
25 December 2021

Preparing a custom block for
digital-on-top integration

Prof. Adam Teman

Introduction

Intro
Behavioral

Model
Layout

Abstract (LEF)
Timing

Model (LIB)
LVS Netlist

(CDL)
Layout Stream

(GDS)
Summary

December 25, 2021© Adam Teman,

Analog-on-Top vs. Digital-on-Top

Schematic Layout

Push a nice

button in

Calibre/PVS

GDS

Tapeout

Analog

Simulation

Device
Models

RTL

Synthesis,

Place and

Route

Digital

Simulation

Timing
Models

Layout
Abstracts

Behavioral
Models

GDSNetlist

Tapeout

December 25, 2021© Adam Teman,

What do we need to deliver

• Early on in the project:

• Behavioral (RTL) model for RTL simulation

• At an intermediate stage

• Layout abstract (.lef) for floorplanning and power planning

• Timing model (.lib) for synthesis

• For signoff

• Spice netlist (.cdl) for LVS

• Full layout (.gds) for LVS and DRC

• In the following slides, we will overview how to prepare your custom block and

create these files.

December 25, 2021© Adam Teman,

Lecture Overview

5

Behavioral Model

6

Intro
Behavioral

Model
Layout

Abstract (LEF)
Timing

Model (LIB)
LVS Netlist

(CDL)
Layout Stream

(GDS)
Summary

December 25, 2021© Adam Teman,

Behavioral Description

• Assuming the custom block’s top hierarchy is called “topcell”, your

behavioral description is a Verilog file with the following properties:

• File name: topcell.v

• Module name: topcell

• Interface: Input and output ports with the same names as the circuit port

names.

No power/ground inout ports.

• Body of code: A description of how you want your block to behave in digital

simulation. If possible, it should behave equivalent to the actual behavior of the

custom block.

This does not have to be synthesizeable.

7

December 25, 2021© Adam Teman,

Example: Memory Macro

8

`timescale 1ns/1ps

module edram_wPS(
// Outputs
DOxDO,
// Inputs
ClkxSI, WAddrxDI, RAddrxDI,

DIxDI, WExSI, RExSI
);

parameter WIDTH = 64;
parameter DEPTH = 4096;
parameter RT_IN_NS = 1000000;
localparam DEPTH_W = $clog2(DEPTH);

input ClkxSI;
input [DEPTH_W-1:0] WAddrxDI; // write address
input [DEPTH_W-1:0] RAddrxDI; // read address
input [WIDTH-1:0] DIxDI; // input data
input WExSI; // write enable
input RExSI; // read enable
output reg [WIDTH-1:0] DOxDO; // output data

reg [WIDTH-1:0] MEM [0:DEPTH-1];
integer timestamp [0:DEPTH-1];
initial timestamp = '{DEPTH{0}};

always @(posedge ClkxSI) begin
if (WExSI) begin

MEM[WAddrxDI] DIxDI;
timestamp[WAddrxDI] <= $time;

end

if (RExSI) begin
if (timestamp[RAddrxDI] + RT_IN_NS > $time)

DOxDO <= MEM[RAddrxDI];
else begin

DOxDO <= {WIDTH/16{16'haa55}};
end

end
end

endmodule

ClkxSI

WExSI

WAddrxDI

RAddrxDI

DIxSI

DOxDO

MEM[4096][64]
RExSI

Layout Abstract

9

Intro
Behavioral

Model

Layout
Abstract

(LEF)

Timing
Model (LIB)

LVS Netlist
(CDL)

Layout Stream
(GDS)

Summary

December 25, 2021© Adam Teman,

Layout Abstract (.lef)

• Well before you have finished your detailed layout, you will need to provide the

backend team with a physical abstract of your block, including:

• Size (Width x Height)

• Pin locations and metal layers

• Power connections

• Blockages

• This is provided in as a .lef
(Library Exchange Format) file,

which can be:

• Written by hand

• Created with

the “Abstract Generator”

10

December 25, 2021© Adam Teman,

Preparing your abstract: Pins (Ports)

• There are many guidelines that can improve your routability, but in general:

• Put pins on layers according to process preferred routing direction.

• Try to align your pins to a periodic grid, preferably the routing tracks.

• Try to separate ports by at least one empty track.

• Pins should reach the edge of the macro and be completely covered by routing

blockage (“cover” blockage with no “pin cutouts”)

• Power (PG) Pins should be fully detailed and wide

enough for a via to be dropped. This will enable

multiple connections to power.

• On a top layer with only power, provide pin cutouts
or entirely remove

blockage

11

December 25, 2021© Adam Teman,

Preparing your abstract: Power Grid

• Need a robust power delivery network

• For preventing IR Drop and EM

• Rule of thumb: 10% of routing resources for power

• Two main structures:

• Mesh

12

• Ring

December 25, 2021© Adam Teman,

Preparing your abstract: Others

• Make sure you provide Antenna information in your LEF

• This will enable the router to solve antenna problems

• Otherwise, during signoff DRC, you will have “surprises”

• Prepare yourself for Metal Fill

• All layers have to have density between 30%-70% or so.

• This will be added during signoff using an automated flow.

• If you have sensitive areas, add metal fill blockage to prevent this.

• If you are sensitive to timing, add the metal fill at the macro level.

• High Voltage Markers

• If you are using non-standard voltages, add Marker CAD layers to employ the

correct DRC rules on these nets.

• Make sure your Origin is at (0,0) and your PR Boundary is correct!
13

December 25, 2021© Adam Teman,

Using the Abstract Generator

• The Abstract Generator is a Cadence tool, started by running abstract

• The Abstract Generator has a five-step flow

1. Import Library (Layout)

2. Import Logical (Interface)

3. Pin Derivation

4. Shape Extraction

5. Abstract Generation

• When this is done you

can export the .lef file.

14

Import

Layout
Import

Logical
Pins

Extract

Abstract

December 25, 2021© Adam Teman,

Using the Abstract Generator (2)

• Import Library Stage:

• Choose a library from Virtuoso (cds.lib)

• Import Logical Stage:

• Upload a Verilog (.v) or Liberty (.lib) file to provide the pin interface.

• Pins:

• Correct way: define pins (shapes defined with “Create Pin”) in your layout.

• You can also have the tool extract pin shapes

based on Labels.

• In the MAP tab define pin layers and make

sure all power/gnd label names are specified.

• After running, check the abstract.pin
cellview in your library

15

December 25, 2021© Adam Teman,

Using the Abstract Generator (3)

• Extract Stage

• SIGNAL tab: Only leave the layers that you

want to be written as signals to the LEF.

• POWER tab: Only leave the layers that you

want to be written as power pins to the LEF.

• Select “EXTRACT POWER NETS” so the whole

power wire will be extracted

• ANTENNA tab: Enable all options.

This will provide antenna data in the LEF,

otherwise, you will probably have antenna

violations in full chip DRC.

• After running, check the abstract.ext
cellview in your library

16

December 25, 2021© Adam Teman,

Using the Abstract Generator (4)

• Abstract stage:

• ADJUST tab: Select “CREATE BOUNDARY PINS”

for signals only! (uncheck for power!)

• BLOCKAGE tab: Define “COVER” blockage on

all layers to block inside the macro.

• DO NOT select “PIN CUTOUT” for pin layers.

This can lead to DRC errors during routing!

• For Power Metals, select “PIN CUTOUT”!

• After running, check the abstract cellview

• Check that pins touch the edges

• Check that blockages are created correctly

(OBJECTS→ BLOCKAGES → ROUTING BLOCKAGES).

17

Unselect!

December 25, 2021© Adam Teman,

Using the Abstract Generator (5)

• To export the .lef file, select FILE→EXPORT→LEF

• Open the file to reassure it was generated as expected:

• You can see the MACRO name and the BLOCK class

• The SIZE is calculated

• The ORIGIN should be at (0,0)

• All the PINs are created and have coordinates

in the correct layers.

• The antenna information is described.

• “Cover” blockage should be defined,

i.e., very few rectangles of type OBS.

18

December 25, 2021© Adam Teman,

Shortcut for Initial LEF

• You will need to provide an initial LEF early on in the project for floorplanning.

• After defining footprint, power connections and pin placement,

you will need to freeze this and only change the internals.

• A quick way to do this is to use Innovus:

• Create “empty” Verilog netlist (module) only including interface.

• Load this netlist into Innovus according to technology backend flow.

• Define floorplan size with create_floorplan command

• Define power rails (rings/stripes) and pins (edit_pin)

• Export LEF with the write_lef_abstract command

19

write_lef_abstract my_macro.lef -stripe_pins -pg_pin_layers {M5} \
-port_for_each_stripe_pin -extract_block_pg_pin_layers {M5} -top_layer M6

Timing Model (LIB)

20

Intro
Behavioral

Model
Layout

Abstract (LEF)
Timing

Model (LIB)
LVS Netlist

(CDL)
Layout Stream

(GDS)
Summary

December 25, 2021© Adam Teman,

Timing Model (.lib)

• The digital-on-top flow is based on static timing analysis (STA) verification

• Throughout the flow, max-delay, min-delay and DRV constraints are checked.

• For each instance in the design, STA requires:

• Propagation delays through timing arcs

• Capacitances (loads) on pins (mainly inputs)

• Drive capabilities (affecting transition) of outputs

• Type of transition (rising/falling) due to an input toggle

• Dynamic and Static Power consumption

• This data is provided by a Liberty (.lib) file, based on:

• Input net transition (trise, tfall)

• Output Load Capacitance (Cload)

• A separate .lib file should be provided for each corner (PVT+RCX)
21

tpd

tf

December 25, 2021© Adam Teman,

Liberty Format

• A .lib file has the following hierarchy:

• Library: a collection of cells at a certain corner.

• Cell: a specific cell (e.g., macro)

• Pin: Timing/Power information for each pin

• Each pin has:

• General info, e.g., capacitance, functionality

• Timing: Propagation delay and output transition

• Power: Power consumption of arc

• Constraint: Setup/Hold constraints

22

lu_table_template(delay_template_5x5) {
variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 ("1000.0, 1001.0, 1002.0, 1003.0, 1004.0");
index_2 ("1000.0, 1001.0, 1002.0, 1003.0, 1004.0");

}

cell (INVX1) {
pin(Y) {

timing() {
cell_rise(delay_template_5x5) {

values (\
"0.1479, 0.2180, 0.3598, 0.922, 1.766", \
"0.2243, 0.2929, 0.4303, 0.991, 1.831", \
"0.3653, 0.4487, 0.5842, 1.135, 1.970", \
"0.4620, 0.5515, 0.7010, 1.244, 2.081", \
"0.7564, 0.8742, 1.0570, 1.628, 2.449"); }

December 25, 2021© Adam Teman,

Library Characterization

• The best way to create a .lib file is with a library characterization tool,

such as Cadence Liberate

• For each timing arc, a SPICE testbench is generated and run.

• Propagation delay, output transition, power consumption,

setup/hold constraints, etc. are extracted and written to a .lib file

• Cadence Liberate comes in several “flavors”

• Liberate: Used for Standard Cell characterization

• Liberate-MX: Used for Memory Macro characterization

• Liberate-AMS: Used for Analog Mixed-Signal (custom) blocks

• However, setting up Liberate-AMS is often beyond our scope,

and therefore, we will generate our .libs manually or semi-automatically.
23

December 25, 2021© Adam Teman,

Manually Creating a .lib File

• Library:

• Copy general information (only required parts) from standard cell library

• Cell:

• Cell name should be equivalent to cell name in Virtuoso

• Manually fill in area and copy other fields from standard cell library

• Provide power information in pg_pin fields

• Input Pins

• For each input pin, provide (measured) input capacitance

• If input pin has setup/hold constraints, measure and provide table

• Output Pins

• Provide timing field for each timing arc of each output pin

• For each of these generate tables (measured) for delay, transition, and power
24

December 25, 2021© Adam Teman,

Wrapping with Registers

• To get around the tough measurement, surround your block with registers

• Inputs to the design are just D pins of flip flops.

• Setup/Hold constraints are between the clock and D of these flip flops

• Output arcs are just clock-to-Q arcs of flip flops

• So, you can copy the cell definition of the flip flop

from the standard cell library for each pin

• Or better yet, you can semi-automate this by:

• Writing an interface-only block in Verilog

with input/output sampling.

• Loading into Innovus and writing out a .lib.

25

Clk

in1

in2

in3

out1

out2

out3

December 25, 2021© Adam Teman,

Semi-Automatic .lib Generation

• Interface-only Verilog Netlist

26

module my_block(
out1,out2,out3,
in1, in2, in3,
clk, rst_n, VDD, VSS);

output out1, out2, out3;
input in1, in2, in3;
input clk, rst_n;
inout VDD, VSS;
wire in1_wire, in2_wire, in3_wire;

DFF in_ff1 (.CK(clk), .D(in1), .Q(in1_wire), .RN(rst_n));
DFF in_ff2 (.CK(clk), .D(in2), .Q(in2_wire) , .RN(rst_n));
DFF in_ff3 (.CK(clk), .D(in3), .Q(in3_wire) , .RN(rst_n));

DFF out_ff1 (.CK(clk), .D(in1_wire), .Q(out1), .RN(rst_n));
DFF out_ff2 (.CK(clk), .D(in2_wire), .Q(out2), .RN(rst_n));
DFF out_ff3 (.CK(clk), .D(in3_wire), .Q(out3), .RN(rst_n));

endmodule

Clk

in1

in2

in3

out1

out2

out3

December 25, 2021© Adam Teman,

Semi-Automatic .lib Generation

• Load into Innovus and write out .lib file

27

Invoke by: innovus -stylus -no_gui -file gen_initial_lib.tcl

Read in the MMMC file for this technology
read_mmmc generic_innovus_mmmc.tcl

Read in interface-only netlist
read_netlist my_block_interface.v

init_design

Write out .lib in one of the corners
write_timing_model -view typical_corner my_block_interface.lib

December 25, 2021© Adam Teman,

Final .lib adjustment

• Even when surrounding your block with registers, you will have different timing

than the “vanilla” standard cell, due to your internal wires:

• Measure input capacitance and update input pins.

• Measure skew between inputs/outputs and clock:

in_skew=δci-δi out_delay= δco-δo

• Update input pin setup/hold constraints:

setup -= in_skew (setup got easier)

hold += in_skew (hold got harder)

• Update output pin propagation delay:

tcq += out_delay (delay got longer)

28

Clk

in1 out1δi δo

δcoδci

LVS Netlist

29

Intro
Behavioral

Model
Layout

Abstract (LEF)
Timing

Model (LIB)
LVS Netlist

(CDL)
Layout

Stream (GDS)
Summary

December 25, 2021© Adam Teman,

LVS Netlist (CDL)

• LVS is “Layout vs. Schematics”. Therefore, we need to provide:

• Layout – Usually in the GDSII format

• Schematic – Usually in the CDL (Circuit Description Language) format

• CDL is a subset of SPICE

• There are some subtle differences, but it is basically equivalent to SPICE.

• You shouldn’t include parasitics in your CDL file!

• The CDL is the result of netlisting your schematic

• Netlisters are an important part of the EDA flow.

• Virtuoso runs a netlister before running a simulation.

• Calibre/PVS run a netlister to create an LVS run.

• Virtuoso also has a standalone netlister for creating CDL files.

• Note that these three options, don’t always provide the same result!
30

December 25, 2021© Adam Teman,

Exporting your CDL

• Ensure that your circuit:

• Has no GLOBAL nets (i.e., with !).

• Uniquify your cell names

This is essential for instantiated standard cells!

• From the CIW, select FILE→EXPORT→CDL .

• Choose your schematic to export.

• The exported file is defined in the OUTPUT section

• Select MAP BUS NAMES FROM <> TO [] to provide

Verilog compatible bus names!

• Select CONNECTION BY NAME to use the $PINS style

of connectivity, as opposed to connection by reference/position.

• Another option is to take the Calibre/PVS netlist generated during LVS.
31

LVS Layout Stream

32

Intro
Behavioral

Model
Layout

Abstract (LEF)
Timing Model

(LIB)
LVS Netlist

(CDL)
Layout Stream

(GDS)
Summary

December 25, 2021© Adam Teman,

LVS Layout (Stream)

• There are two options to extract a GDSII

file from your layout:

• Standalone XStream Out (strmout) tool

• Take it from Calibre/PVS extraction

• From the CIW, select FILE→EXPORT→STREAM .

• Select the layout view (LIBRARY/TOP CELL/VIEW) of the cell you want to export

• The exported GDS is defined in the STREAM FILE field

• The TECHNOLOGY LIBRARY should be the techlib of the PDK.

• The LAYER MAP is a file that translates between the layout layer and the GDS

layer number. It should be provided in your PDK.

• Select TRANSLATE to export your GDS

• But not before you follow the steps on the next slide!

33

December 25, 2021© Adam Teman,

Stream Out – Important Points

• In the XSTREAM OUT form, choose the MORE OPTIONS button and:

• Under CELL MAPPING add CELL NAME PREFIX (or SUFFIX), such as “my_cell_” and

select IGNORE CELL NAME PREFIX AND SUFFIX FOR TOP CELL.

• Under MAPPING→GENERAL select REPLACE <> WITH [].

34

Summary

35

Intro
Behavioral

Model
Layout

Abstract (LEF)
Timing Model

(LIB)
LVS Netlist

(CDL)
Layout Stream

(GDS)
Summary

December 25, 2021© Adam Teman,

Summary

• Following all these steps, you should provide the following early on:

• my_block.v file: behavioral model for digital simulation

• my_block_initial.lef: early stage LEF file with frozen size, pins and power.

• my_block_initial.lib: early stage LIB file with registers around interface

• Your final delivery for signoff should include:

• my_block.lef: final .lef that should be equivalent to initial .lef.

• my_block.lib: final .lib that should be equivalent to initial .lib,

if you used the register wrapping approach.

• my_block.cdl: uniquified SPICE (.cdl) netlist without parasitics or globals.

• my_block.gds: uniquified, DRC/LVS clean GDSII file with metal fill blocks,

where required, or after local metal fill.

36

