
RTL2GDS Demo Part 4:

Place and Route
on a simple block

Prof. Adam Teman
EnICS Labs, Bar Ilan University

October 1, 2025© Adam Teman, 11

Introduction

• At this point we have:

• Written our RTL

• Performed (at least very basic) functional verification

• Synthesized our design

• Run gate-level simulation and power estimation

• It’s now time to move on to the physical domain!

• And for this, we will be using Cadence Innovus.

Definition and Planning

Design and Verification

Logic Synthesis

Physical Design

Signoff and Tapeout

Silicon Validation

Design Import

Floorplan

Placement

CTS

Route

Finish Design

October 1, 2025© Adam Teman, 12

Cadence Innovus

• Innovus is Cadence’s Place and Route Tool,
encapsulating several other Cadence Tools:
• GigaPlace – for timing-driven placement

• CCOpt – for timing-driven clock tree synthesis

• NanoRoute – for timing-driven Routing

• QRC – for signoff quality parasitic extraction

• Tempus – for signoff quality static timing analysis

• Voltus – for EM/IR and power estimation

• To start Innovus in Stylus CommonUI mode:

• Two files will be created in your working directory:
 innovus.log and innovus.cmd

%> innovus –stylus

October 1, 2025© Adam Teman, 13

Innovus GUI

• Menu Commands

• View:

• Floorplan

• Amoeba

• Placement

• Layer Control

• Toolbox

• Select Bar

• Wire Edit

Menu
Commands

View

Layer
Control

Toolbox

Select
Bar

Wire
Edit

October 1, 2025© Adam Teman, 14

Reminder: Project Structure

• As a reminder, our project workspace consists of:

• Directories and files, e.g., inputs, libraries, scripts

• Tcl arrays, e.g., $design, $tech, $tech_files

• The debug.txt file

• And we run everything from the workspace/ directory

Project Root

work

space

source

code
inputs libraries scripts apps reports export docs

rtl tb

$design()

$paths() $tech_files()

$tech()
debug.txt

October 1, 202515 © Adam Teman,

What do we need to start Place & Route?

Design

Process

Technology

Library

Definition

Library Physical

Data

Constraints

Process

Extraction

Power/Ground

definitions

Our design is the Gatelevel netlist exported from Synthesis

Design constraints are defined in the SDC files

Process Technology is defined in the techlef

Extraction rules provided in the QRCtech or Cap Tables

Libraries are defined in .lib files

Libraries physical data is provided in the .lef files

We need to tell the tool what the power and ground nets are

M
M

M
C

October 1, 2025© Adam Teman, 16

Importing our Design

• All of this data is defined in the Design Import

form or by the following commands:

• read_netlist –

reads in the post-synthesis netlist

• read_physical – reads in the

.lef abstracts of the libraries and techlef.

• init_gnd_nets and init_pwr_nets –

define global PG net names.

• For a complicated power management setup, read in UPF/CPF files, as well.

• read_mmmc – reads in the .mmmc file, which includes pointers to the SDC file,

extraction rules of the process (QRCtech files) and .lib files of the libraries.

• And then we can run init_design to process all of this data.

October 1, 2025© Adam Teman, 17

Design Browser

• The Design Browser is a very useful tool for browsing your netlist.

• After read_netlist it will be populated with your design.

• The Design Browser has many options:

• Browse connectivity

• Select Instances/Nets

• Zoom to Instances/Nets

• Highlight Instances/Nets

• Show Schematics

• …and more

October 1, 2025© Adam Teman, 18

Global Nets

• Another very important (and new) concept in physical design is “Global Nets”

• During init_design, we defined the names of the power and ground nets with

the init_pwr_nets, init_gnd_nets attributes.

• This created “PG nets” but so far, they are not connected to anything.

• We need to tell the tool which pins on our leaf cells connect to these nets.

myinverter
V

D
D

V
S

S
MYSRAM

MVDD

GND

VDD

GND

connect_global_net VDD –pin VDD –inst myinverter

connect_global_net VDD –pin MVDD –inst MYSRAM

connect_global_net GND –pin VSS –inst myinverter

connect_global_net GND –pin GND –inst MYSRAM

October 1, 2025© Adam Teman, 19

PG Connections in the Design Browser

• After init_design, PG_pins will appear in the Design Browser.

• At first, these will not be connected

• The PG_pins are connected by connect_global_nets.

• Mak sure each instance connects to the correct global nets.

October 1, 2025© Adam Teman, 20

Floorplanning

• At this point, we can look at the GUI under the “Floorplan View”

Actual
Floorplan

Hard
Macros

Standard
Cells

October 1, 2025© Adam Teman, 21

Specify Floorplan

• The create_floorplan command or Specify Floorplan form are used to set

the size and target utilization of the floorplan.

create_floorplan –site CORE –match_to_site \

 -core_density_size 1.0 0.7 5 5 5 5

Aspect Ratio
Target

Utilization

Core to

Boundary

October 1, 2025© Adam Teman, 22

Pin Location

• As we saw in the Placement lecture, pin (port) locations have

a very significant effect on the Analytic Placement solution.

• But where do the locations come from?

• Well, the default is to put them all in the corner…

• We have several ways to locate the pins:

• Manually move them

• Use the Pin Editor

• Use the edit_pin command

• and more functions like “Pin Groups”

edit_pin -pin clk -use CLOCK -assign 0.0 3.9 -fix_overlap 1 \

 -side Top -layer 3 -pin_width 0.1 -pin_depth 0.1

edit_pin -pin $PINS -spread_type side -side Bottom -layer 2 \

 -spread_direction clockwise -fix_overlap 1

October 1, 2025© Adam Teman, 23

Power Rings

• Power distribution is the most significant challenge of floorplanning:

• How do we distribute the PG voltages evenly throughout the design?

• How do we robustly connect (short) all wires of a certain PG net?

• One common method is to use rings:

• Distribute the net around the block or a macro.

• Provide easy targets for connecting stripes and PG pins.

• Use the add_rings command or form.

add_ring -type core_rings -nets {VDD GND} \

 -width 20 -spacing 1 -offset 0.31 \

 -layer {bottom m1 top m1 right m2 left m2}

October 1, 2025© Adam Teman, 24

Connecting PG Pins

• The connection of PG Pins in Innovus is called “Special Route”:

• Routing Follow Pins (M1 VDD/GND rails)

• Connecting PG Ports to VDD/GND nets.

• Connecting macro PG pins to VDD/GND nets.

• This is done with the SRoute form
or the route_special command

route_special \

 -connect core_pin \

 –nets {VDD GND}

October 1, 2025© Adam Teman, 25

Creating a Power Grid

• After running the various Special Route commands,

the power and ground rails are connected, e.g.:

• Core ring is connected to toplevel PG Pins

• Follow pins are routed and connected to core ring

• But for robust power distribution,

we need to build a power grid (power mesh).

• This is done with the add_stripes command

add_stripes -nets {VDD GND} \

 -layer metal2 \

 -width 5 -spacing 0.32 \

 -start_from_left \

 -start_offset 100 \

 -set_to_set_distance 100

October 1, 2025© Adam Teman, 26

Some notes about Power Grids

• The add_stripes command is a very powerful command:

• It can create PG stripes according to many parameters

• It will automatically drop via arrays between stripes on different layers

• It will connect to macro PG pins when possible

• But how do we know how much power routing is needed?

• Which layers? How wide? What offset?

• These are (multi-) million dollar questions…

• Golden answer: As many PG stripes as possible while enabling signal routing.

• Reality: Guess and Iterate.

• Create a power mesh and run through the flow checking routability.

• Run EM/IR analysis (e.g., with Voltus) to expose problems.

October 1, 2025© Adam Teman, 27

End Caps and Well Taps

• End Caps (or boundary cells):

• Are cells required at the end of standard

cell rows (and in advanced processes,

at the top, bottom, corners, etc.)

• Include POLY, OD, NWELL

and other layers for DRC and density.

• Well Taps (or Tap Cells):

• Are cells that connect VDD/GND to

NWELL/PWELL to prevent latch up.

• DRC rules require tap cells

every several microns.

set_db add_endcaps_left_edge $ENDCAP_LEFT

set_db add_endcaps_right_edge $ENDCAP_RIGHT

add_endcaps -prefix ENDCAP

add_well_taps -cell $WELLTAPCELL \

 -skip_row 1 -prefix WELLTAP \

 -in_row_offset 3 -cell_interval 10 check_well_taps -max_distance 20

Source: OpenRoad

October 1, 2025© Adam Teman, 28

Check DRC

• Innovus has a built in DRC checker, activated with
the check_drc command or Verify DRC form.

• Note: DRC checking is based on the TechLEF.

It is not signoff quality DRC checking!

• Explore DRCs with the Violation Browser

• Clear DRCs with delete_drc_markers

@innovus 77> check_drc

 *** Starting Verify DRC (MEM: 858.2) ***

 VERIFY DRC Starting Verification

 VERIFY DRC Initializing

 VERIFY DRC Deleting Existing Violations

 VERIFY DRC Creating Sub-Areas

 VERIFY DRC Using new threading

 VERIFY DRC Sub-Area: {0.000 0.000 31.800 29.200} 1 of 1

 VERIFY DRC Sub-Area : 1 complete 4 Viols.

 Verification Complete : 4 Viols.

 *** End Verify DRC (CPU: 0:00:00.0 ELAPSED TIME: 0.00 MEM: 0.0M) ***

delete_drc_markers

October 1, 2025© Adam Teman, 29

Check Connectivity

• Similarly, Innovus has a type of LVS checker, called check_connectivity

• Primarily reports

opens and shorts

• Based on abstracts (LEFs)

so only checks pin connectivity

• Can sometimes report

confusing errors.

Make sure appropriate

flags are used.

@innovus 78> check_connectivity -type special

VERIFY_CONNECTIVITY use new engine.

******** Start: VERIFY CONNECTIVITY ********

Start Time: Sun Nov 4 22:17:59 2018

Design Name: sm

Database Units: 2000

Design Boundary: (0.0000, 0.0000) (31.8000, 29.2000)

Error Limit = 1000; Warning Limit = 50

Check specified nets

Begin Summary

 Found no problems or warnings.

End Summary

End Time: Sun Nov 4 22:17:59 2018

Time Elapsed: 0:00:00.0

******** End: VERIFY CONNECTIVITY ********

 Verification Complete : 0 Viols. 0 Wrngs.

 (CPU Time: 0:00:00.0 MEM: 0.000M)

October 1, 2025© Adam Teman, 30

Placement

• At this point, our floorplan is ready:

• Block (or chip) dimensions and pins (or I/Os) are set.

• Macros (primarily SRAMs) are fixed.

• Power grid is routed.

• Additional guides (e.g., fences, feedthroughs, pre-routes) are defined.

• We can now proceed to placement

• Innovus runs concurrent placement and timing optimization with “GigaPlace”

• Placement runs early global route (a.k.a. Trial Route) for parasitic estimation.

• At this stage you should check congestion to see expected hotspots.

place_opt_design

October 1, 2025© Adam Teman, 31

Post Placement

• Now we have provided a location to all standard cells,

ran global route for parasitic estimation and applied timing optimization.

• To finalize the placement stage, we need to:

• Add Tie Cells

• Buffer High Fanout Nets (Reset Tree)

• Additional timing optimization

• Any changes in cell location require

incremental Placement Legalization
place_inst G123 34.0 52.0 -fixed

place_detail -eco true

set_db add_tieoffs_cells “TIE0 TIE1”

set_db add_tieoffs_max_fanout 20

set_db add_tieoffs_max_distance 250

add_tieoffs

place_detail

set_db opt_fix_fanout_load true

opt_design -pre_cts

Source: Team VLSI

Source: signoffsemiconductors.com

October 1, 2025© Adam Teman, 32

Clock Tree Synthesis

• At this point, the design is fully placed, which means:

• Location of the clock source(s) is fixed.

• Location of clock pins of macros is fixed.

• Location of clock pins of registers (flip flops) is fixed.

• Clock elements (e.g., ICGs, clock muxes) are placed.

• Therefore, we can continue to clock tree synthesis.

• CTS has many definitions and constraints:

• These are highly correlated with SDC definitions.

• e.g., clock source, clock frequency, constants

• Therefore, we can automatically generate

an initial clock tree spec script. create_clock_tree_spec -out_file <filename>

Source: physicaldesign4u

October 1, 2025© Adam Teman, 33

Clock Tree Synthesis

• Specifically, the clock tree spec includes (among others):

• Definition of “clock trees” and “skew groups”

• Definition of CTS DRVs

• Adding additional sinks to a skew group

• Defining stop, ignore and exclude pins

• Defining insertion delay (float) pins

create_clock_tree -name clock -source CLK -no_skew_group

create_skew_group -name clock -sources CLK -auto_sinks

set_db pin:$pin .cts_sink_type stop / ignore / exclude

update_skew_group -skew_group clock -add_sinks $pins

set_db pin:mem1/CK .cts_pin_insertion_delay 1.2ns

set_db cts_max_fanout 20

set_db cts_target_max_transition_time 0.1

set_db cts_target_max_capacitance 0.1

October 1, 2025© Adam Teman, 34

Non-Default Rules for Clock Routing

• Clock nets get priority by routing them during CTS

• Non-default rules (NDRs), such as double-spacing,

double-width and shielding are often applied to clock nets.

• For NDRs, Innovus divides clock nets into three categories:

• Top: The net driven by the main clock input/source

• Trunk: The major clock nets with a large fanout

• Leaf: The minor clock nets with a small fanout

• NDRs are defined with three commands:
• create_route_rule

• create_route_type

• set_db cts_route_type_

create_route_rule \

 -name CTS_2S2W \

 -spacing_multiplier 2 \

 -width_multiplier 2

create_route_type -name leaf_rule -non_default_rule CTS_2W1S \

 -top_preferred_layer M5 -bottom_preferred_layer M4

create_route_type -name trunk_rule -non_default_rule CTS_2W2S \

 -top_preferred_layer M7 -bottom_preferred_layer M6 \

 -shield_net VSS -bottom_shield_layer M6

create_route_type -name top_rule -non_default_rule CTS_2W2S \

 -top_preferred_layer M9 -bottom_preferred_layer M8 \

 -shield_net VSS -bottom_shield_layer M8

set_db cts_top_fanout_threshold 10000

set_db cts_route_type_leaf leaf_rule

set_db cts_route_type_trunk trunk_rule

set_db cts_route_type_top top_rule

October 1, 2025© Adam Teman, 35

Running and Debugging CTS

• CTS is run with the ccopt_design command:

• After running CCopt, use

the clock tree debugger

to analyze the clock tree:

• Hold optimization can

be run following CTS:

reset_ccopt_config

source my_clock_tree_spec.tcl

ccopt_design

opt_design –post_cts -hold

October 1, 2025© Adam Teman, 36

Routing

• At this point:

• All cells have been placed.

• Clock buffers have been inserted

and clock tree has been routed.

• Timing (setup and hold) is evaluated

based on global route parasitics.

• It is now time to route all of the signal nets:

set_db route_with_timing_driven true

set_db route_with_si_driven true

route_opt_design

October 1, 2025© Adam Teman, 37

Post-Route and Signoff

• At this point we can run some post-route optimizations for timing and DFM:

• Post-route timing optimization:

• Wire optimization (straightening, widening, spreading)

• Via optimization (via reduction, multi-cut)

• Prepare for signoff:

• Add fillers

• DRC/LVS

• Export Design

• Export Verilog netlist

• Export SDF

• Export GDS

opt_design –post_route –setup -hold

route_design –wire_opt

route_design –via_opt

add_fillers; route_eco –fix_drc

check_drc; check_connectivity

write_netlist final_netlist.v

write_sdf final.sdf

write_stream final.gds

October 1, 2025© Adam Teman, 38

Summary

• In this demonstration, we covered a full block-level Place and Route flow:

• Imported the design to Innovus

• Created a floorplan

• Ran standard cell placement

• Synthesized the clock tree

• Routed the design

• Ran post-route and signoff

• This was a simple design, but we showed a lot of the functionalities of the place

and route tool and demonstrated the complete flow.

• Next, we go over a larger, more complex design to show more capabilities.

	Default Section
	Slide 1: RTL2GDS Demo Part 4: Place and Route on a simple block
	Slide 11: Introduction
	Slide 12: Cadence Innovus

	UI
	Slide 13: Innovus GUI

	project structure
	Slide 14: Reminder: Project Structure

	Start flow
	Slide 15: What do we need to start Place & Route?
	Slide 16: Importing our Design
	Slide 17: Design Browser

	Global nets
	Slide 18: Global Nets
	Slide 19: PG Connections in the Design Browser

	Floorplan
	Slide 20: Floorplanning
	Slide 21: Specify Floorplan

	Edit Pin
	Slide 22: Pin Location

	Rings
	Slide 23: Power Rings

	Special Route
	Slide 24: Connecting PG Pins

	Add stripes
	Slide 25: Creating a Power Grid
	Slide 26: Some notes about Power Grids

	Endcaps to end of floorplan
	Slide 27: End Caps and Well Taps
	Slide 28: Check DRC
	Slide 29: Check Connectivity

	Placement
	Slide 30: Placement
	Slide 31: Post Placement

	CTS
	Slide 32: Clock Tree Synthesis
	Slide 33: Clock Tree Synthesis
	Slide 34: Non-Default Rules for Clock Routing
	Slide 35: Running and Debugging CTS

	Route
	Slide 36: Routing
	Slide 37: Post-Route and Signoff
	Slide 38: Summary

