Logic Simulation
with Xcellium

Prof. Adam Teman

E n “Cs The Alexander Kofkin NA

Emerging Nanoscaled Faculty of Engineering

Integrated Circuits and Systems Labs

Introduction

* In the lecture, we learned about writing RTL:

Basic syntax

Constructs

Writing synthesizable RTL
Recommended coding style

« We will now see how to run a logic simulation that performs a direct test

« We will write a Testbench that drives stimuli for our block

* We will instantiate the DUT (RTL block) within the testbench

* We will run the simulation and look at the signal waveforms

 We will look at the Tcl commands that enable us to automate this process

Cadence Xcelium

 Xcelium is Cadence’s tool for logic simulation and verification.

* |t encompasses several tools in one combined executable, called xrun.
The operations performed by xrun include (among others):

« Compilation: Compile HDL code written in Verilog, System Verilog, VHDL, etc.
- Elaboration: Elaborate the compiled design into an internal database.

« Simulation: Simulate the behavior of the testbench and DUT

« Debug: View signals on Waveforms and provide additional debugging tools

* When running xrun, some important files are created, including:
« xrun.log: The logfile with all the errors and warnings.

 xrun.history: The last command line used to invoke Xcelium
 worklib/: scratch directory with compiled files

Running Xcelium

 The xrun command does it all...
xrun myfile.v

» xrun has many control options to control it, such as:

« <filename>.v: Verilog files to compile.

* —debug Or —access +rw: provide access to simulation objects.
* —gui: Opens the GUI of SimVision to see waveforms and debug.
-y <directory>: compiles RTL files in the directory you put here.
-v <file.v>: Specify the name of the library file to use.

-clean: Delete the INCA 1ibs directory before executing.

« —compile: Parse/compile the source files, but do not elaborate.

-elaborate: Parse/compile the source files, elaborate the design, and generate a
simulation snapshot, but do not simulate.

-f <file.args>: pass a file of arguments to xrun (e.g., a list of files to compile)
« —input <file.tcl>: pass a TCL file to run after elaboration.

Commonly used flags

* In addition to the previous options, several commonly used flags include:

-sv: Accept System Verilog code (belongs to the xmvlog tool)

* —v93: Accept VHDL 93 updates (belongs to the xmvhdl tool)

* —debug: Saves data base info for displaying waveforms and debugging.

* —gui: Opens up the Simvision gui.

 —timescale: Adds a default "timescale directive for Verilog modules that are
missing them.

 —define: Define a value to send to the Verilog code

 —nospecify: Disregards any annotated delays

 These options are included in the xrun_options.rtl file, so just run:
xrun —-f ../scripts/xrun options.rtl

4-bit Counter Example Reminder

. module sm #(parameter COUNTER WIDTH = 4)
¢ A 4'b|t Counter (clk,rst n,act,up dwn_n,count,ovflw) ;
. . input clk;

Receives 4 inputs: input rst n;
 clk — the system clock LAETEE EEES
. . | t input up_dwn n;

rst_n—anactive low rese output [COUNTER WIDTH-1:0] count;
« act —the activate signal reg [COUNTER WIDTH-1:0] count;
 up_dwn_n — count up (positive) SEEPEE OWELL

y - . reg [3:0] state, next state;
or count down (negative) -

act==1
up_dun_n==1

Outputs 2 signals:
« count: the current counted value
« ovflw: an overflow signal

L

Up
ur|t+% /

localparam IDLE = 4'b0001; S $:H%;1H_ - :{iﬂ: J
localparam CNTUP = 4'b0010; ~—JKHEHEEB% Count | e

localparam CNTDN Cp_dun

4 'b0100 v up_dwn_n==8 [ilﬁ':-tfr"l
localparam OVFLW = 4'b1000; U

Ct==1
p_dwn_n==&

Testbench Reminder

module sm tb;
parameter WIDTH = 5;
reg clk, rst n, act, up dwn n;
wire [WIDTH-1:0] count;
wire ovflw;

initial begin

clk = 1'bl;
rst n = 1'b0; // Activate reset
act = 1'b0;

up dwn n = 1'bl;

// Monitor changes
Smonitor ("%t:
rst n=%b act=%b up_dwn_ n=%b
count=%d ovflw=%b\n",
$time,rst n,act,up dwn n,count,ovflw);

// After 100 time steps, release reset
#100 rst n = 1'bl;
end

* Define a clock:

always
#5 clk = ~clk;

e Set stimuli:

initial begin
// @100, Start counting up
// until overflow
#100 act = 1'bl;
up dwn n = 1'bl;
// Reset (100 cycles pulse)
#1000 rst n = 1'b0;
act = 1'b0;
#100 rst n = 1'bl;
// Do a count-up to 4 and
// then count-down to ovflw
#100 act = 1'bl;
up dwn n = 1'bl;
#40 up dwn n = 1'b0;
end
endmodule

Summary

* In this tutorial, we saw how to use Xcelium to run a logic simulation.

* This type of simulation is better known as “direct test”, as the testbench was
written specifically to test a specific scenario.

* This is by no means what we usually refer to as “verification”.
« For “functional verification”, we need to create stimuli to simulate as many
possible scenarios as possible and assert all internal functionalities of our DUT.

« For “formal verification”, we need to mathematically prove that our system is
behaving correctly.

» For “physical verification”, we need to ensure that the physical implementation
of our system adheres to what we have designed and meets technology rules.

* All of these are beyond scope of this series of demonstrations,
but are critical components of the design process.

	Default Section
	Slide 1: Logic Simulation with Xcelium
	Slide 2: Introduction
	Slide 3: Cadence Xcelium
	Slide 4: Running Xcelium
	Slide 5: Commonly used flags
	Slide 6: 4-bit Counter Example Reminder
	Slide 7: Testbench Reminder
	Slide 8: Summary

