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Types of Parallelism

• Data parallelism

• Different machines have a complete copy of the model

• Each machine gets a different portion of the data

• Model parallelism 

• Each machine gets a different part of the model

• For example, each machine gets a layer in a network 

• Hyper Parameter parallelism

• Models are trained with different hyper parameters 

on different machines

4 Source: Xiandong QI
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Data Parallelism

• Parameter Averaging:

• Initialize the network parameters randomly based on the model configuration

• Distribute a copy of the current parameters to each worker

• Train each worker on a subset of the data

• Set the global parameters to the average the parameters from each worker

5
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Model Parallelism

• Model-Parallel Convolution

• By output region

• By output map

• Model-Parallel Fully Connected Layers

• e.g., 16M independent multiplies in one FC layer

6 Source: Dally
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Spectrum of Architectures for Deep Learning

8

Source: Blott, Xilinx
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Using CPUs for Deep Learning

• CPUs are (generally) optimized for single-threaded performance

• Desktop core i3-i9 have 2-10 cores

• High end Intel/AMD CPUs can have up to 32 cores/64 threads

• Server Intel Xeon/AMD EPYC have up to 64 cores/128 threads

• Intel Xeon Scalable processors

• 28 cores/56 threads per socket – up to 8 sockets

• Up to 1.5 TB DDR4

• Price (Xeon Platinum 8180): $10K

• AVX-512 Instructions

• Vector Neural Network 

Instructions (AVX512 VNNI)

• Brain Floating-Point Format

10

DLBoost

Speed-up using Core i7

Source: NVIDIA
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Xeon-Phi

• The Intel attempt to make a heavily multi-core processor

• Xeon-Phi 7290F

• 72 cores, 4 threads per core (=288 threads)

• Peak performance: 3456 GFLOPS DP (FP64)

• Power: 260W

• Price: $3.3K

• The next generation was called “Knights Hill”

• Delayed due to problems with 10nm process

• Eventually cancelled in Nov. 2017

11

Source: Intel
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CPU Interconnect: PCI Express (PCIe)

• PCIe used to communicate between host CPU and GPU

• Need to support as many lanes as possible to communicate with many GPUs

• Xeons have 64 PCIe v.3 lanes

• PCIe v.3 

• 985 MB/s per 1 lane, so 15.75 GB/s for x16 links.

• PCIe v.4 

• 31.51 GB/s for x16 

• PCIe v.5 

• Expected: 63 GB/s for x16.

12

Source: NVIDIA
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CPU vs GPU Architectures 

• CPU

• Few Cores 

• Lots of Cache 

• Handful of Threads 

• Independent Processes 

• GPU

• Hundreds of Cores 

• Thousands of Threads 

• Single Process Execution 

14 Source: wikipedia
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GPGPUs for Deep Learning

• What GPUs are out there? Which ones are for deep learning?

• Okay, so this is really confusing…

• GPUs were originally only for graphics/gaming 

and there are three major players:

• NVidia GeForce for consumers and Quadro for workstations

• AMD Radeon (formerly ATI) for consumer and Radeon Pro for workstations

• Intel HD Graphics, integrated with CPUs and soon Intel Xe standalone

• But then people started using NVIDIA cards for deep learning

• And they introduced the Tesla series for training

• And AMD followed with the Radeon Instinct, but much later

• And the Tegra SoC series started being marketed for edge inference

15
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NVIDIA MicroArchitectures

• NVIDIA Microarchitecture

• In addition to the “series” (GeForce, Quadro, Tesla), NVIDIA names 

their products according to the generation of the microarchitecture.

• These are named after great scientists: Tesla, Fermi, Kepler, Maxwell

• And recently they are DL oriented: Pascal, Volta, Turing, Ampere

• Wait, but you said that Tesla was a series…

• Yes, it’s both a series and a microarchitecture

• So, Tesla P100 uses the Pascal architecture with a GP100 chip

• And the Tesla V100 usesthe Volta architecture with the GV100 chip

• It gets even more confusing if you try to figure out which is best

• For example, recent Quadro RTX and Titan RTX (Turing architecture) 

are really good, but they’re not marketed for deep learning training…

16
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FP32 Performance of NVidia GPUs

17 Source: Intento
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GPUs in a nutshell

• GPUs perform “Single Instruction Multiple Data” (SIMD) 

operations. 

• NVIDIA has several “Streaming Multiprocessors” (SMs)

• Each SM has many Compute Unified 

Device Architecture (CUDA) cores

18 Fermi Architecture with 16 SMs Fermi Streaming MultiprocessorSource: NVidiaSource: wikipedia
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Example speedup and efficiency

19

Tegra SoC vs Core i7

Titan X (Maxwell) vs Xeon
Source: NVidia
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Volta Architecture

20

Volta GV100 Full GPU with 84 SM Units 

Quarter of a Volta SM

Source: NVidia
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Tensor Cores

• Released with Volta architecture

• Processes 4x4x4 MAC in single

operation

• Takes two FP16 inputs and

accumulates in FP32

21
Source: NVidia
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Turing Tensor Cores

• The Turing architecture introduced new Tensor Cores that support INT8 and 

INT4 precision

• Included in the 

Tesla T4 cards

22

Source: NVidia
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Hot off the Press: Ampere

• Ampere GA100

• Up to 128 SMs / 8192 CUDA Cores

• 54 B Transistors, 7nm Process, 826 mm2

• 6 stacks of HBM2 (5120-bit) → 40GB DRAM

• Boost clock: 1.41 GHz, Power: 400W

• TF32 format – 19 bits:

precision of FP16 with 

exponent of FP32

• 312 TFLOPs for TF32 calculations

20X faster than the V100@FP32

• 19.5 TFLOPs@FP64

2.5X faster than the V100@FP64

23
Source: NVidia
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Data Center GPU NVIDIA Tesla P100 NVIDIA Tesla V100 NVIDIA A100

SMs 56 80 108

FP32 Cores / GPU 3584 5120 6912

FP64 Cores / GPU 1792 2560 3456

INT32 Cores / GPU NA 5120 6912

Tensor Cores / GPU NA 640 432

GPU Boost Clock 1480 MHz 1530 MHz 1410 MHz

Peak TF32 Tensor TFLOPS NA NA 156/312

Peak FP16 TFLOPS 21.2 31.4 78

Peak FP64 TFLOPS 5.3 7.8 9.7

Memory Interface 4096-bit HBM2 4096-bit HBM2 5120-bit HBM2

Memory Size 16 GB 32 GB / 16 GB 40 GB

Memory Data Rate 703 MHz DDR 877.5 MHz DDR 1215 MHz DDR

Memory Bandwidth 720 GB/sec 900 GB/sec 1.6 TB/sec

L2 Cache Size 4096 KB 6144 KB 40960 KB

TDP 300 Watts 300 Watts 400 Watts

Transistors 15.3 billion 21.1 billion 54.2 billion

GPU Die Size 610 mm² 815 mm² 826 mm²

TSMC Manufacturing Process 16 nm FinFET+ 12 nm FFN 7 nm N7
24

Source: NVidia
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NVIDIA Interconnect: NVLink

• NVIDIA NVLink is an energy-efficient, high-bandwidth path between the GPU 

and the CPU.

• NVLink 1.0

• 80 GB/s

• NVLink 2.0

• 150 GB/s

• New NVLink

• 600 GB/s

• Infinity Fabric

• A similar technology

by AMD

25

Source: NVidia
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NVLink

• Separate cards can joined using NVLink

• NVSwitch: The Fully Connected NVLink

• Six NVSwitch with the newly announced NVLink → 4.8 TB/s

26

Source: NVidia
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Unified Memory

• “one of the most dramatic programming model improvements in the history of 

the CUDA platform”

• A pool of managed

memory shared 

between the 

CPU and GPU

• Not yet supported

by DL frameworks

27 Source: NVidia
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Don’t forget the FPGAs

• Xilinx Versal AI Core
• Branded an “ACAP”

(Adaptive Compute Acceleration Platform)

• Specs
• 7nm FF, 37B transistors, 885Mb SRAM

• 400 AI engine cores,

• Includes
• DSP and AI Compute Engines

• NoC and Memory (DDR and HBM)

• High Speed Interfaces

• PCIe (Gen4) & CCIX (Gen5), Ethernet 600 Gbps

• SerDes and RF

29

Source: Xilinx
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Microsoft Project Brainwave

• What is Project Brainwave?

• A deep learning platform for real-time AI 

inference in the cloud and on the edge

• Based on “Soft Neural Processing Units”

• Implemented on FPGAs 

• Augments CPUs with with an interconnected 

and configurable compute layer composed 

of programmable silicon.

• On the cloud with Azure Machine Learning

• Distribute models onto Intel Arria 10 boards

• At the edge with Azure Stack Edge

• Microsoft ships you a cloud-managed device with built in FPGA

30

Source: Microsoft
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Google TPU
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Google TPU

• Tensor Processing Unit (TPU)

• Released in 2014 at Google I/O

• Developed in just 15 months due to fast growing 

computational demands of neural networks

• Project led by Norm Jouppi

• Fits in a SATA hard disk slot for drop-in installation

• 331 mm2 die, 28nm, 700 MHz, 40W

• Die area: 35% memory, 24% matrix multiply unit, 41% remaining area for logic.

• 8 GB DDR3-2133 DRAM accessible via two ports at 34 GB/s.

• Communicate with Host through PCIe-3 x 16 (12.5 GB/s).

• Uses 8-bit quantization for inference

• A TPU contains 65,536 8-bit integer multipliers (~25X more than a GPU)

33

Source: Google
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TPU v1 Architecture

• Matrix Multiplier Unit (MXU): 
• 65,536 8-bit multiply-and-add units 

for matrix operations

• Unified Buffer (UB): 
• 24MB of SRAM that work as registers

• Activation Unit (AU): 
• Hardwired activation functions

• Special ISA:
• Read_Host_Memory: Read data from memory

• Read_Weights: Read weights from memory

• MatrixMultiply/Convolve: Multiply or convolve 
with the data and weights, accumulate the results

• Activate: Apply activation functions

• Write_Host_Memory: Write result to memory34

Source: Google
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Systolic Array

• Read each value once and use it multiple times without storing it back to a 

register

35

CPU Systolic 

Array

Source: Google

Multiplying an input vector by a weight 

matrix with a systolic array
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Systolic Array

• The TPU Systolic Array contains 256x256 ALUs

• → 65,536 8-bit MACs every cycle

• @700MHz → 92 TOPS (46x1012 MACs per second)

36 Multiplying an input matrix by a weight matrix with a systolic array

Source: Google
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Roofline Model

37

Source: Patterson
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TPU Roofline

40
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TPU v2/v3: Cloud TPUs

• Original TPU was for inference and was memory bandwidth limited

• TPU v2 (2017) and v3 (2018) for inference and training

• Each chip has 2 cores, each board has 4 chips

• “Pods” of several boards can be connected through high speed interconnect.

• TPU v2

• 8 GiB of HBM for each TPU core

• One MXU for each TPU core

• Up to 512 total TPU cores and 

4 TiB of total memory in a TPU Pod

• Each TPU core has scalar, vector and matrix units (MXU)

• MXU – 16K (128x128) MACs/cycle @bfloat16 precision with FP32 accumulate

41

• TPU v3

• 16 GiB of HBM for each TPU core

• Two MXUs for each TPU core

• Up to 2048 total TPU cores and 

32 TiB of total memory in a TPU Pod
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TPU v2/v3: Cloud TPUs

42

Source: Google
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Cloud TPU v3 Pod

• Maximum configuration: 256 devices

• >100 pflops, 32TB TPU Memory (HBM)

43

Source: Google
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Graphcore IPU

• Fine-grained Parallelism

• Only true MIMD AI accelerator

• Run individual distinct thread on small block

• Tiles (PEs)

• One computing core

• 256 KiB local memory

• Total of 1216 tiles on each IPU

• IPUs have no shared memory!

• Interconnect

• Exchange: on-chip interconnect

• IPU Link: communication between IPUs

• Two PCIe links to communicate with CPU
45 Source: Graphcore
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Graphcore IPU

• Chip details:

• 16nm, 800mm2 die 

• over 23 B transistors

• 300 MB on chip memory, 

no DRAM

• 150 W

• Bulk Synchronous Parallel (BSP) Model

• Local computation phase: every process operates on local memory

• Communication phase: processes exchange data (all-to-all)

• Barrier synchronization phase: no process continues until all have finished

• Parallel algorithms of arbitrary complexity can be described in the BSP model 

46

Source: Graphcore
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Habana Labs Gaudi and Goya

48
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Goya Inference Processor

• GEMM (General matrix and multiply) Engine:

• Assumed to be Similar to Tensor Core

• TPC (Tensor processing Core):

• C-programmable VLIW SIMD vector core

• ISA and dedicated HW for special functions

• GEMM, TPC and DMA engines use shared SRAM

• Mixed Precision data types:

• FP32, INT32, INT16, INT8

• Interconnect

• 2 DDR4 channels 40GB/s BW, 16GB 

• PCIe Gen4.0 x16

• Sophisticated software stack
49

Source: Habana Labs
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Gaudi Training Platform

• Architecture similar to Goya

• 4 HBMs: 2GT/s, 32 GB, BW 1 TB/sec

• Non-proprietary interconnect

• 10 ports of 100Gb Ethernet

• Integrated RDMA over RoCE v2

50

Source: Habana Labs
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Cerebras Wafer-Scale Engine

• Largest Chip Ever Built

• 46,225 mm2 (a total of 84 individual 510 mm2 chips)

• 1.2 trillion transistors on TSMC 16nm

• 400,000 AI optimized cores (~0.1 mm2 each)

• 18GB distributed SRAM (47kB per core)

• 9 PByte/s memory bandwidth

• 100 Pbit/s fabric bandwidth

• Speculated clock speed ~1 GHz 

• Speculated 5 kW power consumption

• Each die:

• 5076 cores, 225 MB SRAM

• 40 TFLOPS (FP32)

52

Source: Cerebras
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Addressing Challenges of WSE

• Cross Die Connectivity

• Connect across scribe lines

• Create homogenous array

• Yield through Redundancy

• Uniform small core architecture

• Redundant cores and links

• Packaging, Assembly, Power and Cooling

• Custom connector from wafer to PCB

• Custom packaging including machinery

• Current flow up through PCB

• Liquid cooling

54
Source: Cerebras
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56 Source: TechTime
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Hailo-8

• Hailo-8 Edge Inference Processor

• “structure-defined data flow architecture”

• Distributed on-chip memory fabric

• Novel control schemes

• Efficient interconnect

• Full-stack software toolchain co-designed with the HW architecture

• Performance

• 780 FPS @ 2W and 2.9 TOPS/W on 8-bit ResNet (no pruning)

(as compared to 656 FPS @ 31W and 0.14 TOPS/W for NVIDIA Xavier AGX)

57

Source: Vision Systems
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Hailo-8

• No external memory,

No hardware-defined pipeline

• Memory, control and compute 

blocks are distributed 

• Software allocates memory, 

control and compute blocks to 

neural networks as required 

• Enables uneven distribution of 

resources between layers

58

Source: Hailo
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Additional Machine Learning Processors
• Alibaba Hanguang 800 (2019)

• Cloud inference, 80K images/second (ResNet-50), 12nm, 17B transistors, 

• Amazon AWS Inferntia (2019)
• Cloud inference, 4 NeuronCores/chip, 128 TOPS

• Baidu Kunlun (2020)
• XPU edge-to-cloud, 260 TOPS, 512 GB/s HBM2, Samsung 14nm

• Facebook AI Chips (exp. 2020)
• Zion – training platform, Kings Canyon – inference, Mount Shasta – video transcoding

• Huawei Ascend 910 (2019)
• 7nm Training chip, DaVinchi architecture, 256 TOPS (FP16), 512 TOPS (INT8), 

MindSpore AI computing framework

• Tesla Full Self-Driving (FSD) (2019)
• 260 mm2, 6B transistors, 72 TOPS @ 72W

• Flexlogix InferX (2020)
• Edge inference. eFPGA with nnMAX clusters. 16nm, 54 mm2, 4K MACs, 13.5W59
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Small comparison

61
Source: James W. Hanlon
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So, you thought hardware was confusing…

• Let’s try to make some sense of the deep learning software stack.

• I can’t be sure that I got this categorization correct, but here goes:

• From the bottom up, we have:

• Compilers (GCC, LLVM,…)

• Hardware backends (CUDA, CuDNN, OpenCL, …)

• Intermediate Libraries (CuDNN, CuBLAS, TVM+NNVM, …)

• Software frontend (Python, C, C++, …)

• Deep Learning Framework (TensorFlow, PyTorch, …)

• Model Exchange (ONNX)

• High Level Library (Keras)
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The Backend

• So before discussing the (more interesting) frontend frameworks, let’s try to 

introduce the backends

• A compiler (e.g., GCC, LLVM) turns a high-level language into instructions that 

run on the hardware.

• For parallelization, hardware-aware abstractions have been introduced. The 

most popular ones are CUDA (NVIDIA) and OpenCL.

• And NVIDIA has introduced libraries to abstract away some of the CUDA. 

These include CuDNN and CuBLAS.

• Many specialized hardware providers also use intermediate graph 

representations in (mostly proprietary) APIs.

• TVM+NNVM is an attempt to make a generic intermediate graph compiler.

64
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The Frontend

• Or let’s just call it by its name…

Python*
• Just learn Python and you’ll be a much more happy engineer.

• And while you’re at it, don’t forget to import NumPy and MatPlotLib…

*almost as popular and useful as Salamandra!
65
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The Framework

• On top of Python (or other language), 

there are many popular DL frameworks:

• TensorFlow – Created by Google

• PyTorch – Developed by Facebook (successor of Torch)

• Caffé2 – Successor of Caffé, now merged with PyTorch. 

• Theano – Developed by U. Montreal. Now dead…

• CNTK – a.k.a. The Microsoft Cognitive Toolkit

• MXNet – Created by Apache

• And on top of them you can use a Keras

• And for model exchange use ONNX

66
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General Approach: The NPU

• The Neural Processing Unit (2012), is a general architecture for spatial neural 

network acceleration.

• A processing engine (PE):

• Weight buffer

• Input buffer

• Output buffer

• MAC (+activation)

• Several PEs connected

with some scheduling and

control

8-PE NPUSingle Processing ElementSource: Esmaeilzadeh, Micro 2012
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NeuFlow (Farabet, 2011)

• Specialization: 

• Customized logic to efficiently map CONV to hardware with more parallelism 

• Flexibility: 

• Runtime reconfigurable bus and operations

69
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DianNao Family (2014-15)

• DianNao (2014)

• Separate buffers for input neurons (NBin), 

output neurons (NBout) and synaptic weights (SB)

• Neural functional unit (NFU) for computation

• DaDianNao (2014)

• Integrates eDRAM to avoid main memory access

• Tiles with NFU and four eDRAM banks (2MB)

• ShiDianNao (2015)

• Low power CNN

accelerator

• Entire model fits

in SRAM

70

Source: Chen
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Cnvlutin (2016)

• Ineffectual-Neuron-Free Deep Neural Network Computing

• A value-based approach to dynamically eliminate ineffectual multiplications

• Zero-skipping on dynamic activations

• Slight modification to DaDianNao:

• Split the processing of filters

so they are not in lock step.

• Encode the zero skipping of the 

output of the previous layer

• Independently skip multiplications

in each computation lane.

71
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Efficient Inference Engine (2016)

• EIE takes advantage of:

• Static weight sparsity

• Dynamic activation sparsity

• Relative indexing

• Weight sharing

• Extremely narrow weights (4-bits) 

72

Source: Song Han



May 21, 2020© Adam Teman, 

EIE Sparse Matrix Multiplication

• Distribute the activations (a), weights (w) and outputs (b) between N=4 PEs.

• Broadcast next non-zero activation

• Skip a0, broadcast a1

• Multiply by non-zero weights

• PE0: b0= b0+a1w0,1

• PE2: b2= b2+a1w2,1

• PE7: b7= b7+a1w7,1

• And to the next activation (a3)

• PE0: b0= b0+a3w0,3

• PE2: b2= b2+a3w2,3

• PE4: b4= b4+a3w4,3

• PE6: b6= b6+a3w6,3
Source: Song Han
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EIE Compressed Sparse Column (CSC) Format

• For each column of the weight matrix, store:

• A vector v with the non-zero weights

• An equal-length vector z that encodes the number of zeros before the 

corresponding entry in v

• Each entry of v and z is represented by a four-bit value. 

• If >15 zeros appear before a non-zero entry, we add a zero in vector v.

• For example:

• v = [1, 2, 0, 3] 

• z = [2, 0, 15, 2]

• Now, simply multiply each non-zero activation by all of the non-zero elements in 

its corresponding column.
74
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Eyeriss (2016)

• High-throughput CNN inference optimized for energy efficiency

• Spatial architecture with 168 PEs

• 4-level memory hierarchy (DRAM, Global buffer, inter-PE comm, scratchpads)

• Energy-efficient Row Stationary (RS) CNN dataflow

• Network-on-chip with multicast and point-to-point data delivery

• Run-length compression 

and PE data gating 

for energy-efficiency

75

Source: Yu-Hsin Chen
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Eyeriss Row Stationary Dataflow

76
Source: Yu-Hsin Chen
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Eyeriss RLC Encoding

• Data is stored in DRAM in run length compression (RLC) format

• Number of zeros (run) encoded in 5-bits

• Value of non-zero (Level) encoded in 16-bits

• Three pairs are packed into a 64-bit word

• Only adds 5%-10% overhead to the theoretical entropy limit

• Data stored in global buffer after decoding 

• Further zero buffer points to

on-chip zeros and data-gates

the computation.
77

Source: Yu-Hsin Chen
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IBM TrueNorth

• A 1M Neuron brain inspired machine

• Only 70 mW, power density 20mW/cm2

• 46 B synaptic operations per second, per watt

• The idea:

• Non von‐Neumann

• Parallel

• Distributed

• Event‐Driven

• Scalable

• Low Power

79

Source: IBM
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Intel Loihi Test Chip (2018)

• “A first-of-its-kind self-learning neuromorphic chip”

• mimics how the brain functions by learning to operate 

based on various modes of feedback from the environment

• Loihi Highlights

• Asynchronous neuromorphic (spiking) many core mesh

• Each neuromorphic core includes a learning engine that 

can be programmed to adapt network parameters during 

operation, supporting supervised, unsupervised, 

reinforcement and other learning paradigms.

• Intel’s 14 nm process technology.

• 128 neuromorphic cores for a total of 130,000 neurons and 

130 million synapses.

Source: Intel
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NVDLA (2017)

• The NVIDIA deep learning accelerator

• Open source architecture and RTL release
• Encourage Deep Learning applications

• Invite contributions from the community

• Targeted towards edge devices, IoT

• Industry standard formats and parameterized

• Complete Solution
• Verilog and C model

• Compiler

• Linux drivers

• Test benches and test suits

• Kernel and user-mode software

• Software development tools

• Developed as part of Xavier – NVIDIA’s SoC for autonomous driving

81
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NVDLA

• Small model – for small (IoT) applications

• Large model – with ucontroller and SRAM

• Components

• Convolution – sparse weight compression, 

built in Winograd, internal conv buffer

• Single Data Point Processor (SDP) –

look up table for activations, normalization

• Planar Data Processor (PDP) –

used for max/min/avg pooling

• Cross-channel Data Processor –

calculates local response normalization (LRN)

• Data Reshape Engine – split, slice, merge, …

• Bridge DMA – move data between DRAM and SRAM
82

Source: NVIDIA
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Network/Neural Architecture Search (NAS)

• Rather than handcrafting the architecture, automatically search for it

83

Source: Sze
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Network/Neural Architecture Search (NAS)

• Three main components:

• Search Space (what is the set of all samples)

• Optimization Algorithm (where to sample)

• Performance Evaluation (how to evaluate samples)

84

Source: Sze
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Benchmarking with ML-Perf

• Mission

• To build fair and useful benchmarks for 

measuring training and inference performance 

of ML hardware, software, and services.

• MLPerf Training

• The MLPerf training benchmark suite measures how fast a system can train 

ML models.

• MLPerf Inference

• The MLPerf inference benchmark measures how fast a system can perform ML 

inference using a trained model. 

• Details at https://mlperf.org/

85

https://mlperf.org/
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