
28 April 2020

Part 4:
Reducing the Complexity

Dr. Adam Teman

EnICS Labs, Bar-Ilan University

Lecture Series on
Hardware for Deep Learning

April 28, 2020© Adam Teman,

Outline

Motivation

Motivation
Lightweight

Models
Reducing
Precision

Aggressive
Quantization

Pruning and
Deep Comp.

April 28, 2020© Adam Teman,

Models are Getting Larger

April 28, 2020© Adam Teman,

Explosion in size, complexity, energy

5

Source: Qualcomm

April 28, 2020© Adam Teman,

Big Three Challenges

• First Challenge: Model Size

• Hard to distribute large models

through over-the-air update

• Second Challenge: Speed

• Such long training time limits

ML researcher’s productivity

• Third Challenge: Energy Efficiency

• AlphaGo: 1920 CPUs and 280 GPUs,

$3000 electric bill per game

• On mobile: drains battery

• On data-center: increases TCO

6

Source: Han

April 28, 2020© Adam Teman,

Where is the Energy Consumed?

• Larger model

• More memory references

• More energy

• How can we make

our models more

energy efficient?

7

Source: Han

Lightweight Models

8

Motivation
Lightweight

Models
Reducing
Precision

Aggressive
Quantization

Pruning and
Deep Comp.

April 28, 2020© Adam Teman,

Reminder: Standard Convolution

• Layer sizes:

• Input fmap: HxWxC

• Filter size: RxSxC

• Output size: ExFxM

• A bit simplified:

• Assume: H=W=E=F

• Assume: R=S=k

• Cost of convolution:

• M output maps of size H2.

• Each one requires k2*C MACs

• Total MACs: M*H2*k2*C

• Total Weights: M*k2*C

9

W

H

C

R

S

C

R

S

C

xM

F

E

M

H2

C

C

C

xM

M

H2

k2

k2

Proportional to spatial

size of output map: H2

Proportional to size of

convolutional kernel: k2

Proportional to number

of Input Channels: C

Proportional to number

of Output Channels: M

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Spatial and Channel Connectivity

• To visualize the connectivity complexity, we can use a pair of illustrations

• For a 3x3 kernel, looking at one spatial dimension

(e.g., one row), the connectivity between the

input activation and output fmap looks as follows:

• And across channels, each input channel is

connected to each output channel, so we get:

• So we see that for convolutions:

• Spatially, the inputs and outputs are connected locally.

• Across channels, the inputs and outputs are fully connected.

10

Source: Yusuke Uchida

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Group Convolutions

• Observation:

• The more filters in a layer (M), the more intermediate features we learn.

• Problem:

• This leads to a lot of operations (Total MACs: M*H2*k2*C)

• Grouped Convolutions:

• Reduce the number of operations by dividing the input into several groups.

• Essentially, we can learn different features through different routes.

• First used by AlexNet to

split a network onto two GPUs.

11

Source: Krizhevsky 2012
Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Group Convolutions

• So now we have:

• G groups of M/G filters

• G output fmaps of M/G depth

• Total MACs: G*(M/G*H2*k2*C/G)

• That’s a reduction of 1/G.

• Visualization: Gconv 3x3

12

H2

C
M/G

H2

C/G

k2

C/G

k2

M/G Filters

G
 G

ro
u
p
s
 o

f filte
rs

M/G

H2

M/G

H2

G
 O

u
tp

u
t fm

a
p
sC/G

k2

C/G

k2

M/G Filters

C/G

k2

C/G

k2

M/G Filters

Input

Output

Spatial

Channel

Input

Output Source: Yusuke Uchida

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Pointwise (1x1) Convolution

• Problem:

• Convolving a large filter over many input channels is expensive (k2*C)

• Solution:

• Merge channels with a 1x1xC filter

• Use M filters to get the desired

input channel depth

• Total cost: M*H2*C.

• This “blends” information across channels:

13

Source: Chi-Feng Wang

Input

Output

Spatial Channel

Source: Yusuke Uchida
Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Example: Inception (GoogLeNet)

• GoogLeNet was intended to solve three problems

• Previous models kept going deeper

→ computationally expensive

• Variation in location of information

→Need several filter sizes for each feature

• Deep networks are prone to overfitting

• Solution: Go Wider

• Use an “Inception Layer” to split activations

into several routes with different filter sizes

• But this is computationally expensive

• So reduce dimensionality with 1x1

convolution and then stack a larger filter on top

14

Source: Google, Inception v1

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Example: SqueezeNet

• The “Fire Module” of SqueezeNet:

• Uses 1x1 convolutions to reduce channel depth

• Uses 1x1 and 3x3 convolutions to expand it back

Two other interesting concepts in SqueezeNet:

• Downsampling

• Use pooling with a stride of ½ late in the network.

• This provides late convolution layers with many parameters

• No fully connected layers

• Finish with N channels for N classification categories

• Use average pooling on a channel for a classification score

15

Source: Song Han

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Depthwise Convolutions

• A popular way of doing low cost convolutions is to combine

Group Convolutions with Pointwise Convolutions.

• Let’s start by looking at a standard convolution:

• Starting with an input of HxWxC we want to arrive at an output of ExFxM.

• The standard approach is to use M filters with a depth of C.

• For example, a 7x7x3 input to a 5x5x128 output needs 128 3x3x3 filters.

• Total MACs: 86,400

• Weights: 3,456

16

Source: Kunlun Bai

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Depthwise Convolutions

• Instead let’s make a group convolution with C groups:

• C filters of kxkx1.

• Each filter is applied to one input channel, providing one output fmap.

• Concatenating these we get an output of ExFxC.

• In our example, 3 3x3x1 filters, 5x5x3 output

• Now use a pointwise (1x1) convolution:

• M filters of 1x1xC.

• Provides the desired output of ExFxM.

• In our example, 128 1x1x3 filters, 5x5x128 output

• How much did it cost?

• Total MACs: 16,675 (-80%)

• Total weights: 411 (-90%)

17

Source: Kunlun Bai

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Example: MobileNet

• Introduced by Google in 2017

• Applies Batch Normalization and ReLU

after each Depthwise Convolution

• Better accuracy than VGG-16

with 97% fewer weights

and 97% fewer MACs

18 Source: Google, MoblieNetsStandard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Example: ShuffleNet

• Apply a “Channel Shuffle”

• 1x1 Group Convolution and shuffle the outputs

• Also use Depthwise Convolutions and Residuals

• Outperforms MobileNet

19
Source: Zhang, et al, ShuffleNet

Standard Group Pointwise Depthwise Factorized

April 28, 2020© Adam Teman,

Factorized (Stacked) Convolutions

• Reduce the number of weights using two smaller filters:

• VGG: two 3x3 filters (18 weights) replace one 5x5 filter (25 weights)

• Inception v2: 1xn and nx1 filters (2n weights) replace nxn filter (n2 weights)

For example: 3x1 and 1x3 filters (6 weights) replace 3x3 filter (9 weights)

20

Source: Sik-Ho Tsang

Standard Group Pointwise Depthwise Factorized

Reducing Precision

21

Motivation
Lightweight

Models
Reducing
Precision

Aggressive
Quantization

Pruning and
Deep Comp.

April 28, 2020© Adam Teman,

Taxonomy

• Precision refers to the number of levels

• Number of bits = log2 (number of levels)

• Normal Precision: FP32

• Low Precision: FP16, INT8

• Mixed Precision

• Utilizing several precisions

(e.g., FP32 and FP16) in model.

• Quantization: mapping data to a smaller set of levels

• Linear, e.g., fixed-point (e.g., INT8, binary)

• Non-linear
• Computed (e.g., floating point, log-domain)

• Table lookup (e.g., learned)

Floating Point (FP32):

-1.112934 x 10-16

Fixed Point (INT8):

12.75

April 28, 2020© Adam Teman,

Number Representation

24

Source: B. Dally

Sources: Courbariaux, Montreal
UC Davis, Ristretto Project

Dynamic Fixed Point

• Several scaling

factors

• Different range

for activations,

bias, weights

and gradients.

bfloat16: Brain Floating Point Format

S E E E E E E E E

Exponent: 8 bits Mantissa (Significand): 7 bits

M M M M M M M Range: ~1e−38 to ~3e38

• Same dynamic range as FP32

• Easier for training and debugging than FP16

• Supported by Google TPU, Intel Xeon and

Nirvana, others

Source: Patterson, GoogleAI

April 28, 2020© Adam Teman,

Cost of Operations

Source: Horowitz, ISSCC 2014

April 28, 2020© Adam Teman,

Mixed Precision

• Mixed Precision refers to using both full and reduced

precision in a model:

• Identify the steps that require FP32, and use

lower precision (e.g., FP16) everywhere else.

• Has been shown to provide 2-4X speedup.

• Low precision is supported by hardware and software platforms

• Google TPUs support a mix of FP32 and bfloat16

• Nvidia Tensor Cores accelerate FP16 matrix multiplications and convolutions

• Keras provides a mixed

precision API in TensorFlow

26 Source: NVIDIA

April 28, 2020© Adam Teman,

Quantization

• Quantization is mapping to a smaller set of levels

• e.g., floating point (FP32) to integer (INT8)

• How is it done?

• Well, there are a lot of tips

and tricks, but basically

we just need to scale and offset:

• The scaling factor is dependent on the range of

the floating point values

• The tighter the distribution,

the better the accuracy

• Luckily, weights tend to have a tight distribution
27

𝑥𝑞 =
𝑥𝑓

𝑠𝑐𝑎𝑙𝑒
+ 𝑜𝑓𝑓𝑠𝑒𝑡 Source: Soon Yau

𝑠𝑐𝑎𝑙𝑒 =
max 𝑥𝑓 −min 𝑥𝑓
max 𝑥𝑞 −min 𝑥𝑞

April 28, 2020© Adam Teman,

Uniform Quantization

• Uniform quantization is straightforward quantization of floating point to integer

• INT8 add: 30X less energy, 116X less area than FP32

• INT8 multiply: 18.5X less energy, 27.5X less area than FP32

• Precision of internal values of MAC is higher than weights and activations

• Given N-bit weights and inputs →Need NxN multiplier→2N-bit output product

• Accumulator: (2N+M)-bit

• Final output activation reduced to N-bits

• No significant impact on accuracy if the distribution

of weights and activations is centered near zero.

• 8-bit arithmetic used in Google’s TPU, Nvidia’s PASCAL, Intel’s NNP-L
28

𝑀 = log2 𝐶𝑆𝑅

April 28, 2020© Adam Teman,

Configurable MACs for Mixed Precision

• Use precision-scalable arithmetic for power savings

• However, many approaches have overhead that reduce benefits.

29

Source: Camus, JETCAS 2019

Bit Serial DesignsData Gated MACs

Source: Camus, JETCAS 2019

Aggressive Quantization

30

Motivation
Lightweight

Models
Reducing
Precision

Aggressive
Quantization

Pruning and
Deep Comp.

April 28, 2020© Adam Teman,

Non-Uniform Quantization

• In standard uniform quantization,

values are equally spaced out

• However, computing a quantization that better

fits the distribution, better accuracy can be achieved.

• e.g. with 4-bit log-domain quantization,

VGG-16 shows only a 5% loss

(vs. 28% with uniform quantization)

• Log-domain quantization further allows replacing

multiplication with bit-shift

• Weight sharing, for example through learned

quantization, can provide an even better solution.

31

Source: Camus, Lee, ICASSP 2017

April 28, 2020© Adam Teman,

Trained Quantization

April 28, 2020© Adam Teman,

Trained Quantization

33

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Weights (FP32)

Gradient (FP32)

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

-0.03 0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

-0.03 0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

cluster

-0.03 0.12 0.02 -0.07

group

-0.03 0.01 -0.02

0.02 -0.01 0.01 0.04 -0.02

-0.01 -0.02 -0.01 0.01

centroid

2.00

1.50

0.00

-1.00

reduce

0.04

0.02

0.04

-0.03

-

1.96

1.48

-0.04

-0.97x learning

rate

Source: Han

April 28, 2020© Adam Teman,

Trained Quantization

• AlexNet:

• 8-bit quantization on CONV

layers, 5-bit quantization on FC

layers without any loss of

accuracy

• Only 2% loss of accuracy for

4-bit CONV and 2-bit FC layer

quantization

• Need “cookbook” for index

translation

• See “Deep Compression” later

on in the lecture.
34

1.96 -0.97 1.48 -0.04

-0.04 -0.04 -0.97 1.96

-0.97 1.96 -0.04 -0.97

1.96 -0.04 1.48 1.48

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Source: Han

April 28, 2020© Adam Teman,

More aggressive quantization

• Ternary Connect (2014)

• Train with real valued weights

• Ternarize the weights to WB∈{-H,0,H}

• Binary Connect (2015)

• Binary weights (WB∈{-1,1}), full precision activations

• Simple multipliers, full precision accumulation

• Training (backprop updates) uses real valued weights (WR) clipped at -1, 1.

• BinaryNet, Binarized Neural Networks, XNOR-Net (2016)

• Binary Weights and Activations

• Use XNOR for multiplication

“popcount” for accumulation

• Keep first and last layers

at full precision35

April 28, 2020© Adam Teman,

Summary

37

Source: Sze, MIT

Pruning and Deep
Compression

38

Motivation
Lightweight

Models
Reducing
Precision

Aggressive
Quantization

Pruning and
Deep Comp.

April 28, 2020© Adam Teman,

Precursor: Dropout

• A well-known technique for eliminating overfitting is called “Dropout”

• During each iteration of training,

zero out a random fraction of nodes in fully connected layers

• During inference, use all connections

• But regularization through

batch normalization has almost

made this unnecessary.

• However, it raises the question:

“Do we actually need all synapses?”

39

Source: Srivastava, et al.

April 28, 2020© Adam Teman,

Synaptic Pruning

• The human (all mammals) body prunes synapses

• Axons and dentrites completely decay and die off during lifetime

• Starts near birth and continues into the mid-20s

40

Source: Walsh,
Nature 2013

April 28, 2020© Adam Teman,

Optimal Brain Damage

• In 1989, Yann Lecun suggested pruning neural networks

• Compute the impact of each weight on the training loss = weight saliency

• Remove low-saliency weights and fine tune remaining weights

• Unlike in “Dropout”,

pruned synapses

are removed for good.

41

Source: Lecun, NIPS ‘89,

Han, NIPS ’15

April 28, 2020© Adam Teman,

Pruning Deep Neural Networks

• Pruning DNNs leads to sparsity

• Easier to compress

• Skip multiplications by zero

• Han, et al., showed that 90% of the

connections in AlexNet can be pruned

without incurring accuracy loss!

• Weights were pruned below a threshold

• The Train-Prune-Retrain pipeline was used

42

Source: Han, NIPS ’15

April 28, 2020© Adam Teman,

Pruning Deep Neural Networks

• Iteratively Retrain to recover accuracy

43 Source: Han, NIPS ’15

April 28, 2020© Adam Teman,

Pruning AlexNet

44 Source: Han, NIPS ’15

April 28, 2020© Adam Teman,

Pruning Changes Weight Distribution

45 Source: Han, NIPS ’15

April 28, 2020© Adam Teman,

Hardware Efficiency Considerations in Pruning

• Pruning leads to irregularity, which is difficult to parallelize in hardware

• Load-balance aware pruning

• Sort the weights in every sub-matrix and prune the same amount in each,

such that each PE works on the same number of non-zero weights

• Need to index every non-zero weight

• Pruning with structure

• Prune by rows/columns,

kernels, or whole filters

• Can index a larger space

• For example, prune a column

according to L2 norm

46 Source: Han

April 28, 2020© Adam Teman,

Deep Compression

• Deep Compression combines pruning, trained quantization and variable length

coding in a pipeline:

47

Source: Han

April 28, 2020© Adam Teman,

Storing the Meta Data

• How do we store the index and weight?

• For each non-zero weight store the weight and the index

• Instead of the actual index, store the distance from the previous non-zero index

• Select a small bit-width for the index representation – if the span is larger, then

pad with zeros.

• A separate codebook is stored for each layer

48

April 28, 2020© Adam Teman,

Variable-Length Coding

• The idea is:

• Infrequent weights: use more bits to represent

• Frequent weights: use less bits to represent

• Huffman coding is used for Deep Compression.

49
Source: Han

April 28, 2020© Adam Teman,

Summary of Deep Compression

50

Source: Han

April 28, 2020© Adam Teman,

Results: Compression Ratio

51
Source: Han

April 28, 2020© Adam Teman,

Energy-Aware Pruning

• The value of weights alone is not a good metric for energy

• Instead prune according to energy.

• Sort layers based on energy and prune

layers that consume the most energy first

• Energy-aware pruning reduces AlexNet

energy by 3.7x and outperforms the

previous work that uses magnitude-based

pruning by 1.7x

52 Source: Sze, MIT

April 28, 2020© Adam Teman,

Main References

• Song Han, various talks

• Vivienne Sze, various talks

• Bill Dally, various talks

• Towards Data Science:

• Bharath Raj

• Yusuke Uchida

• Arthur Douillard

• Sik-Ho Tsang

• Chi-Feng Wang

• Ranjeet Singh

• others

53 Source: MIT

