Logic Synthesis
with Genus

Prof. Adam Teman

E n “Cs The Alexander Kofkin NA

Emerging Nanoscaled Faculty of Engineering

Integrated Circuits and Systems Labs

Introduction

* In the lectures about Synthesis and Static Timing Analysis, we learned:

Basic Synthesis flow and supporting algorithms
Library definitions, models, MMMC

Timing requirements and defining constraints (SDC)
Optimizations — pre-synthesis and post-synthesis
Reports and exports

« We will now see how to run a synthesis on our example RTL block

« We will write a script for synthesizing our design

« We will write supporting SDC and MMMC definitions
« We will run the Synthesis flow and look at log files

* We will create reports and analyze them

Cadence Genus

* Genus is Cadence’s tool for Synthesis.
* Genus replaced Cadence’s previous tool “RTL Compiler (RC)”
« Genus was developed for Cadence’s Stylus Common-Ul
* Other popular Synthesis tools include:
« Synopsys “Design Compiler (DC)”, which is now part of the “Fusion” suite.
« Siemens-EDA “Oasys-RTL Synthesis”

* The open source “Yosys” synthesizer (https://yosyshq.net/yosys/),
which is provided as part of the OpenRoad project (https:/theopenroadproject.org/)

 FPGA synthesizers, e.g. “Vivado”, “Quartus”, “Synplify” and “Prcision FPGA”
* In addition, high-level synthesizers are available:
* e.g., Cadence Stratus, Siemens-EDA “Catapult”, Synopsys “Synphony”

https://yosyshq.net/yosys/
https://theopenroadproject.org/

Starting Genus

* Go to your workspace/ directory

%> cd workspace/

« Reminder: we run all tools from the workspace/ directory
* If you haven't yet watched the lecture about the project structure,

make sure you check it out at:
« Start Genus

%> genus

« By default, Genus will start in Stylus Common-Ul mode

* Genus will create two files for logging our run

* genus.log — The logfile printing out almost everything on screen.
* genus.cmd — The log of commands that we ran in our session.
* These files will get a number (i.e., genus. 1og?2) if a previous run exists.

* Now we will run our flow according to the . . /scripts/genus. tcl script

https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s
https://youtu.be/Wu2MuQWf8_s

Virtual Directory Structure

/ (Root)

E I
=3 [} 1

== B

[— |
hinsts Insts modules : ports | timing = dft RO Sriote, FO0eL e for)
‘ mylibA
n
mem256x8 ... my reg[1) . .. g101 - .. “bCT“s
[l
AND2XL OR2XL MUX2X1
A B Y Root
Others
. _ [Library
@genus:root: 115> v -
i igns/ hdl libraries/ messages/ ~ "y

Sub-Hierarchies

commands/ libraries/

Setting up our run

* The first thing we have to do is define our TOPLEVEL name:

e The TOPLEVET variable is used Qgenus:root:1> set design (TOPLEVEL) "sm"

throughout the flow and must be defined before reading our define files.

 Another few run-specific variable we’ll set up are:

* runtype : This helps our scripts differentiate between different tools
* phys synth type: This tells us what type of physical synthesis to use

@genus:root:2> set runtype "synthesis"
@genus:root:3> set phys synth type "lef"

* Note: | am assuming an MMMC flow.
For a “classic” flow without MMMC, relate to Cadence documentation.

Loading Definitions

* Now we will move on to loading all the definition files
that we elaborated on in the project workspace tutorial:

- procedures.tcl : Useful procedures to use during the flow.

- <TOPLEVEL>.defines : The main variable definitions for this design.

- settings.tcl : Some tool-specific settings

- libraries.S$TECHNOLOGY.tcl: Definitions for this process technology.

« libraries.$sC TECHNOLOGY.tcl: Definitions for the standard cell library.
« libraries.$SRAM TECHNOLOGY.tcl: Definitions for compiled SRAMSs.

+ libraries.$10 TECHNOLOGY.tcl: Definitions for the I/O library.

» We will then write out our debug information to the debug. txt file
as explained in the project workspace tutorial.

10

We're now ready to initialize our design

e First Step IS reading our MMMC file @genus> read mmmc $design(mmmc_view file)

* This sets up quite a few things:

The paths to our .1ib files

The paths to our . sdc files

The operating conditions and parasitic extraction definitions.

The selected Analysis Views for setup and hold timing and optimization.
« BUT — it doesn’t yet process all this stuff. That will come a bit later...

* Next we set up the physical synthesis files:

e Read the .1er abstracts @genus> read physical -lef $tech_files (ALL LEFS)

. Optionally provide a floorplan @genus> read def $design(floorplan_ def)

. Fina"y, we’ll read our RTL: @genus> read hdl -f $design(read hdl list)

Design Elaboration

* Now that we’ve read in the RTL and the library definitions,
we can run design elaboration
» This will build our design inside genus and bind all the IPs.

@genus> elaborate $design (TOPLEVEL)

« After Elaboration, our design is loaded into Genus,
as can be seen through: FEREEEEEES
* The virtual directory onetraint nodes hinete
+ The design browser SN EY

sm.ports:

sm/
root: 127= vls designs/sm

modules/
nets/
pg hnets/

pg nets

pg_port
port bu

act clk count[O] count[1] count[2] count

@genus:root: 129>

 We should now check that all IPs were bound:

@genus> check design -unresolved

I (@) O ® s

|De5ign Brnw5&r|

- Modules (17)
- StdCells (21)
B g10
B g1
- state_reg[0]
[state_reg[1]
-- state_reg[2]
[state_reg[3]
-- count_reg[0]
G- count_reg[1]
-- count_reg[2]
- count_reg[3]
B g17
- g18
B g20
- g2
Bl 822
- g27
- 528
.. g29
.. g31
- g32
- Mets (89)
=l Terms (9)

= clk (input)
- rst_n {input)
- act (input)

i

- owflw (output)

- Hier Cell-sm, 100 LeafCells

= Up_dwn_n (input)
G- count (output bus)

Collections

* At this point, we can use collections to navigate the design:

get ports get clocks all inputs all registers

* Collections are pointers
 To calculate the length of a collection, use sizeof collection
* To iterate over all the objects in a collection use foreach in collection
 To get the name (string) of an object, use get object name

 However, collections are not native to Cadence tools

« Common-Ul introduced the Dual Port Object (DPO)
* More confusing, but more powerful within Cadence tools

Navigating the Genus Database

 The Stylus Common-Ul provides a unified database across
Cadence Digital Implementation tools (Genus, Innovus, Tempus, Voltus, etc.).

* Database access is through the get db and set db commands:

get db <object> .<attribute name> set db <object> .<attribute name> <value>

* These commands work with Dual Port Objects (DPOs), which are Tcl strings

« For example, to get a list of all ports:
get db ports

* And to check the direction of the clock port:

get db port:sm/clk .direction

« Or to get all the input ports

get db ports —-if {.direction == in }

14

Init Design

* We can now run the init design super command
* This will read in and process everything we loaded before: .1ip, .1ef, .v, etc.

* Most importantly, it processes the soc files

* We read the constraints in as part of the MMMC,
but didn’t have design objects and so couldn’t process them.

* The check timing intent command is a “timing linter”. Find things like:

« Combinatorial loops
e Multi-driven nets
« Unconstrained inputs/outputs

» We can now define cost groups (reg2reg, in2reg, reg2out, in2out)

@genus> define cost group -name reg2reg -design $design (TOPLEVEL) -name reg2reg \
@genus> path group -from [all registers] -to [all registers] -group reg2reg \
-view $design(selected setup analysis views)

15

It's time to Synthesize!l

* Our design is now elaborated, such that:

All registers are inferred

All combinatorial logic is described with Boolean primitives
All IPs are bound to their .lib files

We have defined optimization constraints

* Now we can Synthesize, starting with generic optimization
* Optimize datapath components

 |Insert clock gates
* Implement mux structures

set db syn generic effort medium
syn generic -create floorplan -physical

* Following this, we are still not mapped to library cells!

16

Technology Mapping and Optimization

« We can now apply technology mapping to connect
our generic gates to standard cells from the library

set db syn map effort medium
syn map -physical

 We can now see that the cells are connected to actual standard cells
get db inst:sm/state reg[0] .base cell

« And we can optimize the design

set db syn opt effort medium
set db opt spatial effort high
syn opt -spatial

* And finally look at timing reports

report timing

17

Reports and Export

* Finally, we can create various reports, such as:
* report area :Summarize the area of each component of the design
* report gates : Generate a report of all library cells
* report gor : General report of various design data

* And we can export our design

- write design : Generate all files needed to reload the session in Genus
* write design —-innovus -db:
Generate files needed to load the design in Innovus/Tempus/Voltus
- write netlist : Write out a structural Verilog netlist
 write sdf : Write out timing data for backannotation simulation

Summary

* In this tutorial, we saw how to run synthesis with Cadence Genus:

* We set up our run by defining variables inside our Tcl arrays
* We defined our MMMC file to set up our analysis views

We read in our RTL
We read in our . 1ef files to support physical synthesis

We elaborated our design

We initialized our design and checked that our SDC definitions were okay

We ran generic synthesis, technology mapping, and optimization

And finally, we looked through our reports and exported our design

* In between we also saw the Genus virtual directory structure, used collections
and learned how to access database objects with get db and set db

« We’re now ready to go on to gate-level simulation and physical implementation.

	Default Section
	Slide 1: Logic Synthesis with Genus
	Slide 4: Introduction
	Slide 5: Cadence Genus
	Slide 6: Starting Genus
	Slide 7: Virtual Directory Structure
	Slide 8: Setting up our run
	Slide 9: Loading Definitions
	Slide 10: We’re now ready to initialize our design
	Slide 11: Design Elaboration
	Slide 12: Collections
	Slide 13: Navigating the Genus Database
	Slide 14: Init Design
	Slide 15: It’s time to Synthesize!
	Slide 16: Technology Mapping and Optimization
	Slide 17: Reports and Export
	Slide 18: Summary

