
Overview of Project
Workspace

October 1, 2025© Adam Teman, 2

Introduction

• An organization methodology is essential for managing a project.

• We will start from a “Project Root”, which is the name of the folder

cloned from the git repository.

• Our first folder is workspace, which is where we will run all our tools.

Project Root
git clone <path_to_project>/<project_root>

workspace • Use one directory for running all tools

• Reference everything one level up (e.g., source ../<something>)

• Easy to clean up without risk (e.g., rm –rf workspace/*)

• Easy to create parallel run without clutter (e.g., mkdir workspace2/)

October 1, 2025© Adam Teman, 3

Source Code Folder

• All of our RTL files will be stored under the sourcecode folder.

• One subdirectory (rtl) will store all RTL (DUT) files.

• Another subdirectory (tb) will store all testbench files.

• Optionally, add other subdirectories and files, such as lists of source files.

Project Root

workspace sourcecode

rtl tb

October 1, 2025© Adam Teman, 4

Inputs Folder

• The inputs folder has all the files you need to feed your tools with,

such as design definitions, SDC files, etc.

• Many of them are shared between tools,

so we will keep them in the same subdirectory.

Project Root

work

space

source

code
inputs

rtl tb

• Some of the important files inside

the inputs folder include:
• <TOPLEVEL>.defines

All of the basic project definitions

• <TOPLEVEL>.sdc

The project’s SDC file

• <TOPLEVEL>.mmmc

The project’s MMMC definitions

• <TOPLEVEL>.cpf

The project’s CPF definitions

• <TOPLEVEL>.ccopt

The project’s CCOpt definitions

• <TOPLEVEL>.floorplan.defines

The project’s floorplan definitions

<TOPLEVEL>.defines

<TOPLEVEL>.sdc

<TOPLEVEL>.mmmc

<TOPLEVEL>.cpf

<TOPLEVEL>.ccopt

<TOPLEVEL>.floorplan.defines

<TOPLEVEL>.io

October 1, 2025© Adam Teman, 5

Libraries Folder

• The libraries folder contains definitions that are specific for the process

(PDK) and IP libraries that are used for the project.

• These define paths to .lef, .lib, etc. and

specific definitions for a process or library.

• These files are (mostly) prepared

by the CAD/EDA team
Project Root

work

space

source

code
inputs libraries

rtl tb

• Some of the important files inside
the libraries folder include:

• libraries.<process>.tcl

Technology (PDK) info, such as

techlef, extraction, etc.

• libraries.<std cells>.tcl

Standard cell library info, such as

.lef, .lib, specific cells to use.

• libraries.<IO>.tcl

I/O library info, such as .lef, .lib,

specific relevant commands.

• libraries.<SRAM>.tcl

SRAM compiler products, such as

.lef, .lib, etc. Needs to be filled by

user based on usage.

libraries.<process>.tcl

libraries.<std cells>.tcl

libraries.<IO>.tcl

libraries.<SRAM>.tcl

October 1, 2025© Adam Teman, 6

Scripts Folder

• The scripts folder has all the scripts for running each tool.

• We provide a basic script for each tool/stage,

but these need a lot of editing and customization.

Project Root

work

space

source

code
inputs libraries scripts

rtl tb

• Some of the scripts include:
• xrun_options.rtl

Options for running Xcelium

simulation.

• genus.tcl

Synthesis script for Genus.

• innovus.tcl

Place and route script for Innovus.

October 1, 2025© Adam Teman, 7

Remaining folders

• The remaining folders in the project tree are:

• apps: For storing application files (e.g., for SoC simulation)

• reports: Where all your reports will be dumped during the flow.

• export: Where all the flow products are dumped, such as netlists, dbs.

• docs: Documentation about the project and process.

Project Root

work

space

source

code
inputs libraries scripts apps reports export docs

rtl tb

October 1, 2025© Adam Teman, 8

Tcl Arrays

• This flow uses Tcl arrays (key-value pairs) for storing design and flow info.

• $design():

• Data about the specific design.

• Primarily defined in the inputs/<TOPLEVEL>.defines file.

• $paths():

• Important paths in the Linux directory structure.

• $tech_files():

• Files used for defining the technology (e.g., .lef, .lib, etc).

• Primarily defined in the libraries/* files.

• $tech():

• Technology specific values and parameters (e.g., clock buffers, filler names).

$design()

$paths()

$tech_files()

$tech()

October 1, 2025© Adam Teman, 9

debug.txt file

• One of the hardest things when running a flow is to find typos in a certain path

to a file or variable name.

• Using parameterization makes debugging this even harder, since each variable

is set based on a bunch of other variables.

• The debug.txt file is a list of all the variables defined by the scripts and the

values that they are given.

• This helps find where your script “broke” and improves debugging speed.

October 1, 2025© Adam Teman, 10

Summary

• In this short tutorial, I introduced the methodology that I developed

for managing the workspace of a chip design project.

• This included and overview of the folder scheme, Tcl arrays, and debug.txt file

• We will use this structure in the following tutorials, while progressing

through a full design cycle.

Project Root

work

space

source

code
inputs libraries scripts apps reports export docs

rtl tb
$design()

$paths() $tech_files()

$tech()
debug.txt

	Default Section
	Slide 1: Overview of Project Workspace
	Slide 2: Introduction
	Slide 3: Source Code Folder
	Slide 4: Inputs Folder
	Slide 5: Libraries Folder
	Slide 6: Scripts Folder
	Slide 7: Remaining folders
	Slide 8: Tcl Arrays
	Slide 9: debug.txt file
	Slide 10: Summary

