Overview of Project
Workspace

5= n “Cs The Alexander Kofkin NA

Emerging Nan Faculty of Engineering
Integrated Circ t dSytemsLabs

Introduction

 An organization methodology is essential for managing a project.
» We will start from a “Project Root”, which is the name of the folder

cloned from the git repository.
* Qur first folder is workspace, which is where we will run all our tools.

[Project Root]

git clone <path to project>/<project root>

* Use one directory for running all tools

 Reference everything one level up (e.g., source ../<something>)

» Easy to clean up without risk (e.g., rm —rf workspace/*)

 Easy to create parallel run without clutter (e.g., nkdir workspace2/)

{ workspace 1

Source Code Folder

 All of our RTL files will be stored under the socurcecode folder.

* One subdirectory (rt 1) will store all RTL (DUT) files.
« Another subdirectory (tb) will store all testbench files.

» Optionally, add other subdirectories and files, such as lists of source files.

[Project Root]

{workspace 1 { sourcecode 1

) (=

Inputs Folder

* The inputs folder has all the files you need to feed your tools with,
such as design definitions, SDC files, etc. . Some of the important files inside

« Many of them are shared between tools, the inputs folder include:

so we will keep them in the same subdirectory. |oors gorines

All of the basic project definitions
e <TOPLEVEL>.sdc
{ Project Root] The project’s SDC file
* <TOPLEVEL>.mmmc
The project's MMMC definitions

<TOPLEVEL>.defines
e < >.cpt
work source 1nputs <TOPLEVEL>.sdc TOPLE\./EL, cp o
space code <TOPLEVEL>.mmmc The project’s CPF definitions
| | <TOPLEVEL>.cpt e <TOPLEVEL>.ccopt
<TOPLEVEL>.ccopt . ; T
<TOPLEVEL>.floorplan.defines The prOJeCt S CCOpt deflnltlonS
rtl tb <TOPLEVEL>.io e <TOPLEVEL>.floorplan.defines
The project’s floorplan definitions

Libraries Folder

* The 1ibraries folder contains definitions that are specific for the process

(PDK) and IP libraries that are used for the project.
* These define pathsto .1lef, .1ib, etc. and

specific definitions for a process or library.
* These files are (mostly) prepared

by the CAD/EDA team

[Project Root]

|

work source) i i
J { 1 [inputs 1 [libraries 1
space code

E3ED

libraries
libraries
libraries
libraries

.<process>.tcl
.<std cells>.tcl
.<IO>.tcl
.<SRAM>.tcl

Some of the important files inside
the 1ibraries folder include:

* libraries.<process>.tcl

Technology (PDK) info, such as
techlef, extraction, etc.

* libraries.<std cells>.tcl

Standard cell library info, such as
lef, .lib, specific cells to use.

e libraries.<IO>.tcl

I/O library info, such as .lef, .lib,
specific relevant commands.

e J]ibraries.<SRAM>.tcl

SRAM compiler products, such as
lef, .lib, etc. Needs to be filled by
user based on usage.

Scripts Folder

* The scripts folder has all the scripts for running each tool.

« We provide a basic script for each tool/stage,
but these need a lot of editing and customization.

« Some of the scripts include:

_ * xrun options.rtl
[PrOJeCt Root] Options for running Xcelium

| simulation.

* genus.tcl

{ work } { source } { A e } { libraries} {scrip ts} Synthesis script for Genus.
space code .

innovus.tcl
| |
[rtl}[tb]

Place and route script for Innovus.

Remaining folders

 The remaining folders in the project tree are:

* apps: For storing application files (e.g., for SoC simulation)

+ reports: Where all your reports will be dumped during the flow.

« export: Where all the flow products are dumped, such as netlists, dbs.
» docs: Documentation about the project and process.

[Project Root]

work source : _ , :
{ space J { code 1 { inputs 1 {llbrarles] {SCI‘lptS} { apps J {reports} {export} { docs J
|
| |
[rtl J [tb]

Tcl Arrays

* This flow uses Tcl arrays (key-value pairs) for storing design and flow info.

* Sdesign(): -
« Data about the specific design. N p
* Primarily defined in the inputs/<TOPLEVEL>.defines file. - N
 Spaths(): $paths ()
* Important paths in the Linux directory structure.
* Stech files(): [stech_files()J
 Files used for defining the technology (e.g., .1ef, .11ib, etc).
* Primarily defined in the 1ibraries/~ files. { }
Stech ()
e Stech():

« Technology specific values and parameters (e.g., clock buffers, filler names).

debug. txt file

* One of the hardest things when running a flow is to find typos in a certain path
to a file or variable name.

* Using parameterization makes debugging this even harder, since each variable
is set based on a bunch of other variables.

 The debug.txt file is a list of all the variables defined by the scripts and the
values that they are given.

e This helps find where your script “broke” and improves debugging speed.

Summary

* In this short tutorial, | introduced the methodology that | developed
for managing the workspace of a chip design project.
* This included and overview of the folder scheme, Tcl arrays, and debug. txt file
» We will use this structure in the following tutorials, while progressing
through a full design cycle.

[Project Root }

P
work source : _ _ :
[space J { code } [inputs } llbrarles] {scrlpts} [apps J [reports} [export} [docs J
\-
|

| | p N . .
Sdesign () Stech ()
rtl tb . a / debug. txt

Spaths () \ ($tech_files()\

7

	Default Section
	Slide 1: Overview of Project Workspace
	Slide 2: Introduction
	Slide 3: Source Code Folder
	Slide 4: Inputs Folder
	Slide 5: Libraries Folder
	Slide 6: Scripts Folder
	Slide 7: Remaining folders
	Slide 8: Tcl Arrays
	Slide 9: debug.txt file
	Slide 10: Summary

