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Low Power at various levels of circuit design
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Power-Aware Design Flow

5 Source: Synopsys
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Clock Gating

Source: Keating
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• Gate remapping

• Cell sizing

• Buffer insertion

Gate Level Power Optimization
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Multi-Threshold Logic
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Multi VDD

9
Source: Keating
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Power Gating

• Turn OFF power to blocks when they are idle to save leakage
• Use virtual VDD (VDDV)

• Gate outputs to prevent 

invalid logic levels to next block

• Voltage drop across sleep transistor degrades 
performance during normal operation
• Size the transistor wide enough to minimize impact

• Switching wide sleep transistor costs dynamic power
• Only justified when circuit sleeps long enough

10
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Multi-voltage Strategies

• Static Voltage Scaling (SVS): 

• Different blocks or subsystems are given different, fixed supply voltages.

• Multi-level Voltage Scaling (MVS): 

• A block or subsystem is switched between two or more voltage levels. 

• Only a few, fixed, discrete levels are supported for different operating modes.

• Dynamic Voltage and Frequency Scaling (DVFS): 

• A larger number of voltage levels are dynamically switched to follow changing 

workloads.

• Adaptive Voltage Scaling (AVS): 

• An extension of DVFS where a control loop is used to adjust the voltage.

12
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Static Multi-Voltage (MSV)

• Different parts of the chip running at

different voltages

• Reduces dynamic power without 

affecting overall performance

• Requires additional power supplies

• Requires level-shifter for cross-domain

communication
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Multi-Voltage Design Challenges

• Level shifters: 

• Signals that go between blocks that use different power rails require level shifters.

• Characterization and STA: 

• Need libraries for each voltage and level shifter configuration.

• Floorplanning: 

• Floorplanning power domains

• Complex power planning and power grids

• Board level issues: 

• Need additional regulators to provide the additional supplies.

• Power up and power down sequencing: 

• There may be a required sequence for powering up the design in order to avoid 

deadlock.

14
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High-to-Low Shifters

• Why is a shifter required?

• You just need an inverter (or two)

• To provide characterization for a particular shift.

• Where do you place it?

• Since it uses the low voltage, place it in the destination domain.

• But, if it is far from the high domain, buffering may be required.

• You can route the high voltage as a signal to the buffer.

15
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Low to High Shifters

• Why is it needed?

• Need to cross a threshold

• Need to eliminate crowbar current

• Shifter placement

• Always requires routing one voltage to 

the other domain as a signal.

• Place in the destination domain, since 

the output driver requires more current.

• Additional buffers required in main 

domain if distance is too large.

17

Source: Keating
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Low-to-High Shifter Layout
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Source: Synopsys
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Level Shifters in EDA

• Can be specified in RTL or automatically added during floorplanning.

• CPF/UPF enable defining level-shifter rules:

• When to add them (what voltage difference)

• Placement (source or destination domains)

• etc.

• Recommendations

• Place in the receiving domain

• Factor in the delay of low-to-high shifters in the RTL partitioning for timing

• Ensure that the voltage relationship between domains is clear so the tools can 

insert the right type of shifter.

• If bi-directional shifting is required, setup and hold timing becomes complex.

19
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Timing and Power Planning in MSV

• STA

• Characterization for all voltages and shifting possibilities must be provided.

• Each mode must be defined with its own constraints.

• Optimization must be carried out simultaneously (MMMC)

• CTS

• CTS needs to understand level shifters

• If multiple voltages are supported, 

skew minimization has to be 

done for both modes.

• Power Planning

• Each domain has to be provided with its

own voltage and power grid.

20
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Trade-offs in Power Gating

• Clock Gating vs. Power Gating

• Clock Gating is immediate, 

while power gating takes time

• Leakage under power gating is much

lower than under clock gating

• Architectural Tradeoffs for Power Gating

• Possible savings in leakage power

• Entry and exit time penalties

• Energy required to enter and leave 

such leakage saving modes

• The activity profile (proportion and 

frequency of times asleep or active)

Source: KeatingClock Gating Example Profile

Power Gating Example Profile
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Power Gating a CPU

• A cached CPU may be inactive for long periods making power gating attractive

• However:
• Wake up time in response to an interrupt may be too long

• If cache contents are lost every time the CPU is powered down then there is likely to 
be a significant time and energy cost in all the bus activity to refill the cache when it is 
powered up.

• The net energy savings depend on the sleep/wake activity profile as to how much 
energy was saved when power gated versus the energy spent in reloading state.

• For multi-processor systems, power gating is very advantageous
• Power gate once a CPU has finished its task → cache contents are no longer needed

• Some peripheral subsystems may also be very compatible with power gating
• Device drivers can be profiled and the operating system management scheme can be 

optimized.

• Some internal state may need to be stored during sleep mode

23
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Principles of Power Gating

• A simplified view of a power-gated SoC:

• VDD is supplied through a power switching network

• VSS is supplied to the entire chip

• A controller switches the block on/off

• Isolation cells eliminate crowbar 

currents during power down

• Retention registers can be used to 

retain state with low leakage 

during power down

24
Source: Keating
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Fine vs. Coarse Grain Power Gating

• Fine Grain PG:

• Local switch in each standard cell

• Huge area overhead (2x-4x)

• Standard flow for characterization and timing.

• Coarse Grain PG:

• Global (distributed) switch for a block of cells.

• Much lower area overhead.

• Very hard sizing estimation.

• Virtually all power gated designs today employ 

coarse grain gating.

25

Fine Grain AND Gate with Pull-Up
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Power Gating Challenges

• Managing the in-rush current when the power is reconnected

• Design of the power switching fabric and power gating controller

• Selection and use of retention registers and isolation cells

• Minimizing the impact of power gating on timing and area.

• The functional control of clocks and resets 

• Interface isolation

• Developing the correct constraints for implementation and analysis

• Verification for each supported power state and state transition

• Developing a strategy for manufacturing and production test

26
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Example Power Gated Design

27 Source: Keating
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Power Gate Switches

• Switch Type:

• “Header” (VDD switch)

• “Footer” (VSS switch)

• Tradeoffs

• Using both headers and footers usually is unacceptable in terms of IR drop.

• Header switches are more popular, since external (off-chip) power gating can 

only be done with a header (VSS is common for the whole board)

• Level shifters usually share a common ground, causing footer switching to be a 

problem.

• It’s easier for a designer to think of “off” as a signal falling to GND.

28

Source: Keating
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Header Cells Layout

29

Source: Synopsys
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Ring Style Implementation

• A ring of VDD surrounds the power gated block. 

• Advantages:

• Simple power plan

• Little negative impact on PNR

• Always-on cells can be placed around 

the power domain areas.

• Disadvantages:

• Large IR Drop in big power domains

• Does not support retention registers

• High extra area cost compared to a grid approach.

• Note that a ring style is the only option to power gate an existing hard block. 

30

Source: Keating
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Grid Style Implementation

• The sleep transistors are distributed 
throughout the power gated region. 

• Advantages:
• Virtual supply can be routed in low metal layers

• Fewer sleep transistors than ring-style to achieve 
the same IR drop target. 

• Retention registers and always-on buffers can 
connect to the always on supply anywhere 
within the domain

• Better trickle charge distribution for management of in-rush current.

• Lower area overhead (due to <100% placement utilization).

• Drawbacks
• Impact on standard cell routing and physical synthesis. 

• Much more complex power routing

31
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Rail vs. Strap VDD Supply

• Two options for supplying VDD:

• Parallel Rail VDD Distribution

• Power Strap VDD Distribution

• Parallel Rail VDD Distribution

• Easy access to VDD and VVDD

• High overhead (at least 1 track per row)

• Power Strap VDD Distribution

• No need for specialized SC library

• No need for extra row

• Placement of special cells under the

strap or connected through power route

• Potentially worse IR drop

32

Source: Keating
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Limiting In-Rush Current

• In-Rush Current

• When a block is switched on, a strong 

“in-rush” current occurs

• Can cause supply voltage spikes, possibly 

disrupting always on and retention registers

• Daisy Chaining

• Control signals can be daisy chained, such that each switch provides a signal 

to enable the next switch.

• This requires a substantial delay, 

so a ready signal is usually added

• Trickle Switches

• First turn on a set of weak switches, which initiate power up with limited in-rush

• Then turn on the main set of switches
33
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Signal Isolation

• The problem:

• When a block is powered down, the outputs are floating.

• If a floating output drives an always-on region, crowbar current can occur.

• Note that inputs are not a problem, if they are driven by always-on signals.

• The solution:

• Use an isolation clamp 

• Usually clamp to an inactive state:
• Active high logic: Clamp to a ‘0’ using an AND gate.

• Active low logic: Clamp to a ‘1’ using an OR gate.

• To limit added delay, pull-up/pull-down 

clamps can be used
• This approach is much more problematic and so 

is seldom used.

34

Source: Keating

Source: power forward
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Always-on Isolation Cell Layout

35

Source: Synopsys
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State Retention

• When powering down a block, all state 

information is lost. To resume its operation:

• Restore the state from an external source.

• Build up its state from the reset condition.

• Instead, use a retention strategy for quick state restoration

• This is recommended for a peripheral or cached processor with significant 

residual state.

• Methods for Saving and Restoring the Internal States:

• A software approach based on reading and writing registers

• A scan-based approach based on using scan chains to store state off chip

• A register-based approach that uses retention registers

36

Source: power forward
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Retention Approaches

• Software-based approach

• An always-on processor reads and stores the registers of the power-gated 

block during the power shutdown sequence

• This suffers from slow power-down/power-up sequences that are non-

deterministic due to bus conflicts, as well as very tightly-coupled software

• Scan Chain based approach

• Separate scan chains according to power 

domains and scan out state to external memory for retention.

• Retention Register approach

• A retention register contains an 

always-on “shadow” register

• Typically 20%-50% overhead

37

Source: Keating
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Retention Register Layout

38

Source: Synopsys
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Power Control Sequencing

• To power gate a region without retention:
• Flush through any bus or external operations in progress

• Stop the clocks in the appropriate phase to minimize leakage

• Assert the isolation control signal to park all outputs in a safe condition

• Assert reset to the block, so that it powers up in the reset condition

• Assert the power gating control signal

• To restore power:
• De-assert the power gating control signal

• Optionally sequence multiple control 
signals for phased power-up depending on 
the current in-rush management approach and technology

• De-assert reset to ensure clean initialization following the gated power-up

• De-assert the isolation control signal to restore all outputs

• Restart the clocks, without glitches and without violating
39

Source: Keating
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Power Control Sequencing

• To power gate a region with retention:
• Flush through any bus or external operations in progress

• Stop the clocks

• Assert the isolation control signal

• Assert the state retention save condition

• Assert reset to the non-retained registers, 
so that they power up in the reset condition

• Assert the power gating control signal

• To restore power and retained state:
• De-assert the power gating control signal

• Optionally sequence multiple control signals for phased power-up

• De-assert reset to ensure clean initialization following the gated power-up

• Assert the state retention restore condition 

• De-assert the isolation control signal

• Restart the clocks without glitches
40

Source: Keating
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Handshake Protocols

• Two approaches to delayed wake-up:

• Fixed-delay (counter based)

• Using a request-acknowledge handshake.

• Handshake protocol

• The power controller issues a N_PWR_REQ to turn the power switching fabric off. 

• It is the responsibility of the switching fabric to return N_PWR_ACK when power is 

completely switched off. 

• On power up, the controller de-asserts N_PWR_REQ to turn the switching fabric on. 

• When the fabric is completely on and it is safe to proceed, the switching fabric 

deasserts N_PWR_ACK. 

• When the controller sees the acknowledge, it proceeds to assert restore and continue 

through the power up sequence.

41

Source: Keating
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The Need for a Common Power Format

• Low-power design flows need to specify the desired power architecture to be 

used at each major step and for each task.

• Old flows had no way of guaranteeing consistency

• Benefits of CPF:

• Improved quality of silicon (QoS)

• Higher productivity and faster time to market

• Reduced risk

• Two formats:

• UPF

• CPF

• We will be showing a CPF example in the following slides
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Special Cells for Low Power Techniques

45

Source: Synopsys
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• Define power domains

• Define power domains

• Define power nets for domains

• Specify power down signals (from PCM unit)

CPF through example

46

# Define the top domain
set_design TOP
# Define the default domain
create_power_domain –name pdTop –default
update_power_domain –name pdTop –internal_power_net VDD
# Define PDA – PSO when pso is low
create_power_domain -name pdA –instances {uA uC} \

–shutoff_condition {!uPCM/pso[0]}
update_power_domain –name pdA –internal_power_net VDDa
# Define PDB – PSO when pso is low
create_power_domain –name pdB –instances {uB} \

–shutoff_condition {!uPCM/pso[1]}
update_power_domain –name pdB –internal_power_net VDDb

Source: power forward
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• First define “nominal conditions”

• Then define libraries for each voltage

• And connect the condition to the libraries

• Also need to create operating corners…

Define operating voltages

47

# Nominal operating conditions
create_nominal_condition –name high –voltage 1.2
update_nominal_condition –name high –library_set lib_high
create_nominal_condition –name medium –voltage 1.0
update_nominal_condition –name medium –library_set lib_med
create_nominal_condition –name low –voltage 0.8
update_nominal_condition –name low –library_set lib_low
create_nominal_condition –name off –voltage 0

# Define libraries
define_library_set -name lib_high -libraries Lib1
define_library_set -name lib2_med -libraries {Lib2 Lib3}
define_library_set -name lib3_low -libraries Lib4

create_operating_corner -name corner1 \
-voltage 0.80 -process 1 \
-temperature 125 -library_set lib_low

create_operating_corner -name corner2 \
-voltage 1.0 -process 1 \
-temperature 125 -library_set lib_med

create_operating_corner -name corner3 \
-voltage 1.2 -process 1 \
-temperature 125 -library_set lib_high
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Define Power Modes

• Finally create “power modes”

• In PM3, pdB is powered down

• Define constraints for each mode

• Connect the operating corners

48

create_power_mode –name PM1 –default \
–domain_conditions {pdTop@high pdA@medium pdB@medium}

update_power_mode -name PM1 -sdc_files PM1.sdc
create_power_mode –name PM2 \
–domain_conditions {pdTop@high pdA@low pdB@low}

update_power_mode -name PM2 -sdc_files PM2.sdc
# Mode where pdB is off
create_power_mode –name PM3 \
–domain_conditions {pdTop@high pdA@low pdB@off}

update_power_mode -name PM3 -sdc_files PM3.sdc
create_analysis_view -name PM1_view -mode PM1 \

-domain_corners {pdTop@corner1 pdA@corner2 pdB@corner3}

Source: power forward
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Defining Level Shifters

• In order to automate the insertion of level shifters during synthesis or PNR, 

they need to be defined

• Level shifters can also be combined 

with isolation cells

49

define_level_shifter_cell \
-cells LVLHVT -valid_location from \
-input_voltage_range 0.8 \
-output_voltage_range 1.2 -ground VSS \
-input_power_pin VDD \
-output_power_pin VDDH

Source: power forward
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Defining Level Shifters

• But you also need to define rules

• First define the connectivity

• Then define the cells and location

50

# Define Level-Shifters in the “to” domain
create_level_shifter_rule –name lsr1 \

–to {pdB} –from {pdA}
update_level_shifter_rules -names lsr1 \

-cells LS32 -location to
create_level_shifter_rule –name lsr2 \

–to {pdA} –from {pdB}
update_level_shifter_rules -names lsr2 \

-cells LS23 -location to
create_level_shifter_rule –name lsr3 – to {pdTop} –from {pdB}
update_level_shifter_rules -names lsr3 -cells LS13 -location to
create_level_shifter_rule –name lsr3 –to {pdA} –from {pdTop}
update_level_shifter_rules -names lsr1 -cells LS21 -location to

Source: power forward
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Power Switch and Isolation Cells

• For power gating, power switch cell definitions are required:

• As well as Isolation Cell definitions:

51

define_power_switch_cell -cells HDRHVT \
-stage_1_enable SLPIN –stage_1_output SLPOUT \
-power VDDH -power_switchable VDDI
create_power_switch_rule –name PSW_RULE -domain ALUP

define_isolation_cell -cells ISOHVT \
-enable NSLEEP -power VDD -ground VSS
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• Define rules for adding isolation cells

• Specify isolation signal (from PCM unit)

• Isolation value can be high, low or hold

• Specify the cells to use

Adding in Isolation

52

## All outputs of Power-Domain pdB
# isolated high on rising edge of “iso”
create_isolation_rule \

–name ir1 \
–from pdB \
–pins {uB/en1 uB/en2} \
–isolation_condition {uPCM/iso} \
–isolation_output high 

update_isolation_rules -names ir1 -cells ISOLS2 \
-combine_level_shifting -location to

Source: power forward
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Defining State Retention

• Define state retention requirements

• Registers to be saved

• Signal to trigger restoration

• Also need to define the cells to use

53

## Define State-Retention (SRPG)
# State stored on falling edge of restore[0] 
#       and restored on rising-edge
create_state_retention_rule \

–name sr1 \
–instances {uB/reg1 uB/reg2} \
–restore_edge {uPCM/restore[0]} 
# -save is by default !restore_edge

update_state_retention_rule –names SRPG1 \
–library_set lib_med –cell_type DRFF

Source: power forward
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Main References

• “Low Power Methodology Manual for SoC Design”, M. Keating, D. Flynn, et al.

• “A Practical Guide to Low-Power Design”, The Power Forward Initiative
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