
24 June 2020

Power Intent and Low
Power Methodology

Dr. Adam Teman

June 24, 2020© Adam Teman,

Outline

Standard Low Power
Methods

Standard
Methods

MSV
Power
Gating

CPF

June 24, 2020© Adam Teman,

Low Power at various levels of circuit design

4

higher impact

more options

Algorithm

Level

Architecture

Level

Circuit

Level

Process Device

Level

System

Level
Design partitioning, Power Down

Complexity, Concurrency, Locality,

Regularity, Data representation

Voltage scaling, Parallelism,

Instruction set, Signal correlations

Transistor sizing, Logic optimization,

Activity Driven Power Down, Low-

swing logic, Adiabatic switching

Threshold Reduction, Multi-

threshold

Source: U. Nis

June 24, 2020© Adam Teman,

Power-Aware Design Flow

5 Source: Synopsys

Source: SynopsysSource: Synopsys

June 24, 2020© Adam Teman,

Clock Gating

Source: Keating

June 24, 2020© Adam Teman,

• Gate remapping

• Cell sizing

• Buffer insertion

Gate Level Power Optimization

7

Source: Keating

June 24, 2020© Adam Teman,

Multi-Threshold Logic

8

Source: Synopsys

Source: Rabaey

June 24, 2020© Adam Teman,

Multi VDD

9
Source: Keating

June 24, 2020© Adam Teman,

Power Gating

• Turn OFF power to blocks when they are idle to save leakage
• Use virtual VDD (VDDV)

• Gate outputs to prevent

invalid logic levels to next block

• Voltage drop across sleep transistor degrades
performance during normal operation
• Size the transistor wide enough to minimize impact

• Switching wide sleep transistor costs dynamic power
• Only justified when circuit sleeps long enough

10

Source: CMOS VLSI Design

Multi-Supply Voltage (MSV)

Standard
Methods

MSV
Power
Gating

CPF

June 24, 2020© Adam Teman,

Multi-voltage Strategies

• Static Voltage Scaling (SVS):

• Different blocks or subsystems are given different, fixed supply voltages.

• Multi-level Voltage Scaling (MVS):

• A block or subsystem is switched between two or more voltage levels.

• Only a few, fixed, discrete levels are supported for different operating modes.

• Dynamic Voltage and Frequency Scaling (DVFS):

• A larger number of voltage levels are dynamically switched to follow changing

workloads.

• Adaptive Voltage Scaling (AVS):

• An extension of DVFS where a control loop is used to adjust the voltage.

12

June 24, 2020© Adam Teman,

Static Multi-Voltage (MSV)

• Different parts of the chip running at

different voltages

• Reduces dynamic power without

affecting overall performance

• Requires additional power supplies

• Requires level-shifter for cross-domain

communication

13

1.0 V

0.7 V

1.0 V

June 24, 2020© Adam Teman,

Multi-Voltage Design Challenges

• Level shifters:

• Signals that go between blocks that use different power rails require level shifters.

• Characterization and STA:

• Need libraries for each voltage and level shifter configuration.

• Floorplanning:

• Floorplanning power domains

• Complex power planning and power grids

• Board level issues:

• Need additional regulators to provide the additional supplies.

• Power up and power down sequencing:

• There may be a required sequence for powering up the design in order to avoid

deadlock.

14

June 24, 2020© Adam Teman,

High-to-Low Shifters

• Why is a shifter required?

• You just need an inverter (or two)

• To provide characterization for a particular shift.

• Where do you place it?

• Since it uses the low voltage, place it in the destination domain.

• But, if it is far from the high domain, buffering may be required.

• You can route the high voltage as a signal to the buffer.

15

Level Shifter in

the Destination

Domain

Source: Keating

June 24, 2020© Adam Teman,

Low to High Shifters

• Why is it needed?

• Need to cross a threshold

• Need to eliminate crowbar current

• Shifter placement

• Always requires routing one voltage to

the other domain as a signal.

• Place in the destination domain, since

the output driver requires more current.

• Additional buffers required in main

domain if distance is too large.

17

Source: Keating

June 24, 2020© Adam Teman,

Low-to-High Shifter Layout

18

Source: Synopsys

June 24, 2020© Adam Teman,

Level Shifters in EDA

• Can be specified in RTL or automatically added during floorplanning.

• CPF/UPF enable defining level-shifter rules:

• When to add them (what voltage difference)

• Placement (source or destination domains)

• etc.

• Recommendations

• Place in the receiving domain

• Factor in the delay of low-to-high shifters in the RTL partitioning for timing

• Ensure that the voltage relationship between domains is clear so the tools can

insert the right type of shifter.

• If bi-directional shifting is required, setup and hold timing becomes complex.

19

June 24, 2020© Adam Teman,

Timing and Power Planning in MSV

• STA

• Characterization for all voltages and shifting possibilities must be provided.

• Each mode must be defined with its own constraints.

• Optimization must be carried out simultaneously (MMMC)

• CTS

• CTS needs to understand level shifters

• If multiple voltages are supported,

skew minimization has to be

done for both modes.

• Power Planning

• Each domain has to be provided with its

own voltage and power grid.

20

Source: Keating

Power Gating

Standard
Methods

MSV
Power
Gating

CPF

June 24, 2020© Adam Teman,

Trade-offs in Power Gating

• Clock Gating vs. Power Gating

• Clock Gating is immediate,

while power gating takes time

• Leakage under power gating is much

lower than under clock gating

• Architectural Tradeoffs for Power Gating

• Possible savings in leakage power

• Entry and exit time penalties

• Energy required to enter and leave

such leakage saving modes

• The activity profile (proportion and

frequency of times asleep or active)

Source: KeatingClock Gating Example Profile

Power Gating Example Profile

June 24, 2020© Adam Teman,

Power Gating a CPU

• A cached CPU may be inactive for long periods making power gating attractive

• However:
• Wake up time in response to an interrupt may be too long

• If cache contents are lost every time the CPU is powered down then there is likely to
be a significant time and energy cost in all the bus activity to refill the cache when it is
powered up.

• The net energy savings depend on the sleep/wake activity profile as to how much
energy was saved when power gated versus the energy spent in reloading state.

• For multi-processor systems, power gating is very advantageous
• Power gate once a CPU has finished its task → cache contents are no longer needed

• Some peripheral subsystems may also be very compatible with power gating
• Device drivers can be profiled and the operating system management scheme can be

optimized.

• Some internal state may need to be stored during sleep mode

23

June 24, 2020© Adam Teman,

Principles of Power Gating

• A simplified view of a power-gated SoC:

• VDD is supplied through a power switching network

• VSS is supplied to the entire chip

• A controller switches the block on/off

• Isolation cells eliminate crowbar

currents during power down

• Retention registers can be used to

retain state with low leakage

during power down

24
Source: Keating

June 24, 2020© Adam Teman,

Fine vs. Coarse Grain Power Gating

• Fine Grain PG:

• Local switch in each standard cell

• Huge area overhead (2x-4x)

• Standard flow for characterization and timing.

• Coarse Grain PG:

• Global (distributed) switch for a block of cells.

• Much lower area overhead.

• Very hard sizing estimation.

• Virtually all power gated designs today employ

coarse grain gating.

25

Fine Grain AND Gate with Pull-Up

Source: Keating

Source: U. Buffalo

June 24, 2020© Adam Teman,

Power Gating Challenges

• Managing the in-rush current when the power is reconnected

• Design of the power switching fabric and power gating controller

• Selection and use of retention registers and isolation cells

• Minimizing the impact of power gating on timing and area.

• The functional control of clocks and resets

• Interface isolation

• Developing the correct constraints for implementation and analysis

• Verification for each supported power state and state transition

• Developing a strategy for manufacturing and production test

26

June 24, 2020© Adam Teman,

Example Power Gated Design

27 Source: Keating

June 24, 2020© Adam Teman,

Power Gate Switches

• Switch Type:

• “Header” (VDD switch)

• “Footer” (VSS switch)

• Tradeoffs

• Using both headers and footers usually is unacceptable in terms of IR drop.

• Header switches are more popular, since external (off-chip) power gating can

only be done with a header (VSS is common for the whole board)

• Level shifters usually share a common ground, causing footer switching to be a

problem.

• It’s easier for a designer to think of “off” as a signal falling to GND.

28

Source: Keating

June 24, 2020© Adam Teman,

Header Cells Layout

29

Source: Synopsys

June 24, 2020© Adam Teman,

Ring Style Implementation

• A ring of VDD surrounds the power gated block.

• Advantages:

• Simple power plan

• Little negative impact on PNR

• Always-on cells can be placed around

the power domain areas.

• Disadvantages:

• Large IR Drop in big power domains

• Does not support retention registers

• High extra area cost compared to a grid approach.

• Note that a ring style is the only option to power gate an existing hard block.

30

Source: Keating

June 24, 2020© Adam Teman,

Grid Style Implementation

• The sleep transistors are distributed
throughout the power gated region.

• Advantages:
• Virtual supply can be routed in low metal layers

• Fewer sleep transistors than ring-style to achieve
the same IR drop target.

• Retention registers and always-on buffers can
connect to the always on supply anywhere
within the domain

• Better trickle charge distribution for management of in-rush current.

• Lower area overhead (due to <100% placement utilization).

• Drawbacks
• Impact on standard cell routing and physical synthesis.

• Much more complex power routing

31

Source: Keating

June 24, 2020© Adam Teman,

Rail vs. Strap VDD Supply

• Two options for supplying VDD:

• Parallel Rail VDD Distribution

• Power Strap VDD Distribution

• Parallel Rail VDD Distribution

• Easy access to VDD and VVDD

• High overhead (at least 1 track per row)

• Power Strap VDD Distribution

• No need for specialized SC library

• No need for extra row

• Placement of special cells under the

strap or connected through power route

• Potentially worse IR drop

32

Source: Keating

Power Rail Distribution

Power Strap Distribution

June 24, 2020© Adam Teman,

Limiting In-Rush Current

• In-Rush Current

• When a block is switched on, a strong

“in-rush” current occurs

• Can cause supply voltage spikes, possibly

disrupting always on and retention registers

• Daisy Chaining

• Control signals can be daisy chained, such that each switch provides a signal

to enable the next switch.

• This requires a substantial delay,

so a ready signal is usually added

• Trickle Switches

• First turn on a set of weak switches, which initiate power up with limited in-rush

• Then turn on the main set of switches
33

June 24, 2020© Adam Teman,

Signal Isolation

• The problem:

• When a block is powered down, the outputs are floating.

• If a floating output drives an always-on region, crowbar current can occur.

• Note that inputs are not a problem, if they are driven by always-on signals.

• The solution:

• Use an isolation clamp

• Usually clamp to an inactive state:
• Active high logic: Clamp to a ‘0’ using an AND gate.

• Active low logic: Clamp to a ‘1’ using an OR gate.

• To limit added delay, pull-up/pull-down

clamps can be used
• This approach is much more problematic and so

is seldom used.

34

Source: Keating

Source: power forward

June 24, 2020© Adam Teman,

Always-on Isolation Cell Layout

35

Source: Synopsys

June 24, 2020© Adam Teman,

State Retention

• When powering down a block, all state

information is lost. To resume its operation:

• Restore the state from an external source.

• Build up its state from the reset condition.

• Instead, use a retention strategy for quick state restoration

• This is recommended for a peripheral or cached processor with significant

residual state.

• Methods for Saving and Restoring the Internal States:

• A software approach based on reading and writing registers

• A scan-based approach based on using scan chains to store state off chip

• A register-based approach that uses retention registers

36

Source: power forward

June 24, 2020© Adam Teman,

Retention Approaches

• Software-based approach

• An always-on processor reads and stores the registers of the power-gated

block during the power shutdown sequence

• This suffers from slow power-down/power-up sequences that are non-

deterministic due to bus conflicts, as well as very tightly-coupled software

• Scan Chain based approach

• Separate scan chains according to power

domains and scan out state to external memory for retention.

• Retention Register approach

• A retention register contains an

always-on “shadow” register

• Typically 20%-50% overhead

37

Source: Keating

Source: Keating

June 24, 2020© Adam Teman,

Retention Register Layout

38

Source: Synopsys

June 24, 2020© Adam Teman,

Power Control Sequencing

• To power gate a region without retention:
• Flush through any bus or external operations in progress

• Stop the clocks in the appropriate phase to minimize leakage

• Assert the isolation control signal to park all outputs in a safe condition

• Assert reset to the block, so that it powers up in the reset condition

• Assert the power gating control signal

• To restore power:
• De-assert the power gating control signal

• Optionally sequence multiple control
signals for phased power-up depending on
the current in-rush management approach and technology

• De-assert reset to ensure clean initialization following the gated power-up

• De-assert the isolation control signal to restore all outputs

• Restart the clocks, without glitches and without violating
39

Source: Keating

Source: power forward

June 24, 2020© Adam Teman,

Power Control Sequencing

• To power gate a region with retention:
• Flush through any bus or external operations in progress

• Stop the clocks

• Assert the isolation control signal

• Assert the state retention save condition

• Assert reset to the non-retained registers,
so that they power up in the reset condition

• Assert the power gating control signal

• To restore power and retained state:
• De-assert the power gating control signal

• Optionally sequence multiple control signals for phased power-up

• De-assert reset to ensure clean initialization following the gated power-up

• Assert the state retention restore condition

• De-assert the isolation control signal

• Restart the clocks without glitches
40

Source: Keating

June 24, 2020© Adam Teman,

Handshake Protocols

• Two approaches to delayed wake-up:

• Fixed-delay (counter based)

• Using a request-acknowledge handshake.

• Handshake protocol

• The power controller issues a N_PWR_REQ to turn the power switching fabric off.

• It is the responsibility of the switching fabric to return N_PWR_ACK when power is

completely switched off.

• On power up, the controller de-asserts N_PWR_REQ to turn the switching fabric on.

• When the fabric is completely on and it is safe to proceed, the switching fabric

deasserts N_PWR_ACK.

• When the controller sees the acknowledge, it proceeds to assert restore and continue

through the power up sequence.

41

Source: Keating

CPF

43

Standard
Methods

MSV
Power
Gating

CPF

June 24, 2020© Adam Teman,

The Need for a Common Power Format

• Low-power design flows need to specify the desired power architecture to be

used at each major step and for each task.

• Old flows had no way of guaranteeing consistency

• Benefits of CPF:

• Improved quality of silicon (QoS)

• Higher productivity and faster time to market

• Reduced risk

• Two formats:

• UPF

• CPF

• We will be showing a CPF example in the following slides

June 24, 2020© Adam Teman,

Special Cells for Low Power Techniques

45

Source: Synopsys

June 24, 2020© Adam Teman,

• Define power domains

• Define power domains

• Define power nets for domains

• Specify power down signals (from PCM unit)

CPF through example

46

Define the top domain
set_design TOP
Define the default domain
create_power_domain –name pdTop –default
update_power_domain –name pdTop –internal_power_net VDD
Define PDA – PSO when pso is low
create_power_domain -name pdA –instances {uA uC} \

–shutoff_condition {!uPCM/pso[0]}
update_power_domain –name pdA –internal_power_net VDDa
Define PDB – PSO when pso is low
create_power_domain –name pdB –instances {uB} \

–shutoff_condition {!uPCM/pso[1]}
update_power_domain –name pdB –internal_power_net VDDb

Source: power forward

June 24, 2020© Adam Teman,

• First define “nominal conditions”

• Then define libraries for each voltage

• And connect the condition to the libraries

• Also need to create operating corners…

Define operating voltages

47

Nominal operating conditions
create_nominal_condition –name high –voltage 1.2
update_nominal_condition –name high –library_set lib_high
create_nominal_condition –name medium –voltage 1.0
update_nominal_condition –name medium –library_set lib_med
create_nominal_condition –name low –voltage 0.8
update_nominal_condition –name low –library_set lib_low
create_nominal_condition –name off –voltage 0

Define libraries
define_library_set -name lib_high -libraries Lib1
define_library_set -name lib2_med -libraries {Lib2 Lib3}
define_library_set -name lib3_low -libraries Lib4

create_operating_corner -name corner1 \
-voltage 0.80 -process 1 \
-temperature 125 -library_set lib_low

create_operating_corner -name corner2 \
-voltage 1.0 -process 1 \
-temperature 125 -library_set lib_med

create_operating_corner -name corner3 \
-voltage 1.2 -process 1 \
-temperature 125 -library_set lib_high

June 24, 2020© Adam Teman,

Define Power Modes

• Finally create “power modes”

• In PM3, pdB is powered down

• Define constraints for each mode

• Connect the operating corners

48

create_power_mode –name PM1 –default \
–domain_conditions {pdTop@high pdA@medium pdB@medium}

update_power_mode -name PM1 -sdc_files PM1.sdc
create_power_mode –name PM2 \
–domain_conditions {pdTop@high pdA@low pdB@low}

update_power_mode -name PM2 -sdc_files PM2.sdc
Mode where pdB is off
create_power_mode –name PM3 \
–domain_conditions {pdTop@high pdA@low pdB@off}

update_power_mode -name PM3 -sdc_files PM3.sdc
create_analysis_view -name PM1_view -mode PM1 \

-domain_corners {pdTop@corner1 pdA@corner2 pdB@corner3}

Source: power forward

June 24, 2020© Adam Teman,

Defining Level Shifters

• In order to automate the insertion of level shifters during synthesis or PNR,

they need to be defined

• Level shifters can also be combined

with isolation cells

49

define_level_shifter_cell \
-cells LVLHVT -valid_location from \
-input_voltage_range 0.8 \
-output_voltage_range 1.2 -ground VSS \
-input_power_pin VDD \
-output_power_pin VDDH

Source: power forward

June 24, 2020© Adam Teman,

Defining Level Shifters

• But you also need to define rules

• First define the connectivity

• Then define the cells and location

50

Define Level-Shifters in the “to” domain
create_level_shifter_rule –name lsr1 \

–to {pdB} –from {pdA}
update_level_shifter_rules -names lsr1 \

-cells LS32 -location to
create_level_shifter_rule –name lsr2 \

–to {pdA} –from {pdB}
update_level_shifter_rules -names lsr2 \

-cells LS23 -location to
create_level_shifter_rule –name lsr3 – to {pdTop} –from {pdB}
update_level_shifter_rules -names lsr3 -cells LS13 -location to
create_level_shifter_rule –name lsr3 –to {pdA} –from {pdTop}
update_level_shifter_rules -names lsr1 -cells LS21 -location to

Source: power forward

June 24, 2020© Adam Teman,

Power Switch and Isolation Cells

• For power gating, power switch cell definitions are required:

• As well as Isolation Cell definitions:

51

define_power_switch_cell -cells HDRHVT \
-stage_1_enable SLPIN –stage_1_output SLPOUT \
-power VDDH -power_switchable VDDI
create_power_switch_rule –name PSW_RULE -domain ALUP

define_isolation_cell -cells ISOHVT \
-enable NSLEEP -power VDD -ground VSS

June 24, 2020© Adam Teman,

• Define rules for adding isolation cells

• Specify isolation signal (from PCM unit)

• Isolation value can be high, low or hold

• Specify the cells to use

Adding in Isolation

52

All outputs of Power-Domain pdB
isolated high on rising edge of “iso”
create_isolation_rule \

–name ir1 \
–from pdB \
–pins {uB/en1 uB/en2} \
–isolation_condition {uPCM/iso} \
–isolation_output high

update_isolation_rules -names ir1 -cells ISOLS2 \
-combine_level_shifting -location to

Source: power forward

June 24, 2020© Adam Teman,

Defining State Retention

• Define state retention requirements

• Registers to be saved

• Signal to trigger restoration

• Also need to define the cells to use

53

Define State-Retention (SRPG)
State stored on falling edge of restore[0]
and restored on rising-edge
create_state_retention_rule \

–name sr1 \
–instances {uB/reg1 uB/reg2} \
–restore_edge {uPCM/restore[0]}
-save is by default !restore_edge

update_state_retention_rule –names SRPG1 \
–library_set lib_med –cell_type DRFF

Source: power forward

June 24, 2020© Adam Teman,

Main References

• “Low Power Methodology Manual for SoC Design”, M. Keating, D. Flynn, et al.

• “A Practical Guide to Low-Power Design”, The Power Forward Initiative

54

