Lecture Series on Hardware for Deep Learning

Part 5: The Deep Learning Acceleration Landscape

Dr. Adam Teman
EnICS Labs, Bar-llan University

21 May 2020

Outline

Specialized Platforms

Software Stack

Research ASICs

Parallelism in Deep Learning

Types of Parallelism

Data parallelism

- Different machines have a complete copy of the model
- Each machine gets a different portion of the data

Model parallelism

- Each machine gets a different part of the model
- For example, each machine gets a layer in a network

Hyper Parameter parallelism

 Models are trained with different hyper parameters on different machines

Data Parallelism

Parameter Averaging:

- Initialize the network parameters randomly based on the model configuration
- Distribute a copy of the current parameters to each worker
- Train each worker on a subset of the data
- Set the global parameters to the average the parameters from each worker

Model Parallelism

- Model-Parallel Convolution
 - By output region
 - By output map
- Model-Parallel Fully Connected Layers
 - e.g., 16M independent multiplies in one FC layer

Software Stack

Research ASICs

Traditional Programmable Hardware

Parallelism

Spectrum of Architectures for Deep Learning

Source: Blott, Xilinx

Using CPUs for Deep Learning

- CPUs are (generally) optimized for single-threaded performance
 - Desktop core i3-i9 have 2-10 cores
 - High end Intel/AMD CPUs can have up to 32 cores/64 threads
 - Server Intel Xeon/AMD EPYC have up to 64 cores/128 threads

DLBoost

Intel Xeon Scalable processors

- 28 cores/56 threads per socket up to 8 sockets
- Up to 1.5 TB DDR4
- Price (Xeon Platinum 8180): \$10K

AVX-512 Instructions

- Vector Neural Network Instructions (AVX512 VNNI)
- Brain Floating-Point Format

S 250
200
200
2150
100
50
1 Core
Source: NVIDIA
Speed-up using Core i7
242

242

6 Cores
Source: NVIDIA
Speed-up using Core i7

242

300

Xeon-Phi

The Intel attempt to make a heavily multi-core processor

- Xeon-Phi 7290F
 - 72 cores, 4 threads per core (=288 threads)
 - Peak performance: 3456 GFLOPS DP (FP64)
 - Power: 260W
 - Price: \$3.3K
- The next generation was called "Knights Hill"
 - Delayed due to problems with 10nm process
 - Eventually cancelled in Nov. 2017

Xeon Phi™ Processor

CPU Interconnect: PCI Express (PCIe)

- PCle used to communicate between host CPU and GPU
 - Need to support as many lanes as possible to communicate with many GPUs
 - Xeons have 64 PCIe v.3 lanes
- PCle v.3
 - 985 MB/s per 1 lane, so 15.75 GB/s for x16 links.
- PCle v.4
 - 31.51 GB/s for x16
- PCle v.5
 - Expected: 63 GB/s for x16.

Source: NVIDIA

CPU vs GPU Architectures

• CPU

- Few Cores
- Lots of Cache
- Handful of Threads
- Independent Processes

• GPU

- Hundreds of Cores
- Thousands of Threads
- Single Process Execution

GPGPUs for Deep Learning

What GPUs are out there? Which ones are for deep learning?

AMDA RADEON

- Okay, so this is really confusing...
- GPUs were originally only for graphics/gaming and there are three major players:
 - NVidia GeForce for consumers and Quadro for workstations
 - AMD Radeon (formerly ATI) for consumer and Radeon Pro for workstations
 - Intel HD Graphics, integrated with CPUs and soon Intel Xe standalone
- But then people started using NVIDIA cards for deep learning
 - And they introduced the Tesla series for training
 - And AMD followed with the Radeon Instinct, but much later
 - And the Tegra SoC series started being marketed for edge inference

HD Graphics

NVIDIA MicroArchitectures

NVIDIA Microarchitecture

- In addition to the "series" (GeForce, Quadro, Tesla), NVIDIA names their products according to the *generation* of the microarchitecture.
- These are named after great scientists: Tesla, Fermi, Kepler, Maxwell
- And recently they are DL oriented: Pascal, Volta, Turing, Ampere
- Wait, but you said that Tesla was a series...
 - Yes, it's both a series and a microarchitecture
 - So, Tesla P100 uses the Pascal architecture with a GP100 chip
 - And the Tesla V100 usesthe Volta architecture with the GV100 chip
- It gets even more confusing if you try to figure out which is best
 - For example, recent Quadro RTX and Titan RTX (Turing architecture) are really good, but they're not marketed for deep learning training...

FP32 Performance of NVidia GPUs

- 50

- 350

- 300

- 250

150

- 100

TDP (watts)

GPUs in a nutshell

• GPUs perform "Single Instruction Multiple Data" (SIMD) operations.

NVIDIA has several "Streaming Multiprocessors" (SMs)

 Each SM has many Compute Unified Device Architecture (CUDA) cores

Source: NVidia

Fermi Streaming Multiprocessor

Example speedup and efficiency

Titan X (Maxwell) vs Xeon

Source: NVidia

Volta Architecture

Volta GV100 Full GPU with 84 SM Units

Tensor Cores

- Released with Volta architecture
- Processes 4x4x4 MAC in single operation
- Takes two FP16 inputs and accumulates in FP32

Source: NVidia

Turing Tensor Cores

The Turing architecture introduced new Tensor Cores that support INT8 and

INT4 precision

 Included in the Tesla T4 cards

Source: NVidia

Hot off the Press: Ampere

Ampere GA100

- Up to 128 SMs / 8192 CUDA Cores
- 54 B Transistors, 7nm Process, 826 mm²
- 6 stacks of HBM2 (5120-bit) → 40GB DRAM
- Boost clock: 1.41 GHz, Power: 400W
- TF32 format 19 bits: precision of FP16 with exponent of FP32
- 312 TFLOPs for TF32 calculations 20X faster than the V100@FP32
- 19.5 TFLOPs@FP64
 2.5X faster than the V100@FP64

Data Center GPU	NVIDIA Tesla P100	NVIDIA Tesla V100	NVIDIA A100
SMs	56	80	108
FP32 Cores / GPU	3584	5120	6912
FP64 Cores / GPU	1792	2560	3456
INT32 Cores / GPU	NA	5120	6912
Tensor Cores / GPU	NA	640	432
GPU Boost Clock	1480 MHz	1530 MHz	1410 MHz
Peak TF32 Tensor TFLOPS	NA	NA	156/312
Peak FP16 TFLOPS	21.2	31.4	78
Peak FP64 TFLOPS	5.3	7.8	9.7
Memory Interface	4096-bit HBM2	4096-bit HBM2	5120-bit HBM2
Memory Size	16 GB	32 GB / 16 GB	40 GB
Memory Data Rate	703 MHz DDR	877.5 MHz DDR	1215 MHz DDR
Memory Bandwidth	720 GB/sec	900 GB/sec	1.6 TB/sec
L2 Cache Size	4096 KB	6144 KB	40960 KB
TDP	300 Watts	300 Watts	400 Watts
Transistors	15.3 billion	21.1 billion	54.2 billion
GPU Die Size	610 mm ²	815 mm ²	826 mm ²
TSMC Manufacturing Process	16 nm FinFET+	12 nm FFN	7 nm N7

Source: NVidia Teman, 2020

NVIDIA Interconnect: NVLink

NVIDIA NVLink is an energy-efficient, high-bandwidth path between the GPU

and the CPU.

- **NVLink 1.0**
 - 80 GB/s
- NVLink 2.0
 - 150 GB/s
- New NVLink
 - 600 GB/s
- Infinity Fabric
 - A similar technology by AMD

Source: NVidia

NVLink

- Separate cards can joined using NVLink
- NVSwitch: The Fully Connected NVLink
 - Six NVSwitch with the newly announced NVLink → 4.8 TB/s

Unified Memory

"one of the most dramatic programming model improvements in the history of

the CUDA platform"

 A pool of managed memory shared between the CPU and GPU

 Not yet supported by DL frameworks

Source: Xiliinx

Don't forget the FPGAs

Xilinx Versal Al Core

 Branded an "ACAP" (Adaptive Compute Acceleration Platform)

Specs

- 7nm FF, 37B transistors, 885Mb SRAM
- 400 Al engine cores,

Includes

- DSP and AI Compute Engines
- NoC and Memory (DDR and HBM)
- High Speed Interfaces
- PCIe (Gen4) & CCIX (Gen5), Ethernet 600 Gbps
- SerDes and RF

Source: Xilinx

Microsoft Project Brainwave

What is Project Brainwave?

- A deep learning platform for real-time Al inference in the cloud and on the edge
- Based on "Soft Neural Processing Units"
- Implemented on FPGAs
- Augments CPUs with with an interconnected and configurable compute layer composed of programmable silicon.
- On the cloud with Azure Machine Learning
 - Distribute models onto Intel Arria 10 boards
- At the edge with Azure Stack Edge
 - Microsoft ships you a cloud-managed device with built in FPGA

Source: Microsoft

Specialized Deep Learning Hardware Platforms

Parallelism

Google TPU

- Tensor Processing Unit (TPU)
- Released in 2014 at Google I/O
 - Developed in just 15 months due to fast growing computational demands of neural networks
 - Project led by Norm Jouppi
 - Fits in a SATA hard disk slot for drop-in installation
 - 331 mm² die, 28nm, 700 MHz, 40W
 - Die area: 35% memory, 24% matrix multiply unit, 41% remaining area for logic.
 - 8 GB DDR3-2133 DRAM accessible via two ports at 34 GB/s.
 - Communicate with Host through PCIe-3 x 16 (12.5 GB/s).
- Uses 8-bit quantization for inference
 - A TPU contains 65,536 8-bit integer multipliers (~25X more than a GPU)

Source: Google

TPU v1 Architecture

- Matrix Multiplier Unit (MXU):
 - 65,536 8-bit multiply-and-add units for matrix operations
- Unified Buffer (UB):
 - 24MB of SRAM that work as registers
- Activation Unit (AU):
 - Hardwired activation functions
- Special ISA:
 - Read_Host_Memory: Read data from memory
 - Read_Weights: Read weights from memory
 - MatrixMultiply/Convolve: Multiply or convolve with the data and weights, accumulate the results
 - Activate: Apply activation functions
 - Write_Host_Memory: Write result to memory

Systolic Array

Read each value once and use it multiple times without storing it back to a

register

Systolic Array

- The TPU Systolic Array contains 256x256 ALUs
 - → 65,536 8-bit MACs every cycle
 - @700MHz → 92 TOPS (46x10¹² MACs per second)

Roofline Model

TPU Roofline

TPU v2/v3: Cloud TPUs

- Original TPU was for inference and was memory bandwidth limited
- TPU v2 (2017) and v3 (2018) for inference and training
 - Each chip has 2 cores, each board has 4 chips
 - "Pods" of several boards can be connected through high speed interconnect.
- TPU v2
 - 8 GiB of HBM for each TPU core
 - One MXU for each TPU core
 - Up to 512 total TPU cores and
 4 TiB of total memory in a TPU Pod

• **TPU v3**

- 16 GiB of HBM for each TPU core
- Two MXUs for each TPU core
- Up to 2048 total TPU cores and
 32 TiB of total memory in a TPU Pod
- Each TPU core has scalar, vector and matrix units (MXU)
 - MXU 16K (128x128) MACs/cycle @bfloat16 precision with FP32 accumulate

TPU v2/v3: Cloud TPUs

Source: Google

TPU v2 - 4 chips, 2 cores per chip

TPU v3 - 4 chips, 2 cores per chip © Adam Teman, 2020

Cloud TPU v3 Pod

- Maximum configuration: 256 devices
 - >100 pflops, 32TB TPU Memory (HBM)

43

Graphcore IPU

Graphcore IPU

- Fine-grained Parallelism
 - Only true MIMD Al accelerator
 - Run individual distinct thread on small block
- Tiles (PEs)
 - One computing core
 - 256 KiB local memory
 - Total of 1216 tiles on each IPU
- IPUs have no shared memory!
- Interconnect
 - Exchange: on-chip interconnect
 - IPU Link: communication between IPUs
 - Two PCIe links to communicate with CPU

Source: Graphcore

Graphcore IPU

Chip details:

- 16nm, 800mm² die
- over 23 B transistors
- 300 MB on chip memory, no DRAM
- 150 W

Bulk Synchronous Parallel (BSP) Model

- Local computation phase: every process operates on local memory
- Communication phase: processes exchange data (all-to-all)
- Barrier synchronization phase: no process continues until all have finished
- Parallel algorithms of arbitrary complexity can be described in the BSP model

Habana Labs Gaudi and Goya

Purpose-Built for Al Inference

Goya Inference Processor

- GEMM (General matrix and multiply) Engine:
 - Assumed to be Similar to Tensor Core
- TPC (Tensor processing Core):
 - C-programmable VLIW SIMD vector core
 - ISA and dedicated HW for special functions
- GEMM, TPC and DMA engines use shared SRAM
- Mixed Precision data types:
 - FP32, INT32, INT16, INT8
- Interconnect
 - 2 DDR4 channels 40GB/s BW, 16GB
 - PCIe Gen4.0 x16
- Sophisticated software stack

Al Processor (AIP)

Gaudi Training Platform

Architecture similar to Goya

4 HBMs: 2GT/s, 32 GB, BW 1 TB/sec

Non-proprietary interconnect

10 ports of 100Gb Ethernet

Integrated RDMA over RoCE v2

VOLTA

GAUDI

Cerebras Wafer-Scale Engine

Largest Chip Ever Built

- 46,225 mm² (a total of 84 individual 510 mm² chips)
- 1.2 trillion transistors on TSMC 16nm
- 400,000 Al optimized cores (~0.1 mm² each)
- 18GB distributed SRAM (47kB per core)
- 9 PByte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- Speculated clock speed ~1 GHz
- Speculated 5 kW power consumption

Each die:

- 5076 cores, 225 MB SRAM
- 40 TFLOPS (FP32)

Source: Cerebras

Addressing Challenges of WSE

- Cross Die Connectivity
 - Connect across scribe lines
 - Create homogenous array
- Yield through Redundancy
 - Uniform small core architecture
 - Redundant cores and links
- Packaging, Assembly, Power and Cooling
 - Custom connector from wafer to PCB
 - Custom packaging including machinery
 - Current flow up through PCB
 - Liquid cooling

Defect

Source: TechTime

Hailo-8

Hailo-8 Edge Inference Processor

- "structure-defined data flow architecture"
- Distributed on-chip memory fabric
- Novel control schemes
- Efficient interconnect
- Full-stack software toolchain co-designed with the HW architecture

Performance

780 FPS @ 2W and 2.9 TOPS/W on 8-bit ResNet (no pruning)
 (as compared to 656 FPS @ 31W and 0.14 TOPS/W for NVIDIA Xavier AGX)

Hailo-8

- No external memory,
 No hardware-defined pipeline
 - Memory, control and compute blocks are distributed
 - Software allocates memory, control and compute blocks to neural networks as required
 - Enables uneven distribution of resources between layers

Source: Hailo

Neural Network Graph

> Resource processing breakdown

Resource

Physical

Hailo

Processor

resource mapping

Graph

Additional Machine Learning Processors

- Alibaba Hanguang 800 (2019)
 - Cloud inference, 80K images/second (ResNet-50), 12nm, 17B transistors,
- Amazon AWS Inferntia (2019)
 - Cloud inference, 4 NeuronCores/chip, 128 TOPS
- Baidu Kunlun (2020)
 - XPU edge-to-cloud, 260 TOPS, 512 GB/s HBM2, Samsung 14nm
- Facebook Al Chips (exp. 2020)
 - Zion training platform, Kings Canyon inference, Mount Shasta video transcoding
- Huawei Ascend 910 (2019)
 - 7nm Training chip, DaVinchi architecture, 256 TOPS (FP16), 512 TOPS (INT8), MindSpore AI computing framework
- Tesla Full Self-Driving (FSD) (2019)
 - 260 mm², 6B transistors, 72 TOPS @ 72W
- Flexlogix InferX (2020)
 - Edge inference. eFPGA with nnMAX clusters. 16nm, 54 mm², 4K MACs, A13, 5We man, 2020

Small comparison

Chip	Process	Die size mm ²	TDP (W)	On-chip RAM (MB)	Peak FP32 (TFLOPs)	Peak FP16 (TFLOPs)	Mem b/w (GB/s)	IO b/w (GB/s)
Cerebras WSE [†]	TSMC 16nm	510	180	225	40.6	n/a	0	Unknown
Google TPU v1	28nm	Unknown	75	28	n/a	23 (INT16)	30 (DDR3)	14
Google TPU v2	20nm*	Unknown	200*	Unknown	Unknown	45	600 (HBM)	8*
Google TPU v3	16/12nm*	Unknown	200*	Unknown	Unknown	90	1200 (HBM2)*	8*
Graphcore IPU	16nm	800*	150	300	Unknown	125	0	384
Habana Gaudi	TSMC 16nm	500*	300	Unknown	Unknown	Unknown	1000 (HBM2)	250
Huawei Ascend 910	7nm+ EUV	456	350	64	Unknown	256	1200 (HBM2)	115
Intel NNP-T	TSMC 16FF+	688	250	60	Unknown	110	1220 (HBM2)	447
Nvidia Volta	TSMC 12nm FFN	815	300	21.1	15.7	125	900 (HBM2)	300
Nvidia Turing	TSMC 12nm FFN	754	250	24.6	16.3	130.5	672 (HBM2)	100

^{*}Speculated

Source: James W. Hanlon

⁺ Figures given for a single chip

Programmable Hardware Specialized Platforms

Software Stack

Research ASICs

Deep Learning Software Stack

So, you thought hardware was confusing...

- Let's try to make some sense of the deep learning software stack.
 - I can't be sure that I got this categorization correct, but here goes:
- From the bottom up, we have:
 - Compilers (GCC, LLVM,...)
 - Hardware backends (CUDA, CuDNN, OpenCL, ...)
 - Intermediate Libraries (CuDNN, CuBLAS, TVM+NNVM, ...)
 - Software frontend (Python, C, C++, ...)
 - Deep Learning Framework (TensorFlow, PyTorch, ...)
 - Model Exchange (ONNX)
 - High Level Library (Keras)

The Backend

- So before discussing the (more interesting) frontend frameworks, let's try to introduce the backends
 - A compiler (e.g., GCC, LLVM) turns a high-level language into instructions that run on the hardware.
 - For parallelization, hardware-aware abstractions have been introduced. The most popular ones are CUDA (NVIDIA) and OpenCL.
 - And NVIDIA has introduced libraries to abstract away some of the CUDA.
 These include CuDNN and CuBLAS.
 - Many specialized hardware providers also use intermediate graph representations in (mostly proprietary) APIs.
 - TVM+NNVM is an attempt to make a generic intermediate graph compiler.

The Frontend

• Or let's just call it by its name...

Python*

Just learn Python and you'll be a much more happy engineer.

The Framework

- On top of Python (or other language), there are many popular DL frameworks:
 - TensorFlow Created by Google
 - PyTorch Developed by Facebook (successor of Torch)
 - Caffé2 Successor of Caffé, now merged with PyTorch.
 - Theano Developed by U. Montreal. Now dead…
 - CNTK a.k.a. The Microsoft Cognitive Toolkit
 - MXNet Created by Apache
- And on top of them you can use a Keras
- And for model exchange use ONNX

Microsoft

Cognitive

Toolkit

PYTORCH

theano

Parallelism

Programmable Hardware Specialized Platforms

Software Stack

Research ASICs

Specialized Research ASICs

General Approach: The NPU

The Neural Processing Unit (2012), is a general architecture for spatial neural

network acceleration.

A processing engine (PE):

- Weight buffer
- Input buffer
- Output buffer
- MAC (+activation)
- Several PEs connected with some scheduling and control

NeuFlow (Farabet, 2011)

- Specialization:
 - Customized logic to efficiently map CONV to hardware with more parallelism
- Flexibility:

Runtime reconfigurable bus and operations

DianNao Family (2014-15)

DianNao (2014)

- Separate buffers for input neurons (NBin), output neurons (NBout) and synaptic weights (SB)
- Neural functional unit (NFU) for computation
- DaDianNao (2014)
 - Integrates eDRAM to avoid main memory access
 - Tiles with NFU and four eDRAM banks (2MB)

ShiDianNao (2015)

- Low power CNN accelerator
- Entire model fits in SRAM

Source: Chen

	Process (nm)	Peak Performance (GOPs)	Peak Power (W)	Area (mm2)
DianNao	65	452	0.485	3.02
DaDianNao	28	5585	15.97	67.73
ShiDianNao	65	194	0.32	4.86

Cnvlutin (2016)

- Ineffectual-Neuron-Free Deep Neural Network Computing
 - A value-based approach to dynamically eliminate ineffectual multiplications
 - Zero-skipping on dynamic activations
- Slight modification to DaDianNao:
 - Split the processing of filters so they are not in lock step.
 - Encode the zero skipping of the output of the previous layer
 - Independently skip multiplications in each computation lane.

Efficient Inference Engine (2016)

EIE takes advantage of:

- Static weight sparsity
- Dynamic activation sparsity
- Relative indexing
- Weight sharing
- Extremely narrow weights (4-bits)

Source: Song Han

EIE Sparse Matrix Multiplication

- Distribute the activations (a), weights (w) and outputs (b) between N=4 PEs.
- Broadcast next non-zero activation
 - Skip a_0 , broadcast a_1
- Multiply by non-zero weights
 - $PE0: b_0 = b_0 + a_1 w_{0,1}$
 - $PE2: b_2 = b_2 + a_1 w_{2,1}$
 - *PE7*: $b_7 = b_7 + a_1 w_{7,1}$
- And to the next activation (a_3)
 - $PE0: b_0 = b_0 + a_3 w_{0.3}$
 - $PE2: b_2 = b_2 + a_3 w_{2,3}$
 - *PE4*: $b_4 = b_4 + a_3 w_{4,3}$
 - *PE6*: $b_6 = b_6 + a_3 w_{6,3}$

© Adam Teman,

Source: Song Han

EIE Compressed Sparse Column (CSC) Format

- For each column of the weight matrix, store:
 - A vector v with the non-zero weights
 - An equal-length vector z that encodes the number of zeros before the corresponding entry in v
 - Each entry of v and z is represented by a four-bit value.
 - If >15 zeros appear before a non-zero entry, we add a zero in vector v.
- For example:

- v = [1, 2, 0, 3]
- z = [2, 0, 15, 2]
- Now, simply multiply each non-zero activation by all of the non-zero elements in its corresponding column.

Eyeriss (2016)

- High-throughput CNN inference optimized for energy efficiency
 - Spatial architecture with 168 PEs
 - 4-level memory hierarchy (DRAM, Global buffer, inter-PE comm, scratchpads)
 - Energy-efficient Row Stationary (RS) CNN dataflow
 - Network-on-chip with multicast and point-to-point data delivery

Run-length compression

and PE data gating for energy-efficiency

Source: Yu-Hsin Chen

© Adam reman, 2020

Eyeriss Row Stationary Dataflow

Source: Yu-Hsin Chen

Eyeriss RLC Encoding

- Data is stored in DRAM in run length compression (RLC) format
 - Number of zeros (run) encoded in 5-bits
 - Value of non-zero (Level) encoded in 16-bits
 - Three pairs are packed into a 64-bit word
 - Only adds 5%-10% overhead to the theoretical entropy limit

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, ...

5b 16b 5b

Run Level Run Level Run Level Term

Output (64b):

2 12 4 53 2 22 0

16b 5b

- Data stored in global buffer after decoding
 - Further zero buffer points to on-chip zeros and data-gates the computation.

Source: Yu-Hsin Chen

IBM TrueNorth

• A 1M Neuron brain inspired machine

- Only 70 mW, power density 20mW/cm²
- 46 B synaptic operations per second, per watt

The idea:

- Non von-Neumann
- Parallel
- Distributed
- Event-Driven
- Scalable
- Low Power

Source: IBM

Intel Loihi Test Chip (2018)

- "A first-of-its-kind self-learning neuromorphic chip"
 - mimics how the brain functions by learning to operate based on various modes of feedback from the environment

Loihi Highlights

- Asynchronous neuromorphic (spiking) many core mesh
- Each neuromorphic core includes a learning engine that can be programmed to adapt network parameters during operation, supporting supervised, unsupervised, reinforcement and other learning paradigms.
- Intel's 14 nm process technology.
- 128 neuromorphic cores for a total of 130,000 neurons and 130 million synapses.

NVDLA (2017)

- The NVIDIA deep learning accelerator
 - Open source architecture and RTL release
 - Encourage Deep Learning applications
 - Invite contributions from the community
 - Targeted towards edge devices, IoT
 - Industry standard formats and parameterized
 - Complete Solution
 - Verilog and C model
 - Compiler
 - Linux drivers
 - Test benches and test suits
 - Kernel and user-mode software
 - Software development tools
- Developed as part of Xavier NVIDIA's SoC for autonomous driving

NVDLA

- Small model for small (IoT) applications
- Large model with ucontroller and SRAM
- Components
 - Convolution sparse weight compression, built in Winograd, internal conv buffer
 - Single Data Point Processor (SDP) –
 look up table for activations, normalization
 - Planar Data Processor (PDP) used for max/min/avg pooling
 - Cross-channel Data Processor calculates local response normalization (LRN)
 - Data Reshape Engine split, slice, merge, ...
 - Bridge DMA move data between DRAM and SRAM

Network/Neural Architecture Search (NAS)

Rather than handcrafting the architecture, automatically search for it

Source: Sze

Network/Neural Architecture Search (NAS)

Three main components:

- Search Space (what is the set of all samples)
- Optimization Algorithm (where to sample)
- Performance Evaluation (how to evaluate samples)

Key Metrics: Achievable DNN accuracy and required search time

Benchmarking with ML-Perf

Mission

 To build fair and useful benchmarks for measuring training and inference performance of ML hardware, software, and services.

MLPerf Training

 The MLPerf training benchmark suite measures how fast a system can train ML models.

MLPerf Inference

- The MLPerf inference benchmark measures how fast a system can perform ML inference using a trained model.
- Details at https://mlperf.org/

Main References

- Song Han, various talks
- Vivienne Sze, various talks
- James W Hanlon (https://jameswhanlon.com/)
- Grigory Sapunov (Intento)
- Towards Data Science
- WikiChip
- ...oh so many others (thanks Google ②)