword ex o reg/CK

id stage i/mult dot op b e
(R) clk

Launch

Setup:
Uncertainty:
Cppr Adjust:

Required Tim
Launch Clock:
Data Path:
sla

id stage i sel subword
id stage i/m sel subword
stage i
stage i

« stage i

i/FE RC 418 8/
i/FE OFC298 FE RN 218 8/Y

report timing

1t dot op b ex o reg[27

Delay

R b et O bt el et et

3
3




Report Timing - Header —

Path # - ordered by WNS

Path Group

Start Point

Endpoint
Clock Edges
Source Latency

Clock Net Latency

Did we meet timing?

Clock:
Endpoint:
Clock:

Clock Edge:
Src Latency:
Net Latency:

Arrival:

Setup: -
Uncertainty: -

Cppr Adjust:
Required Time:
Launch Clock:
Data Path:
Slack:

H o+ 1 i +

wc analysis view

reg2reg

Launch Path

FF1 } 7 Data
,/ Arrival
N
P4

/
Setup or Hold?

Path 1: VIOLATED (-0.003 ns) Setup Check with Pin id stage i/mult dot op b ex o yeg[27]/CK->D
View:
Group:
Startpoint:

(R) id stage i/mult sel subword ex o reg/CK

/mult dot op b ex o reg[27]/D
Rising or falling

(R)_clk
(F) 1a—stage 1
(R) clk

Capture
6.000
-0.916
.937
.020

(P)

.090
.125
.000
.806
.019
.790
.003

Launch
0.000
-0.916
0.935 (P)
0.019

Flop Setup Time
Clock Uncertainty (Jitter)
Required Time = Arrival — Setup — Jitter

Data Path arrival time

Final Slack Calculation




Report Timing - Launch Path . 3

Data FF2
Arrival

» Standard timing report only shows the data delay = >——-{> |
of the launch path and very basic information.

| Flags | Arc | Edge |

| _Fanout

stage i/mult sel subword ex o reg/CK CK | R | : 0.
stage i/mult sel subword ex o reg/Q |ishjg/ﬁanh1g CK->0 | | B.188
¢ stage 1 mult 1/FE RC 1472 0/Y B->Y | i | 0.044
I I
) I -

LN b E
\
-

X stage 1 mult 1/FE RC 418 8/Y | Al->Y B.143
ex stage 1 mult i/FE OFC298 FE RN 210 8/Y | B.161

'
o
w0

ca
=

ex stage 1 mult~i/sra 107 120 g4848/Y B->Y Arrival Time
ex stage i mult i/FE.RC 888 /Y [ ] gk fe oL
ex stage i mult i/FE RC 887 B/Y " 5. 161

g1998,Y Timing Arc -' 5 | 0.184

L0 I W

Ln

L L

wn o
un

oo On L

B.115
->Y 834
-':-"r . 1]..9 l

To=

id stage 1/FE OCPC3458 regfile alu wdata fw 27/Y
id stage 1/g934311/Y
stage 1/FE RC 546 8/Y
i/mult dot op b ex o reg[27]/D

un
o
D@ WL W R WD
LD LAl et

=2 ™ I
oL i
(4]

=]




Data Start

Report Timing — Full Clock ™2 — 720 )5
Clock Port e Data | FF2
—0.916ns\‘|ik§“I\§”>'ﬁX_ N~ /|\

* To get more data about the clock
propagation, use the full clock option:

Capture

Clock Edge: 6.086 8,
Drv Adjust: B.0879 8.
5rc Latency: -8.916 -8.
Net Latency: 0.857 ) 8.
Arrival: 6.028 g.

Launch
B.0686
a79
916
856
819

report timing \
—-path type full clock

(P)

B.098
B8.125
0,008
.BO6
B.0819
.798
-8.0083

Setup: -
Uncertainty: -
Cppr Adjust:

Required Time:
Launch Clock:
Data Path:
slack:

Timing Path:

* Pay attention -
launch path now has
many more details!

n++ n n +

Timing Point

Launch Clock —

l a BUF clk G1 L2 3/¥
1/CTs ccl a BUF k G1 L3 18/Y
i/RC CG HIER INST9/RC CGIC INST/ECK
age i/CTS ccl a BUF cl 2 L5 1e2/Y
e i/mult sel subword o reg/Q
mult 1/FE RC 1472 a/Y
i mult i/FE RC 418 8/Y
I mult i/FE OFC298 FE RN 218 8/Y

Timing report continues...

A
y

‘Average Insertion'
Delay = 0.916ns

Source insertion delay is calculated
to average out I/O clocking

Actual starting time is
Src Latency+DRV Adjust+Delay

Edge | Fanout
I

| Flags . Trans

LN oG Lad Lad

bt i [l = e = e o e e & e &
=
= L g

+
|
I
I
I
I
I
I
|
|
I

Data Start Point %




Report Timing - Full Clock (2)

Clock Period — Avg. Insertion Delay =

* We also get to see
the :

Continued

from last slide

| ex stage 1 mult 1/FE RC 887 B/Y
| g2831/Y
| g1998/Y
| id stage i/FE OCPC3458 regfile alu wdata fw 27/Y
: id stage i/g34311/Y

Launch path endpoint — HEPEeSEaery R,

I

H

id sTage i/mult dot op b ex o reg[27]/D
Other End Path:

Timing Point

3 Same Clock Port 1

L a BUF clk G1 L2 3/Y
id stage 1/CTS ccl a BUF clk Gl L3 16/Y
1d ﬂTHI'_f]F i/RC CG HIER INSTB/RC CGIC INST/ECK
id stage i/CTS ccl a BUF clk G2 L5 108/Y
id_stage_i/mult_dot op b_ex o_reg[27]/cK

Capture Clock . <

Launch Path
End Point

_ Launch Path _ D af—
-7 FF2
Clock Port ;:,’ AErai\t/aaI A
5.084ns @-->H’| /tl
) Capture Clock / -
Endpoint
clock pin

| A-=¥Y

| AB-=Y

|

|

Endpoint I
data pin .
- |

|

-

Endpoint
clock pin
| CK->ECK |
=Y |

9.161
3.185 i
3.104 8. LEE

| | ©.115 .199
| I
| I
| 8.115 | @. .551
| I
| I
I I

8.12 .323

9.834 | .08 .633
| 8.119 | @. . 809

I 0.187 | 0.002 .B09

a
Actual starting time is
Src Latency+DRV Adjust+Delay

Fanout | Trans | Delay
{ns) | (ns)

Lid =t =t O =f =

Lad

0.163
3.166
J.066
0.096
0.083
3.122
3.071

B2e

o LN



Report Timing - fields option

* To debug timing, we would like more information, for example,
the net name, the wire capacitance, the pin capacitance, etc.

* Use the —-ric1ds option to get the info you really need.
* For example:

report timing -fields "timing point cell arc edge fanout load pin load transition delay arrival"

“‘edge” — falling “transition” — rise/fall “delay” — total delay
“cell” — standard or rising signal time on the net through the cell
_____________ cell name
“Timing point” Timing Point Cell J Load | Pin ans | Delay | Arrival

(ns)
/mult sel" subword ex o reg/CK
/mult sel subword ex o reg/Q

mult i/FE RC 1472 @/Y “ ” P

mult i/FE RC 418 8/Y arc” — timing arc

mult 1/FE OFC298 FE RN 218 /Y |

mult i/g3596/Y |

mult i/g93575/Y : “load”

mult i/FE DBTC177 nm 981/Y

L = = I v ]

Bde e b s ot foi b ot
el = =)
[

capacitances on the net IS 4t the timing point



Report Timing - Hold

* To report hold timing, just add the —-car1+y option

Path 1: MET (8.801 ns) Hold Check with Pin id stage i/controller i/jump done q reg/CK-=D
| View: bc analySis-uiew
L. 1 Group: regzvreg
- startpoint: (R) id stage i/controller Ly<5ump .
report_timing —early Clock: (R) ck - Now it's a hold check!
Endpoint: (F) id stage i/contfoller i/jump
Clock: (R) clk

i i The analysis view changed
Capture Launch

Clock Edge: 0.000 0.000 to the Best Case corner
Src Latency: -0.248 -8, 240
Net Latency: B.218 (P) 8.216~(P)
Arrival:=  -8.038 -0.038 Launch and capture clock at the

Hold: 0.010 same edge

Uncertainty:+ B.125 . .
Cppr Adjust:-  0.008 Register hold constraint

8.105

-0.0830 it
6 137 Now, it's

0.001 Slack=Arrival — Required

Required Time:
Launch Clock:
Data Path:

o= I

Pin Trans

age i/controller i/jump done q reg/CK | CK B.0853 0. @ . € -8.030
ige_i/controller i/jump done q reg/Q (- B.006 0. BE B.E B.09: B.063
e i/controller 1/g4794/Y 3 9.602 | ©.80; 9.014 | 0.022 0.085
i/controller i/g4788/Y ==Y 8. 008: p. 882 B.822 0.0822 8.186




Report Timing Debugger

A very good GUI option is to use the Innovus “Debug Timing” tool.

« This tool lets you explore the
timing report interactively, even
showing path schematics, SDC,
and highlighting the path in the

layout.

manad/Motorola/pulpino/workspac

Verify PVS Tools Windows

MMMC Erowser..

ExtractRC..,
Report Timing...

Generate Capacitance Table.., &b

Debug Timing...

- B
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e

Timing Path Analyzer + - 0X
Timing Path Analyzer =
Path: 1 15} 1 | =] X W
Type:  Setup Check, reg->reg 104 segments View: wc_analysis_view
Slack:  1.5170 (req. time: 9.8280, arr, time: 8.3110) Skew: -0.0680 (Incr Delay: 0.0)
CPPR:  0.0000 CPPR Common Point:
Start:  core_region_i_RISCV_CORE id_stage_i_alu_operand_b_ex_o_reg 0_/Q (DFFRHQX1)
(clocked by clk leading, latency: 0.0020)
End: core_region_i_RISCV_CORE_ex_stage i_mult i¥mulh_C5_reg 2 /D (DFFRHQX1)
(clocked by clk leading, latency: -0.0660)
Slack Calculation
ins
1 Data Delay Il Positive Slack |
[ Fhase Shift |
Data Path  Launch Clock  Capture Clock | PathSDC | TimingInterpretation  Schematic
Data Delay
Mame | A | Cell | Delay | Sum | Status | Load | Slew | IncrDelay )V
core_region_i_RISCY_CORE id_stage_i_alu.. ~ CK->Q | DFFRHQX! 0284 0284 0.046  0.000
core_region_i_RISCV_CORE_alu_operand_.. 0.000 0,284 0.002 0.046 0.000
FE_OFC1545_core_region_|_RISCV_CORE_.. A=Y | BUFX12 0.093 0377 0.027  0.000
FE_OFN1545_core_region_i_RISCV_CORE.... 0.000 0377 0.002 0,027 0.000
1 I RSAM B_=W CLKARDITY A i AART M_ARA [l k] ii"i"i -

Hierarchy View

o=

E

CFRTarttrerriart,

Al



68

Post Route Reporting and Checks

* The primary report for routing analysis is report route:

Congestion, Track utilization and DRCs
Wire length and Wire density
Single-cut/Multi-cut vias

EM coverage

 Additional reports include report wires and report congested area.

* At this point, you can run physical verification checks:
» check drc: Runs a DRC check (based on the techlef)
* check connectivity: Runs an Innovus internal LVS
* check antenna: Verifies that there are no antenna violations.
* check metal density: Checks for density violations.
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Post Route Optimization and Signoff

* At this point we have a fully routed design and we are ready to finish the
physical design stage of our design.

* In this final section of our small SoC demonstration, we will briefly go over:

 Post route optimizations, including design for manufacturing (DFM)
* DRC fixing within Innovus

Applying ECOs within Innovus

Finishing up the design (fillers, metal fill, and design cleanup)
Signoff timing

Exporting the design
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Post-Route Optimizations

* Post-route tlmlng Optimization IS run with: opt design -post route -setup -hold
 Several options can be set for specific optimizations:

« Fixing Sl slew violations:

set db opt post route fix si transitions true

» (note that Sl glitch violations are fixed by default)

« Fixing Signal EM violations:
« Wire Widening
* Driver Downsizing
 Buffering
* Optimizing power:
» Ratio 0.0 for dynamic power optimization
« Ratio 1.0 for leakage power optimization

e Post-route useful skew:

fix ac limit violations \
—allow down size true \
—allow_add_buffer true

set db design power effort <none|low|high>
set db opt leakage to dynamic ratio <0.0 - 1.0>

set db opt skew post route true




Post-Route DFM Optimization

* At this point we can run some optimizations for improving yield:

e Wire Optimization set db route design detail post route spread wire true
. . route design -wire opt
(straightening, = =

Widening’ Spreading) set db route design detail post route wire widen rule <ruleName>
set db route design detail post route wire widen widen
route design -wire opt

e Via Optimization set db route concurrent minimize via count effort high
. . . route design -via opt
(via reduction, multi-cut) = =

set db route design reserve space for multi cut true
route design

set db route design detail post route swap via true
set db route design with timing driven false

route design -via opt

 Lithography-aware routing

set db route design detail post route litho repair true
route design
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Post Route DRC Fixing

* After routing, there are often DRC violations.

check drc -limit 1000000000

* To fix DRCs, use ECO routing: | set_dv route_with eco true

route_design

« If that doesn’t work, try deleting and re-routing
the nets with violations

* To save runtime try routing only selected nets:

route _eco —-fix drc

route_design

check drc -1limit 1000000000
delete_ routes -regular wire with drc

route design

set db route_selected net only true

* Delete all gap, notch and hole geometries [acicte notcn £i11

* Remove or trim dangling wires.

edit_trim_routes

Net1

VDD VDD

A
D
D

VDD %V edit_tim_routes |y VDD |=
Net 1 D D[ Nef
P — 0 _

oo<

* If you have DRC violations that you only see in your signoff tool

(e.g., PVS/CahbrE): read markers <file> -rule map file <rule file> -type <pvs/Calibre/..>

route fix signoff drc




Applying ECOs

« ECOs (Engineering Change Order) are small modifications made to
the design at a very late stage. These usually are applied in two cases:
1. After routing on a large design to save time of rerunning the whole flow.
2. To implement a metal fix after tape out (possibly before backend fabrication)
« ECOs can be implemented automatically
(e.g., through Tempus ECO flow) or manually:

set db eco _refine place false
set db eco update timing false

 Start by turning off automatic ECO:

o Manua”y add buffer: eco_add repeater -cells <libcell> -net <net> \
-location {<xcoord> <ycoord>}

* Manually UpSiZG/dOWﬂSize cell: eco update cell -insts <inst name> \
-up_size/-down_size

Manually change the cell:

eco_update cell -insts <inst name> -cell <libcell>

Then run placement legalization: place detail




Finishing the Design

« At this point, we need to finish the design and clean things up:

« Add fillers, wherever there are no standard cells placed: | add fillers

A|tematiVe|y, add decap Ce”S: add decap cell candidates DECAP10 10

add decaps -total cap 1000 -cells DECAP10 DECAPS8

Add and check metal fill within Innovus: | .34 metal £i11 —net vad

check metal density

Fix tlmlng violations due to metal fill: trim metal fill near net -slack_threshold XXX \
-min_trim density XXX -spacing XXX \
-spacing above XXX -spacing below XXX

- delete_ assigns
Clean up netlist: delete empty hinsts

delete_dangling ports
delete floating constants




Signoff Timing

* For signoff, use the opt_signoff and time_design_signoff commands:

opt signoff -drv/-setup/-hold

time design_signoff

- time design signoff calls the Tempus signoff timing tool.
* For signoff timing, advanced timing analysis modes should be used.

* This is a bit complex and beyond the scope of this tutorial but it includes

* On-chip Variation (OCV) with

set timing derate -late 1 -early 0.9 -clock
set db timing analysis type ocv

Clock Path Pessimism Removal (CPPR) | set_db timing_analysis_cppr both

« Advanced OCV (AOCV)

 Liberty Variation Format (LVF) files
and Statistical OCV (SOCV)

 Need to define AOCV/SOCV

set db timing analysis aocv true

set db timing analysis socv true
set timing derate -sigma/mean \
-cell delay/net delay 1.2 [get 1lib cells */*]

in MMMC create library set —name XXX \

—timing <LVF .1lib files> —-aocv/socv <aocv/socv side files>
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Exporting the Design

 Once everything is finished within Innovus, it is time to export the design:

- write netlist: Exports Verilog netlist (. v) of the design.

- write def: Export DEF file including floorplan, placement, routing, etc.
- write lef abstract: Generates abstract (LEF) of the current block.
- write timing model: Builds a Liberty (. 1ib) format model for the top cell.
- write stream: Exports the layout to a GDSII Stream file.

- write db: Export design database in the native Innovus .db format

- write sdf: Exports timing delays to a Standard Delay Format (.SDF) file.
- write design: Exports the design for loading in Tempus.

- write do lec: Creates .dofile for Conformal LEC.



Summary

* In this demo, we saw how a simple, albeit full SoC is implemented from RTL to GDS:

We started by introducing the SoC Architecture and showing that the provided RTL
can run a full high-level language (C) compilation toolchain.

We explored the SoC, including instantiated hard macros, such as SRAMs and 1/Os.
We ran full-chip synthesis with Genus.

We moved the design over to Innovus for physical implementation.

We created a full-chip floorplan, including macro placement and I/O ring.

We ran standard cell placement.

We synthesized the clock tree.

We routed the design and fixed DRCs.

We examined the timing reports.

We finished the design and exported our final files.

* This was a simple example, run in a mature process node, but it included the majority
of what goes into a large design in an advanced process.
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