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Introduction

• At this point we have:

• Written our RTL

• Performed (at least very basic) functional verification

• Synthesized our design

• We now will perform three steps for further verification and analysis:

• Gate-Level Simulation (zero delay model)

• Gate-Level Simulation with Timing Backannotation

• Static* Vector-based Power Calculation

*I know it says “Static” but sounds like “Dynamic”… Bear with me…
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Gate-Level Simulation

• Gate-level simulation (GLS) is a direct test that is run on a 

structural netlist (i.e., constructed exclusively of standard cells).

• GLS can be run at any stage from post-synthesis to post place and route.

• Why run GLS?

• Ensure desired functionality is not lost in the translation from RTL to GTL. 

• Ensure timing delays do not break intended functionality.

• Some specific motivations for GLS:

• Mistakes in SDC (e.g., wrong false paths or unconstrained paths)

• Verifying system initialization and reset sequence, including power intent.

• Simulations that become relevant after RTL, including DFT and CTS.

• Verifying asynchronous interfaces and multi-cycle paths.

• Capturing switching activity for power estimation. 
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Types of Gate-Level Simulation

• Zero-Delay Simulation
• Simulating the netlist without annotating any timing data.
• specify block delays are ignored (-nospecify switch or -delay_mode zero)

• Used for system initialization and reset sequence, DFT verification, 
verification of power up/reset operation of power domains. 

• Unit-Delay Simulation
• Every element has one unit delay.

• More simple than SDF Backannotation and can reveal races and loops.

• SDF Backannotation
• Annotates gates and nets with delays from STA/extraction.

• Used to verify clock tree synthesis, desired frequency verification, 
STA tool limitations, revealing glitches and power estimation.

%> xrun –nospecify ...

%> xrun –delay_mode unit ...

$sdf_annotate(<design_name>.sdf,<DUT>,,"sdf.log" ,"MAXIMUM"); 
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SDF Backannotation

• Timing backannotation is done with a “Standard Delay Format” (SDF) file

• In Genus/Innovus use the write_sdf command

• The SDF file has delay information for every instance, wire and timing checks:

• Instance:

• Wires:

(CELL  

   (CELLTYPE "DFF") (INSTANCE U1)  

       (DELAY  (ABSOLUTE      

          (IOPATH (posedge clk) (posedge q) (1.2:1.5:1.8))))

       (TIMINGCHECK    

          (SETUP (posedge d) (posedge clk) (0.8:1.0:1.2))    

          (HOLD  (posedge d) (posedge clk) (0.2:0.3:0.4))))

(CELL 

  (CELLTYPE "digital_top") (INSTANCE) 

     (DELAY (ABSOLUTE 

        (INTERCONNECT in1 top/my_reg/D (0.027::0.028) (0.029::0.030))

        (INTERCONNECT top/my_reg/Q my2_reg/D (0.0::0.002) (0.0::0.003)) 



October 1, 2025© Adam Teman, 7

SDF Backannotation

• In our Verilog testbench we add $sdf_annotate to read the SDF file:

• And we run our simulation with SDF flags:

• And we can see the delays in the simulation waveforms:

initial

  begin

    $sdf_annotate(<design_name>.sdf,<DUT>,,"sdf.log" ,"MAXIMUM"); 

  end

%> xrun +sdf_verbose –sdfstats sdf_stats.txt ...
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Glitch Propagation (Delay Models)

• Zero-delay simulation propagates signals through logic gates immediately.

• But once delays are added, varying arrival times create “glitches”.

• Depending on the pulse width of the glitch, a digital gate may filter it out.

• Therefore, simulators support two delay models for signal propagation:

• Transport Delay: Signals propagate through gates after a delay (no filtering).

• Inertial Delay: The signal is filtered if the input signal had a short pulse.

• The threshold for pulse propagation is relative to the delay and controlled by:

• -pulse_r <arg> / -pulse_int_r <arg>: 

A glitch (pulse) shorter than <arg>% of the gate/wire delay will be filtered.

• -pulse_e <arg> / -pulse_int_e <arg>: 

A glitch (pulse) shorter than <arg>% of the gate/wire delay will flag an error.
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Power Estimation

• Power estimation is a critical part of the design and analysis process, 

and like just about everything else, opens up a whole new can of worms.

• Standard cells and other macros have power information, 
provided inside .lib files, which include:

• Switching power: the energy consumed by charging/discharging an output 

load. The switching power is different for each timing arc.

• Internal power: the energy consumed due to switching of internal nodes or 

short circuit power, independent of the output load. This can depend on a pin 

toggling and/or a specific timing arc.

• Leakage power: the power consumed by devices while they are not switching. 

This depends on the state of the inputs/internal nodes.

• We will now use this information to calculate the system power consumption.
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Types of Power Calculation

• Well, here’s another somewhat confusing one…

• Cadence’s power analysis tool, Voltus, differentiates between:

• Static Power Analysis: For calculating average power/current per cell.

• Dynamic Power Analysis: For calculating a power waveform per cell. 

• While that may seem straightforward – it isn’t, because both of these have:

• Vectorless: Based on average activity factors.

• Vector-based: Based on actual simulation vectors.

• But here we are only running “Static” analysis to calculate power.
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Vector-based Static Power Analysis

• When we run report_power after synthesis:

• create_clock command is used to control clock toggle rate.

• set_switching_activity command can be used to control activity on 

specific nets, such as primary inputs, clock gates and sequentials.

• All other nets either get propagated activity or a globally defined factor.

• But this is very inaccurate, especially if not carefully defined.

• Therefore, we should read in actual activity from a simulation:

• During simulation write an activity file (VCD, TCF, SAF, SAIF, FSDB)

• Read in the activity file using the read_activity_file command

• Calculate the actual energy consumed at every net with report_power
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Vector-based Static Power Analysis

• Dump the activity file (VCD or TCF) from your simulation

• VCD: Value Change Dump – all signal changes in the simulation.

• TCF: Toggle Count Format – Statistics of toggling of each net.

• Then read the activity file in Voltus and report power:

database -open <design>.vcd -vcd  

probe -create <DUT> -vcd -depth 9 -all -database <design>.vcd

dumptcf -output <design>.tcf -scope <TB>.<DUT> 

run -time <simulation run time>

dumptcf -end

%> voltus -stylus

voltus> read_db <design>.db

voltus> read_activity_file –format VCD –scope <TB>.<DUT> <design>.vcd

voltus> report_power –method static -rail_analysis_format VS -out_file power.rpt
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Summary

• In this demonstration, we covered:

• The motivation for Gate-Level Simulation.

• Running Zero-Delay Gate-Level Simulation

• Back-annotating timing information from Synthesis to Simulation, 

and running a Gate-Level Simulation with applied delays.

• Writing out activity information (VCD/TCF) and using Voltus for vector-based 

power estimation for a given (typical) workload.

• This power estimation is much more accurate than vectorless analysis.

• While this was demonstrated at the post-synthesis stage, everything that was 

shown here is applicable throughout place and route until signoff.
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