
3 November 2019

RISC-V for Embedded Systems:
A First Introduction

Dr. Adam Teman

Udi Kra

© Adam Teman, 2019

Who and why?

• The EnICS Labs Impact Center at Bar-Ilan University.

• Focal point of the GenPro Consortium, developing the Israeli RISC-V Platform.

• Developing the PULPEnIX SoC Platform, available for use in the Hackathon.

2

GenPro PULPEniX FPGA

© Adam Teman, 2019

Outline

What are
Embedded Systems ?

Embedded Systems RISC-V Basics
The RISC-V
Toolchain

PULPEnIX

© Adam Teman, 2019

Embedded Systems

• When we discuss computers, we usually think of desktops, laptops, tablets…

• But there’s another far more common type of computing system:

• The Embedded System.

• A computing system embedded within an electronic device.

• An embedded system is a special-purpose computer system

designed to perform one or more dedicated functions often in real-time

• Embedded Controller:

• No operating system (“Bare Metal”), small operating system (e.g.,

FreeRTOS), or perhaps full blown Linux-compatible.

• Can code in high-level language (e.g., C) and compile, write

directly in Assembler, or add task-specific hardware (accelerators).

Source: Embedded Systems Design:

A Unified Hardware/Software Introduction

© Adam Teman, 2019

Embedded System Example – Digital Camera

• Single-functioned

• Always a digital camera

• Tightly-constrained

• Low cost

• Low power

• Small

• Fast

• Reactive and real-time

• Only to a small extent

6

© Adam Teman, 2019

System-on-Chip (SoC)

• Embedded Systems are usually based

on a central chip that includes:

• Microprocessor

• Memory

• Input/Output (I/O) circuitry

• Buses
• Address bus

• Data bus

• Control bus

• Essentially, this is an entire

system integrated on a single

chip:

A System-on-Chip (SoC)
7 Source: Farahmand, Sonoma State

Example:

Infineon E-GOLDVoice

“Phone-on-a-Chip”

Source: Raghunathan, ECE 695R

© Adam Teman, 2019

Memory Mapped I/O

Just an important concept that is sometimes missed by undergrad students…

• Basically everything in an SoC is a memory address:

• Data is, of course, stored in memory.

• Instructions are stored in the same memory

space as data in a “Von Neumann Architecture”

• And any peripheral or bus connection is

just a memory address.

• This is known as “Memory Mapping”

or “Memory Mapped I/O”

• There are no special instructions for controlling or accessing a peripheral.

• Just write to an address or read from that address.

• The spec provides a memory map that tells the programmer

what is mapped to each memory address.
8

https://softwareengineering.stackexchange.com

https://softwareengineering.stackexchange.com/

© Adam Teman, 2019

The Microprocessor Monopoly

• The heart of the SoC is the microprocessor

• There may be several (even hundreds of) microprocessors on a SoC!

• Only two main players in the microprocessor field

or rather, only two Instruction Set Architectures (ISAs):

• Intel “x86”:
• A complex instruction set (CISC).

• The de-facto monopoly of high-performance compute nodes

(servers, desktops, laptops).

• Generally too complex for embedded systems.

• ARM:
• A (formerly) reduced instruction set (RISC).

• Many versions with many different features,

but all entirely controlled by one company.

• The de-facto monopoly of embedded systems.
9

© Adam Teman, 2019

Enter RISC-V (pronounced “risk-five”)

• A completely open ISA that is freely available to academia and industry.

• A real ISA suitable for direct native hardware implementation,

not just simulation or binary translation.

• An ISA that avoids “over-architecting” for a particular

microarchitecture style (e.g., microcoded,

in-order, decoupled, out-of-order) or

implementation technology (e.g., full-custom,

ASIC, FPGA), but which allows efficient

implementation in any of these.

10

© Adam Teman, 2019

Why develop a new ISA?

• Preliminary question: Why use an existing commercial ISA (e.g. ARM, x86)?

• Commercial ISAs have large and widely supported software ecosystems,

development tools and ported applications, documentation and tutorials.

• For example, this version of PowerPoint is running on x86 and x86 alone…

• However, there are significant disadvantages:

• Commercial ISAs are proprietary

• Commercial ISAs are only popular in certain market domains

• Commercial ISAs come and go

• Popular commercial ISAs are complex

• Commercial ISAs alone are not enough to bring up applications

• Popular commercial ISAs were not designed for extensibility

• A modified commercial ISA is a new ISA

11

© Adam Teman, 2019

The First RISC-V Hackathon in Israel

• Dec. 26-27, 2019 @WD Office, Kfar Saba

• Hosted by Western Digital and Mellanox

• Who should Join?

• SW and HW developers, passionate about technology,

that would like to add new innovation to the RISC-V community.

• It’s an opportunity to hack in a new breakthrough architecture

in an innovative environment. Get an access to Western Digital

and Mellanox expert, win great prizes and have a lots of fun!

• Come to contribute to the RISC-V ecosystem, join us at the RISC-V Hackathon.

• https://hackathon.forms-wizard.co.il

12

RISC-V Basics

13

Embedded Systems RISC-V Basics
The RISC-V
Toolchain

PULPEnIX

© Adam Teman, 2019

ISA Overview

• The RISC-V Base Integer ISA:

• Two options: RV32I (32-bit) and RV64I (64-bit)

• Must be present in any implementations.

• RV32E is a small microcontroller subset and RV128I is a future 128-bit ISA.

• Standard Instruction Set Extensions:

• M: integer multiply, divide, remainder

• A: atomic memory operations

• F: single-precision floating point

• D: double-precision floating point

• G: All of the above (“IMAFD”)

• C: compressed instructions
• 16-bit encoding for frequently used instructions

14

© Adam Teman, 2019

RISC-V Registers

• Unlike HLL like C or Java, assembly

cannot use variables

• Assembly Operands are registers

• limited number of special locations built

directly into the hardware

• operations can only be performed on these!

• RISC-V has 32 Registers of 32-bits each

• 32-bits is a word in RV32, 64-bits in RV64

• Registers are called x0-x31

• With the ABI, we’ll give them more comprehensible names

• Floating Point adds 32 floating point registers: f0, f1, … f31

15

© Adam Teman, 2019

Base Instruction Formats

RISC-V has several base instruction formats:

• R-Format
• For 3 register operations

OPR rd,rs1,rs2

• I-Format
• For immediate instructions

OPI rd,rs1,Immed-12

• S-Format (and B-Format)
• For store operations (and branches)

OPS rs1,rs2,Immed-12

• U-Format (and J-Format)
• For long immediates (and Jumps)

OPU rd,Immed-20
16

ADD x4,x6,x8 # x4=x6+x8

ADDI x4,x6,123 # x4=x6+123
LW x4,8(x6) # x4=Mem[8+x6]

SW x4,8(x6) # Mem[8+x6]=x4
BLT x4,x6,loop # if x4<x6 loop

LUI x4,0x12AB7 # x4=value<<12
JAL x4,foo # jump&link

rd – destination register

rs1 – source register 1

rs2 – source register 2

Immed-12 – 12-bit immediate

Immed-20 – 20-bit immediate

© Adam Teman, 2019

Types of basic instructions

• Arithmetic/Logical Operations

• ADD/SUB – register-register, register-immediate

• AND/OR/XOR – register-register, register-immediate

• SHIFT – right, left, logical, arithmetic, immediate, …

• Comparison – set if less than register/immediate, signed/unsigned, …

• Memory Operations

• Load from memory – load word, byte, halfword, doubleword, signed/unsigned

• Store to memory – store word, byte, halfword, doubleword, signed/unsigned

• Access 32-bit address: LUI (20 bit immediate) → ADDI (12 bit immediate)

• Branch Instructions

• Conditional – Branch if equal, not equal, greater than, less than, …

• Non conditional – Jump and link (PC relative), Jump and link register (absolute)
17

© Adam Teman, 2019

RISC-V Memory Map

• Text:

• Program code

• Static data:

• Global variables, e.g., static variables in C,

constant arrays and strings

• A global pointer (GP) is used initialized to address

allowing ±offsets into this segment

• Dynamic data:

• a.k.a., “heap”

• e.g., malloc in C, new in Java

• Stack:

• Automatic storage for managing procedure called
18

Source: P&H, Ch. 2

© Adam Teman, 2019

Calling Conventions

• A procedure is initiated from within another piece of code.

• The initiating function is called the “caller” and the subroutine is the “callee”

• In order to ensure that the caller’s state is not changed during the subroutine,

important data must be saved.

• The caller can save important registers before calling the subroutine.

• The callee can save registers that are going to be overwritten during execution.

• RISC-V calling conventions:

• The caller places the arguments in argument registers a0-a7 (x10-x17).

• The caller moves the stack pointer sp (x2) down.

• The callee has to save the saved registers s0-s11 (x8,x9,x18-x27)

• The callee is allowed to write over the temp registers t0-t6 (x5-x7, x28-x31).

• The caller puts the return address (PC+4) in the ra register (x1)
19

© Adam Teman, 2019

So how is a procedure called and returned?

• Calling a procedure (caller):

• Store the arguments in a0-a7.

• If needed, move the stack pointer (sp) and store arguments on stack.

• Update PC to the procedure address and save PC+4 in ra (JAL command)

• Running a procedure (callee):

• Use arguments stored in a0-a7 or on the stack.

• If callee needs to use s0-s11, move sp and store on stack.

• Returning from a procedure (callee):

• Store return values in a0-a1 or in memory.

• Restore saved s0-s11 (pop from stack) and update sp.

• Give a RET command (JALR x0, x1, 0)

• If caller saved any registers on stack, restore them upon returning.

20

© Adam Teman, 2019

Example of Procedure Call

21

• C code:

long long int leaf_example (
long long int g, long long int h,
long long int i, long long int j) {

long long int f;
f = (g + h) - (i + j);
return f;

}
• Arguments g, …, j in a0, …, a3
• f in s1
• temporaries s2, s3
• Need to save s1, s2, s3 on stack

• RISC-V code (64-bit):

leaf_example:
ADDI sp,sp,-24
SD s2,16(sp)
SD s3,8(sp)
SD s1,0(sp)
ADD s2,a0,a1
ADD s3,a2,a3
SUB s1,s2,s3
ADDI a0,s1,0
LD s1,0(sp)
LD s3,8(sp)
LD s2,16(sp)
ADDI sp,sp,24
JALR zero,0(ra)

Save x5, x6, x20 on stack

s2 = g + h
s3 = i + j
f = s2 – s3

copy f to return register

Restore s1, s2, s3 from stack

Return to caller

Deallocate Stack

Allocate Stack

Source:

P&H, Ch. 2

The RISC-V Software
Toolchain
CALL: Compiling, Assembling, Linking and Loading

22

Embedded Systems RISC-V Basics
The RISC-V
Toolchain

PULPEnIX

© Adam Teman, 2019

Steps in Compiling and Running a C Program

• Compiler

• Input: High-Level Language Code (foo.c)

• Output: Assembly Language Code (foo.s)

• (Note: Output may contain pseudo-instructions)

23

Memory

Loader

Executable: a.out

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cgcc -O2 -S -c foo.c foo.c

foo.s

© Adam Teman, 2019

Compiled Hello.c: Hello.s

24

.text
.align 2
.global main

main:
ADDI sp,sp,-16
SW ra,12(sp)
LUI a0,%hi(string1)
ADDI a0,a0,%lo(string1)
LUI a1,%hi(string2)
ADDI a1,a1,%lo(string2)
CALL printf
LW ra,12(sp)
ADDI sp,sp,16
LI a0,0
RET

.section .rodata
.balign 4
string1:
.string "Hello, %s!\n"

string2:
.string "world"

Directive: enter text section
Directive: align code to 2^2 bytes
Directive: declare global symbol main
label for start of main
allocate stack frame
save return address
compute address of
string1
compute address of
string2
call function printf
restore return address
deallocate stack frame
load return value 0
return
Directive: enter read-only data section
Directive: align data section to 4 bytes
label for first string
Directive: null-terminated string
label for second string
Directive: null-terminated string

#include <stdio.h>

int main() {

printf("Hello, %s\n",

"world");

return 0;

}

© Adam Teman, 2019

Steps in Compiling and Running a C Program

• Compiler

• Input: High-Level Language Code (foo.c)

• Output: Assembly Language Code (foo.s)

• (Note: Output may contain pseudo-instructions)

• Assembler

• Input: Assembly Language Code (foo.s)

• Output: Object Code, information tables (foo.o)

• Reads and Uses Directives

• Replace Pseudo-instructions

• Produce Machine Language

• Creates Object File

25

Memory

Loader

Executable: a.out

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cgcc -O2 -S -c foo.c foo.c

foo.s

foo.o

© Adam Teman, 2019

Assembling Hello.s → Linkable Hello.o

26

.text
.align 2
.global main

main:
ADDI sp,sp,-16
SW ra,12(sp)
LUI a0,%hi(string1)
ADDI a0,a0,%lo(string1)
LUI a1,%hi(string2)
ADDI a1,a1,%lo(string2)
CALL printf
LW ra,12(sp)
ADDI sp,sp,16
LI a0,0
RET

.section .rodata
.balign 4
string1:
.string "Hello, %s!\n"

string2:
.string "world"

Directive: enter text section
Directive: align code to 2^2 bytes
Directive: declare global symbol main
label for start of main
allocate stack frame
save return address
compute address of
string1
compute address of
string2
call function printf
restore return address
deallocate stack frame
load return value 0
return
Directive: enter read-only data section
Directive: align data section to 4 bytes
label for first string
Directive: null-terminated string
label for second string
Directive: null-terminated string

00000000 <main>:
0: ff010113 ADDI sp,sp,-16
4: 00112623 SW ra,12(sp)
8: 00000537 LUI a0,0x0 # addr placeholder
c: 00050513 ADDI a0,a0,0 # addr placeholder
10: 000005b7 LUI a1,0x0 # addr placeholder
14: 00058593 ADDI a1,a1,0 # addr placeholder
18: 00000097 AUIPC ra,0x0 # addr placeholder
1c: 000080e7 JALR ra # addr placeholder
20: 00c12083 LW ra,12(sp)
24: 01010113 ADDI sp,sp,16
28: 00000513 ADDI a0,a0,0
2c: 00008067 JALR ra

© Adam Teman, 2019

Steps in Compiling and Running a C Program

• Linker

• Input: Object code files, information tables
(e.g., foo.o,libc.o)

• Output: Executable code (a.out)

• Combines several.o files into a single executable

• Enables separate compilation of files
• Changes to one file do not require recompilation of the

whole program (e.g., Linux source > 20 M lines of code!)

• Loader

• Input: Executable Code (a.out)

• Output: Code is loaded into memory
• In practice, the loader is the Operating System (OS)

27

Memory

Loader

Executable: a.out

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cfoo.c

foo.s

foo.o

a.out

+lib.o

© Adam Teman, 2019

Linking Hello.o→ Executable Hello.out

00000000 <main>:
0: ff010113 ADDI sp,sp,-16
4: 00112623 SW ra,12(sp)
8: 00000537 LUI a0,0x0 # addr placeholder
c: 00050513 ADDI a0,a0,0 # addr placeholder
10: 000005b7 LUI a1,0x0 # addr placeholder
14: 00058593 ADDI a1,a1,0 # addr placeholder
18: 00000097 AUIPC ra,0x0 # addr placeholder
1c: 000080e7 JALR ra # addr placeholder
20: 00c12083 LW ra,12(sp)
24: 01010113 ADDI sp,sp,16
28: 00000513 ADDI a0,a0,0
2c: 00008067 JALR ra

000101b0 <main>:
101b0: ff010113 ADDI sp,sp,-16
101b4: 00112623 SW ra,12(sp)
101b8: 00021537 LUI a0,0x21
101bc: a1050513 ADDI a0,a0,-1520 # 20a10 <string1>
101c0: 000215b7 LUI a1,0x21
101c4: a1c58593 ADDI a1,a1,-1508 # 20a1c <string2>
101c8: 288000ef JAL ra,10450 # <printf>
101cc: 00c12083 LW ra,12(sp)
101d0: 01010113 ADDI sp,sp,16
101d4: 00000513 ADDI a0,0,0
101d8: 00008067 JALR ra

Introduction to PulpEnIX

29

Embedded Systems RISC-V Basics
The RISC-V
Toolchain

PULPEnIX

© Adam Teman, 2019

PulpEniX

• PulpEnIX (nickname for PULP-Enics) is EnICS SoC/RISC-V research platform.

Forked from open-source PULP platform https://www.pulp-platform.org/

• Embedded SOC oriented

• HW/SW (Hardware/Software) co-design environment.

• Simulation environment.

• FPGA platform environment.

• Embedded RISC-V enhancements workbench.

30

https://www.pulp-platform.org/

© Adam Teman, 2019

Pulpenix SOC Perspective

RI5CY

based
Core

Instr.
TCM

Data
TCMB

o
o

t
R

O
M

Core Region

GPIO I2C
SPI

master
UART
GATE

SOC
Misc.

Control

SPI
slave

JTAG

Control/Debug
Remote Access

Event/Intrpt
Unit

Timers DEBUG

debug

B
ri

d
g

e

B
ri

d
g

e

FLASH
GATE

Boot / code loaderSmart access

Flash device

SOC IO Region

BRIDGE

ASIC LOGIC
& Accelerators

Direct access
Functional
Accelerators

GPP
General
Purpose

Port

APB

AXI Interconnect

© Adam Teman, 2019

The RI5CY Core

• RI5CY is a 4-stage, in-order 32b RISC-V processor core.

• The ISA of RI5CY was extended to support additional instructions including:

• Hardware loops

• Post-increment load

and store instructions

• And additional ALU

instructions that are

not part of the standard

RISC-V ISA.

32

© Adam Teman, 2019

PulpEniX HW/SW development Environment

• Toolchain:

• A complete GCC based toolchain, including PulpV3 extensions support

• PulpEniX C libs

• A set of simple libraries for files and terminal IO functionality

• PulpEniX simulation environment

• Verilog based simulation environment. (cadence)

• Optional Verilator and Modelsim references

• PulpEniX FPGA platform environment

• FPGA Hardware and Software reference environment.

• Smart host interface.

33

© Adam Teman, 2019

FPGA/ASIC

SMART REMOTE

python shell

TERMINAL

HW-SW Co-Design environment

34

Handle GDB commands

Access memory space
And Core debug port over AXI

IOSIM
Emulated

Simple Host Interface

Terminal Interface

File interface

ECLIPSE

DEBUG BRIDGE

GDB

GCC 7.1 official

RI5CY GCC

extensions support

C/C++
Source

ELF
Code image
+ debug info

TCP socket

ASIC/SOC

Embedded CPU Sub-System

toolchain

SPI/UART

SLAVE

Direct access
Functional
Accelerators

GPP
General Purpose Port

© Adam Teman, 2019

PulpEniX FPGA Platform

• Based on Altera Cyclone IV , EP4CE115 cost effective ($85) board

• Simple direct unleashed IO interface

• Single cable smart-UART interface

• Smart python interface shell

• GDB and Eclipse based Debug

• File interface & Terminal stdio

• Code loader

• Remote AXI/APB address space access

• Remote access over SPI

• Convenient design verification platform

35

© Adam Teman, 2019

FPGA board smart-UART remote access

FPGA
(Cyclon IV)

Pulpenix

UART
GATEWAY

(HW)

masterslave

Remote Host

Bridge
(SW)

Standard
Serial Port

UART single cable

System
Services

Basic/smart
terminal

GDB/Eclipse
Remote debug

pyShell
Smart Terminal

flash

spi master

spi slave

I2C

JTAG

FPGA Board

© Adam Teman, 2019

RISC-V Hackathon orientation:
PulpEniX platform target

• Open for a wide range of proposals which utilize or enhance the platform Including
but not limited to one or more of the following:

• Software application utilizing the platform
• Example: code and run on the platform Conway's Game of Life , algorithm will run on

the platform, animation will run on the host computer connected to the platform.

• Hardware enhancement to the platform/core

• Example: develop, integrate and demonstrate utilization of new hardware

implemented ALU instructions such as a finding the average of two operands

• Developing and integrating a Hardware accelerator

• Example: develop a hardware Huffman-Code compression/decompression utility

interface with the accelerator utilizing the APB GPP (General Purpose Port)

• Interfacing the platform with external devices

• Example: Interface PulpEniX (over GPIO pins) with a temperature sensor and a fan ,

control the fan to maintain ambient temperature near a heat source.

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Huffman_coding

© Adam Teman, 2019

RISC-V Hackathon-
Schedule and support PulpEniX platform target

• Projects registration by 15/Nov

• Announcement of the projects selected 1/Dec

• PulpEniX platform training for participants at BIU Week of 8/Dec (not final)

• Explain in detail and exercise the platform with a reference project.

• Early platform delivery to participants

• Possible up to 2 weeks prior to the event, subject to project complexity.

• No limitation on early use of the simulation environment.

• The RISC-V Hackathon event at WD Kfar-Saba 26-27/Dec

© Adam Teman, 2019

PulpEniX Demo

• Toolchain & Compiling a program

• Loading a code image

• Optional Menu Program interface

• Dumb Terminal usage

• pyshell usage

• Executing a program

• Debugging a program using Terminal GDB

• Using Eclipse to Debug a program

• Coremark

© Adam Teman, 2019

How to find us?

• The EnICS Team is available to

help you develop your idea for the

RISC-V Hackathon.

• You can contact us at:

• Dr. Adam Teman: adam.teman@biu.ac.il

• Udi (Yehuda) Kra: yehuda.kra@biu.ac.il

• Yonatan Shoshan: yonatan.shoshan@biu.ac.il

• Yehuda Rudin: yehuda.rudin@biu.ac.il

• Tzachi Noy: tzachi.noy@biu.ac.il

• Good Luck!

40

mailto:adam.teman@biu.ac.il
mailto:yehuda.kra@biu.ac.il
mailto:yonatan.shoshan@biu.ac.il
mailto:yehuda.rudin@biu.ac.il
mailto:tzachi.noy@biu.ac.il

