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Introduction

* At this point we have:

e Written our RTL
« Performed (at least very basic) functional verification
« Synthesized our design

« We now will perform three steps for further verification and analysis:

« Gate-Level Simulation (zero delay model)
« Gate-Level Simulation with Timing Backannotation
« Static* Vector-based Power Calculation

*I know it says “Static” but sounds like “Dynamic”... Bear with me..



Gate-Level Simulation

 Gate-level simulation (GLS) is a direct test that is run on a
structural netlist (i.e., constructed exclusively of standard cells).

« GLS can be run at any stage from post-synthesis to post place and route.
* Why run GLS?

« Ensure desired functionality is not lost in the translation from RTL to GTL.
« Ensure timing delays do not break intended functionality.

» Some specific motivations for GLS:

Mistakes in SDC (e.g., wrong false paths or unconstrained paths)
Verifying system initialization and reset sequence, including power intent.
Simulations that become relevant after RTL, including DFT and CTS.
Verifying asynchronous interfaces and multi-cycle paths.

Capturing switching activity for power estimation.



Types of Gate-Level Simulation

* Zero-Delay Simulation

%> xrun -—-nospecify ...

« Simulating the netlist without annotating any timing data.
* specify block delays are ignored (-nospecify switch or -delay mode zero)

« Used for system initialization and reset sequence, DFT verification,
verification of power up/reset operation of power domains.

* Unit-Delay Simulation

* Every element has one unit delay. W seEi —erilEy el st oo
* More simple than SDF Backannotation and can reveal races and loops.

 SDF Backannotation

* Annotates gates and nets with delays from STA/extraction.

« Used to verify clock tree synthesis, desired frequency verification,
STA tool limitations, revealing glitches and power estimation.

$sdf_annotate(<design_name>.sdf,<DUT>,,"sdf.log" , "MAXIMUM") ;




SDF Backannotation

 Timing backannotation is done with a “Standard Delay Format” (SDF) file
* In Genus/Innovus use the write sdf command

 The SDF file has delay information for every instance, wire and timing checks:

 |nstance: (CELL
(CELLTYPE "DFF") (INSTANCE U1l)

(DELAY (ABSOLUTE
(IOPATH (posedge clk) (posedge g) (1.2:1.5:1.8))))
(TIMINGCHECK
(SETUP (posedge d) (posedge clk) (0.8:1.0:1.2))
(HOLD (posedge d) (posedge clk) (0.2:0.3:0.4))))

° WII’eS (CELL

(CELLTYPE "digital_top") (INSTANCE)
(DELAY (ABSOLUTE
(INTERCONNECT inl top/my reg/D (0.027::0.028) (0.029::0.030))
(INTERCONNECT top/my reg/Q my2 reg/D (0.0::0.002) (0.0::0.003))




SDF Backannotation

* In our Verilog testbench we add $sdf annotate to read the SDF file:

initial
begin
$sdf annotate (<design name>.sdf,<DUT>,,"sdf.log" ,"MAXIMUM") ;
end

* And we run our simulation with SDF flags:

%> xrun +sdf verbose -sdfstats sdf_stats.txt ...

* And we can see the delays in the simulation waveforms:
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Glitch Propagation (Delay Models)

 Zero-delay simulation propagates signals through logic gates immediately.

 But once delays are added, varying arrival times create “glitches”.
« Depending on the pulse width of the glitch, a digital gate may filter it out.
* Therefore, simulators support two delay models for signal propagation:

* Transport Delay: Signals propagate through gates after a delay (no filtering).
* Inertial Delay: The signal is filtered if the input signal had a short pulse.

* The threshold for pulse propagation is relative to the delay and controlled by:
* —pulse r <arg>/-pulse int r <arg>:
A glitch (pulse) shorter than <arg>% of the gate/wire delay will be filtered.
* —-pulse e <arg>/-pulse int e <arg>:
A glitch (pulse) shorter than <arg>% of the gate/wire delay will flag an error.



Power Estimation

* Power estimation is a critical part of the design and analysis process,
and like just about everything else, opens up a whole new can of worms.

« Standard cells and other macros have power information,
provided inside . 1ib files, which include:

« Switching power: the energy consumed by charging/discharging an output
load. The switching power is different for each timing arc.

* Internal power: the energy consumed due to switching of internal nodes or
short circuit power, independent of the output load. This can depend on a pin
toggling and/or a specific timing arc.

- Leakage power: the power consumed by devices while they are not switching.
This depends on the state of the inputs/internal nodes.

« We will now use this information to calculate the system power consumption.



10

Types of Power Calculation

 Well, here’s another somewhat confusing one...

 Cadence’s power analysis tool, Voltus, differentiates between:

- Static Power Analysis: For calculating average power/current per cell.
* Dynamic Power Analysis: For calculating a power waveform per cell.

« While that may seem straightforward - it isn’t, because both of these have:

* Vectorless: Based on average activity factors.
 Vector-based: Based on actual simulation vectors.

 But here we are only running “Static” analysis to calculate power.
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Vector-based Static Power Analysis

* When we run report power after synthesis:

- create clock command is used to control clock toggle rate.
- set switching activity command can be used to control activity on
specific nets, such as primary inputs, clock gates and sequentials.

 All other nets either get propagated activity or a globally defined factor.

* But this is very inaccurate, especially if not carefully defined.

* Therefore, we should read in actual activity from a simulation:
« During simulation write an activity file (VvCD, TCF, SAF, SAIF, FSDB)
* Read in the activity file using the read activity file command
 Calculate the actual energy consumed at every net with report power
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Vector-based Static Power Analysis

* Dump the activity file (VCD or TCF) from your simulation
« vCD: Value Change Dump - all signal changes in the simulation.

database -open <design>.vecd -vcd
probe -create <DUT> -vcd -depth 9 -all -database <design>.vcd

» TCF: Toggle Count Format — Statistics of toggling of each net.

dumptcf -output <design>.tcf -scope <TB>.<DUT>
run -time <simulation run time>

dumptcf -end

* Then read the activity file in Voltus and report power:

%> voltus -stylus

voltus> read db <design>.db
voltus> read activity file —-format VCD -scope <TB>.<DUT> <design>.vcd

voltus> report power -method static -rail analysis format VS -out file power.rpt




Summary

* In this demonstration, we covered:

* The motivation for Gate-Level Simulation.
* Running Zero-Delay Gate-Level Simulation

« Back-annotating timing information from Synthesis to Simulation,
and running a Gate-Level Simulation with applied delays.

« Writing out activity information (VCD/TCF) and using Voltus for vector-based
power estimation for a given (typical) workload.

« This power estimation is much more accurate than vectorless analysis.

» While this was demonstrated at the post-synthesis stage, everything that was
shown here is applicable throughout place and route until signoff.
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