
Logic Synthesis
with Genus

Prof. Adam Teman

October 1, 2025© Adam Teman, 4

Introduction

• In the lectures about Synthesis and Static Timing Analysis, we learned:
• Basic Synthesis flow and supporting algorithms

• Library definitions, models, MMMC

• Timing requirements and defining constraints (SDC)

• Optimizations – pre-synthesis and post-synthesis

• Reports and exports

• We will now see how to run a synthesis on our example RTL block
• We will write a script for synthesizing our design

• We will write supporting SDC and MMMC definitions

• We will run the Synthesis flow and look at log files

• We will create reports and analyze them

October 1, 2025© Adam Teman, 5

Cadence Genus

• Genus is Cadence’s tool for Synthesis.

• Genus replaced Cadence’s previous tool “RTL Compiler (RC)”

• Genus was developed for Cadence’s Stylus Common-UI

• Other popular Synthesis tools include:

• Synopsys “Design Compiler (DC)”, which is now part of the “Fusion” suite.

• Siemens-EDA “Oasys-RTL Synthesis”

• The open source “Yosys” synthesizer (https://yosyshq.net/yosys/),

which is provided as part of the OpenRoad project (https://theopenroadproject.org/)

• FPGA synthesizers, e.g. “Vivado”, “Quartus”, “Synplify” and “Prcision FPGA”

• In addition, high-level synthesizers are available:

• e.g., Cadence Stratus, Siemens-EDA “Catapult”, Synopsys “Synphony”

https://yosyshq.net/yosys/
https://theopenroadproject.org/

October 1, 2025© Adam Teman, 6

Starting Genus

• Go to your workspace/ directory

• Reminder: we run all tools from the workspace/ directory

• If you haven’t yet watched the lecture about the project structure,

make sure you check it out at: https://youtu.be/Wu2MuQWf8_s

• Start Genus

• By default, Genus will start in Stylus Common-UI mode

• Genus will create two files for logging our run

• genus.log – The logfile printing out almost everything on screen.

• genus.cmd – The log of commands that we ran in our session.

• These files will get a number (i.e., genus.log2) if a previous run exists.

• Now we will run our flow according to the ../scripts/genus.tcl script

%> cd workspace/

%> genus

https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s

October 1, 2025© Adam Teman, 7

Virtual Directory Structure

source: Cadence

October 1, 2025© Adam Teman, 8

Setting up our run

• The first thing we have to do is define our TOPLEVEL name:

• The TOPLEVEL variable is used

throughout the flow and must be defined before reading our define files.

• Another few run-specific variable we’ll set up are:

• runtype : This helps our scripts differentiate between different tools

• phys_synth_type: This tells us what type of physical synthesis to use

• Note: I am assuming an MMMC flow.

For a “classic” flow without MMMC, relate to Cadence documentation.

@genus:root:1> set design(TOPLEVEL) "sm"

@genus:root:2> set runtype "synthesis"

@genus:root:3> set phys_synth_type "lef"

October 1, 2025© Adam Teman, 9

Loading Definitions

• Now we will move on to loading all the definition files

that we elaborated on in the project workspace tutorial:

• procedures.tcl : Useful procedures to use during the flow.

• <TOPLEVEL>.defines : The main variable definitions for this design.

• settings.tcl : Some tool-specific settings

• libraries.$TECHNOLOGY.tcl: Definitions for this process technology.

• libraries.$SC_TECHNOLOGY.tcl: Definitions for the standard cell library.

• libraries.$SRAM_TECHNOLOGY.tcl: Definitions for compiled SRAMs.

• libraries.$IO_TECHNOLOGY.tcl: Definitions for the I/O library.

• We will then write out our debug information to the debug.txt file

as explained in the project workspace tutorial.

October 1, 2025© Adam Teman, 10

We’re now ready to initialize our design

• First step is reading our MMMC file

• This sets up quite a few things:

• The paths to our .lib files

• The paths to our .sdc files

• The operating conditions and parasitic extraction definitions.

• The selected Analysis Views for setup and hold timing and optimization.

• BUT – it doesn’t yet process all this stuff. That will come a bit later…

• Next we set up the physical synthesis files:

• Read the .lef abstracts

• Optionally provide a floorplan

• Finally, we’ll read our RTL:

@genus> read_mmmc $design(mmmc_view_file)

@genus> read_physical -lef $tech_files(ALL_LEFS)

@genus> read_def $design(floorplan_def)

@genus> read_hdl -f $design(read_hdl_list)

October 1, 2025© Adam Teman, 11

Design Elaboration

• Now that we’ve read in the RTL and the library definitions,

we can run design elaboration

• This will build our design inside genus and bind all the IPs.

• After Elaboration, our design is loaded into Genus,

as can be seen through:

• The virtual directory

• The design browser

• We should now check that all IPs were bound:

@genus> elaborate $design(TOPLEVEL)

@genus> check_design -unresolved

October 1, 2025© Adam Teman, 12

Collections

• At this point, we can use collections to navigate the design:

• Collections are pointers

• To calculate the length of a collection, use sizeof_collection

• To iterate over all the objects in a collection use foreach_in_collection

• To get the name (string) of an object, use get_object_name

• However, collections are not native to Cadence tools

• Common-UI introduced the Dual Port Object (DPO)

• More confusing, but more powerful within Cadence tools

get_ports get_clocks all_inputs all_registers

October 1, 2025© Adam Teman, 13

Navigating the Genus Database

• The Stylus Common-UI provides a unified database across

Cadence Digital Implementation tools (Genus, Innovus, Tempus, Voltus, etc.).

• Database access is through the get_db and set_db commands:

• These commands work with Dual Port Objects (DPOs), which are Tcl strings

• For example, to get a list of all ports:

• And to check the direction of the clock port:

• Or to get all the input ports

set_db <object> .<attribute_name> <value>get_db <object> .<attribute_name>

get_db port:sm/clk .direction

get_db ports

get_db ports –if {.direction == in }

October 1, 2025© Adam Teman, 14

Init Design

• We can now run the init_design super command

• This will read in and process everything we loaded before: .lib, .lef, .v, etc.

• Most importantly, it processes the SDC files

• We read the constraints in as part of the MMMC,

but didn’t have design objects and so couldn’t process them.

• The check_timing_intent command is a “timing linter”. Find things like:

• Combinatorial loops

• Multi-driven nets

• Unconstrained inputs/outputs

• We can now define cost groups (reg2reg, in2reg, reg2out, in2out)

@genus> define_cost_group -name reg2reg -design $design(TOPLEVEL) -name reg2reg \

@genus> path_group -from [all_registers] -to [all_registers] -group reg2reg \

 -view $design(selected_setup_analysis_views)

October 1, 2025© Adam Teman, 15

It’s time to Synthesize!

• Our design is now elaborated, such that:

• All registers are inferred

• All combinatorial logic is described with Boolean primitives

• All IPs are bound to their .lib files

• We have defined optimization constraints

• Now we can Synthesize, starting with generic optimization

• Optimize datapath components

• Insert clock gates

• Implement mux structures

• Following this, we are still not mapped to library cells!

set_db syn_generic_effort medium

syn_generic –create_floorplan -physical

October 1, 2025© Adam Teman, 16

Technology Mapping and Optimization

• We can now apply technology mapping to connect

our generic gates to standard cells from the library

• We can now see that the cells are connected to actual standard cells

• And we can optimize the design

• And finally look at timing reports

set_db syn_map_effort medium

syn_map -physical

get_db inst:sm/state_reg[0] .base_cell

set_db syn_opt_effort medium

set_db opt_spatial_effort high

syn_opt -spatial

report_timing

October 1, 2025© Adam Teman, 17

Reports and Export

• Finally, we can create various reports, such as:

• report_area : Summarize the area of each component of the design

• report_gates : Generate a report of all library cells

• report_qor : General report of various design data

• And we can export our design

• write_design : Generate all files needed to reload the session in Genus

• write_design –innovus –db :

Generate files needed to load the design in Innovus/Tempus/Voltus

• write_netlist : Write out a structural Verilog netlist

• write_sdf : Write out timing data for backannotation simulation

October 1, 2025© Adam Teman, 18

Summary

• In this tutorial, we saw how to run synthesis with Cadence Genus:

• We set up our run by defining variables inside our Tcl arrays

• We defined our MMMC file to set up our analysis views

• We read in our RTL

• We read in our .lef files to support physical synthesis

• We elaborated our design

• We initialized our design and checked that our SDC definitions were okay

• We ran generic synthesis, technology mapping, and optimization

• And finally, we looked through our reports and exported our design

• In between we also saw the Genus virtual directory structure, used collections
and learned how to access database objects with get_db and set_db

• We’re now ready to go on to gate-level simulation and physical implementation.

	Default Section
	Slide 1: Logic Synthesis with Genus
	Slide 4: Introduction
	Slide 5: Cadence Genus
	Slide 6: Starting Genus
	Slide 7: Virtual Directory Structure
	Slide 8: Setting up our run
	Slide 9: Loading Definitions
	Slide 10: We’re now ready to initialize our design
	Slide 11: Design Elaboration
	Slide 12: Collections
	Slide 13: Navigating the Genus Database
	Slide 14: Init Design
	Slide 15: It’s time to Synthesize!
	Slide 16: Technology Mapping and Optimization
	Slide 17: Reports and Export
	Slide 18: Summary

