
Logic Simulation
with Xcelium

Prof. Adam Teman

October 1, 2025© Adam Teman, 2

Introduction

• In the lecture, we learned about writing RTL:

• Basic syntax

• Constructs

• Writing synthesizable RTL

• Recommended coding style

• We will now see how to run a logic simulation that performs a direct test

• We will write a Testbench that drives stimuli for our block

• We will instantiate the DUT (RTL block) within the testbench

• We will run the simulation and look at the signal waveforms

• We will look at the Tcl commands that enable us to automate this process

October 1, 2025© Adam Teman, 3

Cadence Xcelium

• Xcelium is Cadence’s tool for logic simulation and verification.

• It encompasses several tools in one combined executable, called xrun.

The operations performed by xrun include (among others):

• Compilation: Compile HDL code written in Verilog, System Verilog, VHDL, etc.

• Elaboration: Elaborate the compiled design into an internal database.

• Simulation: Simulate the behavior of the testbench and DUT

• Debug: View signals on Waveforms and provide additional debugging tools

• When running xrun, some important files are created, including:

• xrun.log: The logfile with all the errors and warnings.

• xrun.history: The last command line used to invoke Xcelium

• worklib/: scratch directory with compiled files

October 1, 2025© Adam Teman, 4

Running Xcelium

• The xrun command does it all…

xrun myfile.v

• xrun has many control options to control it, such as:

• <filename>.v: Verilog files to compile.

• -debug or –access +rw: provide access to simulation objects.

• -gui: Opens the GUI of SimVision to see waveforms and debug.

• -y <directory>: compiles RTL files in the directory you put here.

• -v <file.v>: Specify the name of the library file to use.

• -clean: Delete the INCA_libs directory before executing.

• -compile: Parse/compile the source files, but do not elaborate.

• -elaborate: Parse/compile the source files, elaborate the design, and generate a
simulation snapshot, but do not simulate.

• -f <file.args>: pass a file of arguments to xrun (e.g., a list of files to compile)

• -input <file.tcl>: pass a TCL file to run after elaboration.

October 1, 2025© Adam Teman, 5

Commonly used flags

• In addition to the previous options, several commonly used flags include:

• -sv: Accept System Verilog code (belongs to the xmvlog tool)

• -v93: Accept VHDL 93 updates (belongs to the xmvhdl tool)

• -debug: Saves data base info for displaying waveforms and debugging.

• -gui: Opens up the Simvision gui.

• -timescale: Adds a default `timescale directive for Verilog modules that are

missing them.

• -define: Define a value to send to the Verilog code

• -nospecify: Disregards any annotated delays

• These options are included in the xrun_options.rtl file, so just run:
xrun –f ../scripts/xrun_options.rtl

October 1, 2025© Adam Teman, 6

4-bit Counter Example Reminder

• A 4-bit counter

• Receives 4 inputs:
• clk – the system clock

• rst_n – an active low reset

• act – the activate signal

• up_dwn_n – count up (positive)

or count down (negative)

• Outputs 2 signals:
• count: the current counted value

• ovflw: an overflow signal

module sm #(parameter COUNTER_WIDTH = 4)

 (clk,rst_n,act,up_dwn_n,count,ovflw);

 input clk;

 input rst_n;

 input act;

 input up_dwn_n;

 output [COUNTER_WIDTH-1:0] count;

 reg [COUNTER_WIDTH-1:0] count;

 output ovflw

 reg [3:0] state, next_state;

localparam IDLE = 4'b0001;

localparam CNTUP = 4'b0010;

localparam CNTDN = 4'b0100;

localparam OVFLW = 4'b1000;

October 1, 2025© Adam Teman, 7

Testbench Reminder
module sm_tb;

 parameter WIDTH = 5;

 reg clk, rst_n, act, up_dwn_n;

 wire [WIDTH-1:0] count;

 wire ovflw;

initial begin

 clk = 1'b1;

 rst_n = 1'b0; // Activate reset

 act = 1'b0;

 up_dwn_n = 1'b1;

 // Monitor changes

 $monitor("%t:

 rst_n=%b act=%b up_dwn_n=%b

 count=%d ovflw=%b\n",

 $time,rst_n,act,up_dwn_n,count,ovflw);

 // After 100 time steps, release reset

 #100 rst_n = 1'b1;

end

initial begin

 // @100, Start counting up

 // until overflow

 #100 act = 1'b1;

 up_dwn_n = 1'b1;

 // Reset (100 cycles pulse)

 #1000 rst_n = 1'b0;

 act = 1'b0;

 #100 rst_n = 1'b1;

 // Do a count-up to 4 and

 // then count-down to ovflw

 #100 act = 1'b1;

 up_dwn_n = 1'b1;

 #40 up_dwn_n = 1'b0;

 end

endmodule

always

 #5 clk = ~clk;

• Define a clock:

• Set stimuli:

October 1, 2025© Adam Teman, 8

Summary

• In this tutorial, we saw how to use Xcelium to run a logic simulation.

• This type of simulation is better known as “direct test”, as the testbench was

written specifically to test a specific scenario.

• This is by no means what we usually refer to as “verification”.

• For “functional verification”, we need to create stimuli to simulate as many

possible scenarios as possible and assert all internal functionalities of our DUT.

• For “formal verification”, we need to mathematically prove that our system is

behaving correctly.

• For “physical verification”, we need to ensure that the physical implementation

of our system adheres to what we have designed and meets technology rules.

• All of these are beyond scope of this series of demonstrations,

but are critical components of the design process.

	Default Section
	Slide 1: Logic Simulation with Xcelium
	Slide 2: Introduction
	Slide 3: Cadence Xcelium
	Slide 4: Running Xcelium
	Slide 5: Commonly used flags
	Slide 6: 4-bit Counter Example Reminder
	Slide 7: Testbench Reminder
	Slide 8: Summary

