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Who and why?

• The EnICS Labs Impact Center at Bar-Ilan University.

• Focal point of the GenPro Consortium, developing the Israeli RISC-V Platform.

• Developing the PULPEnIX SoC Platform, available for use in the Hackathon.
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Embedded Systems

• When we discuss computers, we usually think of desktops, laptops, tablets…

• But there’s another far more common type of computing system:

• The Embedded System.

• A computing system embedded within an electronic device.

• An embedded system is a special-purpose computer system 

designed to perform one or more dedicated functions often in real-time

• Embedded Controller:

• No operating system (“Bare Metal”), small operating system (e.g., 

FreeRTOS), or perhaps full blown Linux-compatible.

• Can code in high-level language (e.g., C) and compile, write 

directly in Assembler, or add task-specific hardware (accelerators). 

Source: Embedded Systems Design: 

A Unified Hardware/Software Introduction
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Embedded System Example – Digital Camera

• Single-functioned 

• Always a digital camera

• Tightly-constrained

• Low cost

• Low power

• Small

• Fast

• Reactive and real-time 

• Only to a small extent
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System-on-Chip (SoC)

• Embedded Systems are usually based 

on a central chip that includes:

• Microprocessor

• Memory

• Input/Output (I/O) circuitry

• Buses
• Address bus

• Data bus

• Control bus

• Essentially, this is an entire

system integrated on a single

chip:

A System-on-Chip (SoC)
7 Source: Farahmand, Sonoma State

Example: 

Infineon E-GOLDVoice

“Phone-on-a-Chip”

Source: Raghunathan, ECE 695R
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Memory Mapped I/O

Just an important concept that is sometimes missed by undergrad students…

• Basically everything in an SoC is a memory address:

• Data is, of course, stored in memory.

• Instructions are stored in the same memory 

space as data in a “Von Neumann Architecture”

• And any peripheral or bus connection is 

just a memory address.

• This is known as “Memory Mapping” 

or “Memory Mapped I/O”

• There are no special instructions for controlling or accessing a peripheral.

• Just write to an address or read from that address.

• The spec provides a memory map that tells the programmer 

what is mapped to each memory address.
8

https://softwareengineering.stackexchange.com

https://softwareengineering.stackexchange.com/
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The Microprocessor Monopoly

• The heart of the SoC is the microprocessor

• There may be several (even hundreds of) microprocessors on a SoC!

• Only two main players in the microprocessor field 

or rather, only two Instruction Set Architectures (ISAs):

• Intel “x86”: 
• A complex instruction set (CISC). 

• The de-facto monopoly of high-performance compute nodes 

(servers, desktops, laptops).

• Generally too complex for embedded systems.

• ARM:
• A (formerly) reduced instruction set (RISC).

• Many versions with many different features, 

but all entirely controlled by one company.

• The de-facto monopoly of embedded systems.
9
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Enter RISC-V (pronounced “risk-five”) 

• A completely open ISA that is freely available to academia and industry.

• A real ISA suitable for direct native hardware implementation, 

not just simulation or binary translation.

• An ISA that avoids “over-architecting” for a particular 

microarchitecture style (e.g., microcoded, 

in-order, decoupled, out-of-order) or 

implementation technology (e.g., full-custom, 

ASIC, FPGA), but which allows efficient 

implementation in any of these.

10
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Why develop a new ISA?

• Preliminary question: Why use an existing commercial ISA (e.g. ARM, x86)?

• Commercial ISAs have large and widely supported software ecosystems, 

development tools and ported applications, documentation and tutorials.

• For example, this version of PowerPoint is running on x86 and x86 alone…

• However, there are significant disadvantages:

• Commercial ISAs are proprietary

• Commercial ISAs are only popular in certain market domains

• Commercial ISAs come and go

• Popular commercial ISAs are complex

• Commercial ISAs alone are not enough to bring up applications

• Popular commercial ISAs were not designed for extensibility

• A modified commercial ISA is a new ISA

11
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The First RISC-V Hackathon in Israel

• Dec. 26-27, 2019 @WD Office, Kfar Saba

• Hosted by Western Digital and Mellanox

• Who should Join?

• SW and HW developers, passionate about technology, 

that would like to add new innovation to the RISC-V community.

• It’s an opportunity to hack in a new breakthrough architecture 

in an innovative environment. Get an access to Western Digital 

and Mellanox expert, win great prizes and have a lots of fun!

• Come to contribute to the RISC-V ecosystem, join us at the RISC-V Hackathon.

• https://hackathon.forms-wizard.co.il

12
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ISA Overview

• The RISC-V Base Integer ISA:

• Two options: RV32I (32-bit) and RV64I (64-bit)

• Must be present in any implementations.

• RV32E is a small microcontroller subset and RV128I is a future 128-bit ISA.

• Standard Instruction Set Extensions:

• M: integer multiply, divide, remainder

• A: atomic memory operations

• F: single-precision floating point

• D: double-precision floating point

• G: All of the above (“IMAFD”)

• C: compressed instructions
• 16-bit encoding for frequently used instructions

14
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RISC-V Registers

• Unlike HLL like C or Java, assembly 

cannot use variables

• Assembly Operands are registers

• limited number of special locations built 

directly into the hardware

• operations can only be performed on these!

• RISC-V has 32 Registers of 32-bits each

• 32-bits is a word in RV32, 64-bits in RV64

• Registers are called x0-x31

• With the ABI, we’ll give them more comprehensible names

• Floating Point adds 32 floating point registers: f0, f1, … f31

15
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Base Instruction Formats

RISC-V has several base instruction formats:

• R-Format
• For 3 register operations

OPR rd,rs1,rs2

• I-Format 
• For immediate instructions

OPI rd,rs1,Immed-12

• S-Format (and B-Format) 
• For store operations (and branches)

OPS rs1,rs2,Immed-12

• U-Format (and J-Format) 
• For long immediates (and Jumps)

OPU rd,Immed-20
16

ADD x4,x6,x8  # x4=x6+x8

ADDI x4,x6,123  # x4=x6+123
LW   x4,8(x6)   # x4=Mem[8+x6]

SW x4,8(x6)   # Mem[8+x6]=x4
BLT x4,x6,loop # if x4<x6 loop

LUI x4,0x12AB7 # x4=value<<12
JAL   x4,foo     # jump&link

rd – destination register

rs1 – source register 1

rs2 – source register 2

Immed-12 – 12-bit immediate

Immed-20 – 20-bit immediate
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Types of basic instructions

• Arithmetic/Logical Operations

• ADD/SUB – register-register, register-immediate

• AND/OR/XOR – register-register, register-immediate

• SHIFT – right, left, logical, arithmetic, immediate, …

• Comparison – set if less than register/immediate, signed/unsigned, …

• Memory Operations

• Load from memory – load word, byte, halfword, doubleword, signed/unsigned

• Store to memory – store  word, byte, halfword, doubleword, signed/unsigned

• Access 32-bit address: LUI (20 bit immediate) → ADDI (12 bit immediate) 

• Branch Instructions

• Conditional – Branch if equal, not equal, greater than, less than, …

• Non conditional – Jump and link (PC relative), Jump and link register (absolute)
17
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RISC-V Memory Map

• Text: 

• Program code

• Static data: 

• Global variables, e.g., static variables in C, 

constant arrays and strings

• A global pointer (GP) is used initialized to address 

allowing ±offsets into this segment

• Dynamic data: 

• a.k.a., “heap”

• e.g., malloc in C, new in Java

• Stack: 

• Automatic storage for managing procedure called
18

Source: P&H, Ch. 2
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Calling Conventions

• A procedure is initiated from within another piece of code.

• The initiating function is called the “caller” and the subroutine is the “callee”

• In order to ensure that the caller’s state is not changed during the subroutine, 

important data must be saved.

• The caller can save important registers before calling the subroutine.

• The callee can save registers that are going to be overwritten during execution.

• RISC-V calling conventions:

• The caller places the arguments in argument registers a0-a7 (x10-x17).

• The caller moves the stack pointer sp (x2) down.

• The callee has to save the saved registers s0-s11 (x8,x9,x18-x27)

• The callee is allowed to write over the temp registers t0-t6 (x5-x7, x28-x31).

• The caller puts the return address (PC+4) in the ra register (x1)
19
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So how is a procedure called and returned?

• Calling a procedure (caller):

• Store the arguments in a0-a7.

• If needed, move the stack pointer (sp) and store arguments on stack.

• Update PC to the procedure address and save PC+4 in ra (JAL command)

• Running a procedure (callee):

• Use arguments stored in a0-a7 or on the stack.

• If callee needs to use s0-s11, move sp and store on stack.

• Returning from a procedure (callee):

• Store return values in a0-a1 or in memory.

• Restore saved s0-s11 (pop from stack) and update sp.

• Give a RET command (JALR x0, x1, 0)

• If caller saved any registers on stack, restore them upon returning.

20
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Example of Procedure Call

21

• C code:

long long int leaf_example (
long long int g, long long int h,
long long int i, long long int j) {

long long int f;
f = (g + h) - (i + j);
return f;

}
• Arguments g, …, j in a0, …, a3
• f in s1
• temporaries s2, s3
• Need to save s1, s2, s3 on stack

• RISC-V code (64-bit):

leaf_example:
ADDI sp,sp,-24
SD   s2,16(sp)
SD   s3,8(sp)
SD   s1,0(sp)
ADD  s2,a0,a1
ADD  s3,a2,a3
SUB  s1,s2,s3
ADDI a0,s1,0
LD   s1,0(sp)
LD   s3,8(sp)
LD   s2,16(sp)
ADDI sp,sp,24
JALR zero,0(ra)

Save x5, x6, x20 on stack

s2 = g + h
s3 = i + j
f = s2 – s3

copy f to return register

Restore s1, s2, s3 from stack

Return to caller

Deallocate Stack

Allocate Stack

Source: 

P&H, Ch. 2



The RISC-V Software 
Toolchain
CALL: Compiling, Assembling, Linking and Loading
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Steps in Compiling and Running a C Program

• Compiler

• Input: High-Level Language Code (foo.c)

• Output: Assembly Language Code (foo.s)

• (Note: Output may contain pseudo-instructions)

23

Memory

Loader

Executable: a.out

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cgcc -O2 -S -c foo.c foo.c

foo.s
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Compiled Hello.c: Hello.s

24

.text
.align 2
.global main

main:
ADDI sp,sp,-16
SW   ra,12(sp)
LUI  a0,%hi(string1)
ADDI a0,a0,%lo(string1)
LUI  a1,%hi(string2)
ADDI a1,a1,%lo(string2)
CALL printf
LW   ra,12(sp)
ADDI sp,sp,16
LI   a0,0
RET

.section .rodata
.balign 4
string1:
.string "Hello, %s!\n"

string2:
.string "world"

# Directive: enter text section
# Directive: align code to 2^2 bytes
# Directive: declare global symbol main
# label for start of main
# allocate stack frame
# save return address
# compute address of
#   string1
# compute address of
#   string2
# call function printf
# restore return address
# deallocate stack frame
# load return value 0
# return
# Directive: enter read-only data section
# Directive: align data section to 4 bytes
# label for first string
# Directive: null-terminated string
# label for second string
# Directive: null-terminated string

#include <stdio.h> 

int main() { 

printf("Hello, %s\n",

"world"); 

return 0; 

} 
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Steps in Compiling and Running a C Program

• Compiler

• Input: High-Level Language Code (foo.c)

• Output: Assembly Language Code (foo.s)

• (Note: Output may contain pseudo-instructions)

• Assembler

• Input: Assembly Language Code (foo.s)

• Output: Object Code, information tables (foo.o)

• Reads and Uses Directives

• Replace Pseudo-instructions

• Produce Machine Language

• Creates Object File

25

Memory

Loader

Executable: a.out

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cgcc -O2 -S -c foo.c foo.c

foo.s

foo.o
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Assembling Hello.s → Linkable Hello.o

26

.text
.align 2
.global main

main:
ADDI sp,sp,-16
SW   ra,12(sp)
LUI  a0,%hi(string1)
ADDI a0,a0,%lo(string1)
LUI  a1,%hi(string2)
ADDI a1,a1,%lo(string2)
CALL printf
LW   ra,12(sp)
ADDI sp,sp,16
LI   a0,0
RET

.section .rodata
.balign 4
string1:
.string "Hello, %s!\n"

string2:
.string "world"

# Directive: enter text section
# Directive: align code to 2^2 bytes
# Directive: declare global symbol main
# label for start of main
# allocate stack frame
# save return address
# compute address of
#   string1
# compute address of
#   string2
# call function printf
# restore return address
# deallocate stack frame
# load return value 0
# return
# Directive: enter read-only data section
# Directive: align data section to 4 bytes
# label for first string
# Directive: null-terminated string
# label for second string
# Directive: null-terminated string

00000000 <main>: 
0:  ff010113 ADDI  sp,sp,-16 
4:  00112623 SW    ra,12(sp) 
8:  00000537 LUI   a0,0x0 # addr placeholder
c:  00050513 ADDI  a0,a0,0 # addr placeholder
10: 000005b7 LUI   a1,0x0 # addr placeholder 
14: 00058593 ADDI  a1,a1,0 # addr placeholder
18: 00000097 AUIPC ra,0x0 # addr placeholder
1c: 000080e7 JALR  ra # addr placeholder
20: 00c12083 LW    ra,12(sp) 
24: 01010113 ADDI  sp,sp,16 
28: 00000513 ADDI  a0,a0,0 
2c: 00008067 JALR  ra
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Steps in Compiling and Running a C Program

• Linker

• Input: Object code files, information tables 
(e.g., foo.o,libc.o)

• Output: Executable code (a.out)

• Combines several.o files into a single executable

• Enables separate compilation of files
• Changes to one file do not require recompilation of the 

whole program (e.g., Linux source > 20 M lines of code!) 

• Loader

• Input: Executable Code (a.out)

• Output: Code is loaded into memory
• In practice, the loader is the Operating System (OS)

27

Memory

Loader

Executable: a.out

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cfoo.c

foo.s

foo.o

a.out

+lib.o
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Linking Hello.o→ Executable Hello.out

00000000 <main>: 
0:  ff010113 ADDI  sp,sp,-16 
4:  00112623 SW    ra,12(sp) 
8:  00000537 LUI   a0,0x0 # addr placeholder
c:  00050513 ADDI  a0,a0,0 # addr placeholder
10: 000005b7 LUI   a1,0x0 # addr placeholder 
14: 00058593 ADDI  a1,a1,0 # addr placeholder
18: 00000097 AUIPC ra,0x0 # addr placeholder
1c: 000080e7 JALR  ra # addr placeholder
20: 00c12083 LW    ra,12(sp) 
24: 01010113 ADDI  sp,sp,16 
28: 00000513 ADDI  a0,a0,0 
2c: 00008067 JALR  ra

000101b0 <main>:
101b0: ff010113 ADDI sp,sp,-16
101b4: 00112623 SW   ra,12(sp)
101b8: 00021537 LUI  a0,0x21
101bc: a1050513 ADDI a0,a0,-1520 # 20a10 <string1>
101c0: 000215b7 LUI  a1,0x21
101c4: a1c58593 ADDI a1,a1,-1508 # 20a1c <string2>
101c8: 288000ef JAL  ra,10450 # <printf>
101cc: 00c12083 LW   ra,12(sp)
101d0: 01010113 ADDI sp,sp,16
101d4: 00000513 ADDI a0,0,0
101d8: 00008067 JALR ra



Introduction to PulpEnIX
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PulpEniX

• PulpEnIX (nickname for PULP-Enics) is EnICS SoC/RISC-V research platform. 

Forked from open-source PULP platform https://www.pulp-platform.org/

• Embedded SOC oriented

• HW/SW (Hardware/Software) co-design environment.

• Simulation environment.

• FPGA platform environment.

• Embedded RISC-V enhancements workbench.

30

https://www.pulp-platform.org/
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Pulpenix SOC Perspective
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The RI5CY Core

• RI5CY is a 4-stage, in-order 32b RISC-V processor core. 

• The ISA of RI5CY was extended to support additional instructions including:

• Hardware loops

• Post-increment load 

and store instructions 

• And additional ALU 

instructions that are 

not part of the standard  

RISC-V ISA.

32
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PulpEniX HW/SW development Environment

• Toolchain:

• A complete GCC based toolchain, including PulpV3 extensions support

• PulpEniX C libs

• A set of simple libraries for  files and terminal IO functionality

• PulpEniX simulation environment

• Verilog based simulation environment. (cadence)

• Optional Verilator and Modelsim references

• PulpEniX FPGA platform environment

• FPGA Hardware and Software reference environment.

• Smart host interface.

33
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FPGA/ASIC

SMART REMOTE 

python shell
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PulpEniX FPGA Platform

• Based on Altera Cyclone IV , EP4CE115  cost effective ($85) board

• Simple direct unleashed IO interface

• Single cable smart-UART interface

• Smart python interface shell

• GDB and Eclipse based Debug

• File interface & Terminal stdio

• Code loader

• Remote AXI/APB address space access

• Remote access over SPI

• Convenient design verification platform

35
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FPGA board smart-UART remote access
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RISC-V Hackathon orientation: 
PulpEniX platform target

• Open for a wide range of proposals which utilize or enhance the platform Including 
but not limited to one or more of the following:

• Software application utilizing the platform
• Example: code and run on the platform Conway's Game of Life , algorithm will run on 

the platform, animation will run on the host computer connected to the platform.

• Hardware enhancement to the platform/core

• Example: develop, integrate and demonstrate utilization of  new hardware 

implemented ALU instructions such as a finding the average of two operands

• Developing and integrating a Hardware accelerator

• Example: develop a hardware Huffman-Code compression/decompression utility 

interface with the accelerator utilizing the APB GPP (General Purpose Port) 

• Interfacing  the platform with external devices

• Example: Interface PulpEniX (over GPIO pins) with a temperature sensor and a fan , 

control the fan to maintain ambient temperature near a heat source.

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Huffman_coding
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RISC-V Hackathon-
Schedule and support PulpEniX platform target

• Projects registration  by 15/Nov

• Announcement of the projects selected 1/Dec

• PulpEniX platform training for participants at BIU Week of 8/Dec (not final)

• Explain in detail and exercise the platform with a reference project. 

• Early platform delivery to participants

• Possible up to 2 weeks prior to the event, subject to project complexity.

• No limitation on early use of the simulation environment.

• The RISC-V Hackathon event at WD Kfar-Saba 26-27/Dec
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PulpEniX Demo

• Toolchain & Compiling a program

• Loading a code image

• Optional Menu Program interface

• Dumb Terminal usage

• pyshell usage

• Executing a program

• Debugging a program using Terminal GDB

• Using Eclipse to Debug a program

• Coremark
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How to find us?

• The EnICS Team is available to 

help you develop your idea for the 

RISC-V Hackathon.

• You can contact us at:

• Dr. Adam Teman: adam.teman@biu.ac.il

• Udi (Yehuda) Kra: yehuda.kra@biu.ac.il

• Yonatan Shoshan: yonatan.shoshan@biu.ac.il

• Yehuda Rudin: yehuda.rudin@biu.ac.il

• Tzachi Noy: tzachi.noy@biu.ac.il

• Good Luck!
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