Lecture Series on
Hardware for Deep Learning

Part 4:
Reducing the Complexity

Dr. Adam Teman
EnICS Lals, Bar-llan University

28 April 2020

O &g*cellence
O n ||C S '\’) Bar-llan University
Emerging Nanoscaled | I9'R-12 ND'0N2"IN

Integrated Circuits and Systems Labs

Outline

Motivation

Lightweight Models Reducing Precision

o
Irosgreand (irrams s Spsters Las

Pruning and Deep

Aggressive Quantization Compression

ZnlcS l,a

o
1 iroegreed D e Sesters Lk

© Adam Teman, 2020

Motivation

Moftivation

Q:’S'Q“ence

E n “CS u'\’ Bar-Ilan University
Emerging Nanoscaled ?‘i \y |')'N—1:l NU'012"JIN

Integrated Circuits and Systems Labs

Models are Getting Larger

IMAGE RECOGNITION

16X

Model

152 layers

22.6 GFLOP
~3.5% error
A EVEE

1.4 GFLOP

~-16% Error

2012 2015
AlexNet ResNet

Microsoft

Dally, NIPS"2016 workshop on Efficient Methods for Deep Neural Networks ¢, A -+ Terman. 2020

SPEECH RECOGNITION

10X

Training Ops
465 GFLOP

12,000 hrs of Data
~5% Error
80 GFLOP
7,000 hrs of Data

~8% Error

2014 2015
Deep Speech 1 Deep Speech 2

Baidu

Explosion in size, complexity, energy

Deep neural networks are energy

hungry and growing fast

Al is being powered by
the explosive growth of
deep neural networks

Mumber of parameters in neural net
(~energy consumption)

1940 1950 1960 1970 1980 1990 2000

2010

2020

2030

Network Model size (MB) GFLOPS
AlexNet* 233 0.7
VGG-16* 528 15.5
VGG-19* 548 196
ResNet-50* 98 3.9
ResNet-101* 170 7.6
ResNet-152* 230 11.3
GoogleNet" 27 1.6
InceptionV3" 89 6
MobileNet” 38 0.58
SequeezeNet” 30 0.84

*: Characterization and Benchmarking of Deep Learning, Natalia Vassilieva
#: https://github.com/albanie/convnet-burden

Big Three Challenges

* First Challenge: Model Size

« Hard to distribute large models
through over-the-air update

 Second Challenge: Speed

e Such long training time limits
ML researcher’s productivity

* Third Challenge: Energy Efficiency

» AlphaGo: 1920 CPUs and 280 GPUs,
$3000 electric bill per game
* On mobile: drains battery

 On data-center: increases TCO

This item is over 100MB.

Microsoft Excel will not download
until you connect to Wi-Fi.

Error rate Training time

ResNet18: 10.76% 2.5 days
ResNet50: 7.02% 5 days
ResNet101: 6.21% 1 week
ResNet152: 6.16% 1.5 weeks

Where is the Energy Consumed?

 Larger model

¥

Operation Energy [pJ] Relative Energy Cost
* More memory references ;1. int ADD 01
32 bit float ADD 0.9
‘ 32 bit Register File 1
 More ener 32 bit int MULT 3.1
ore energy 32 bit float MULT 3.7

32 bit SRAM Cache 5
(_32 bit DRAM Memory 640)

1000 10000

= 1000 X-I-

Source: Han

« How can we make
our models more 1
energy effiCient? This image is in the public domain .

Lightweight

[VileYe[S1S

Lightweight Models

Q:’&e'llence

O $

O== n “CS $ \’a Bar-llan University
Emerging Na.noslcaled ?‘G, |')'N—1J NU'ON2IN

8 Integrated Circuits and Systems Labs

Reminder: Standard Convolution
C

* Layer sizes: /' R@ %

 Input fmap: HxWxC —=

* Filter size: RxSxC > .

. Output size: ExXFxM & /
* Abit SImphfled: < > Proportional to size of) : "
 Assume: H=W=E=F convolutional kernel: k2
Proportional to number

. . D—Cm— size of output map: H?
Assume: R=5=K of Input Channels: C /
» Cost of convolution: c

« M output maps of size H-.

« Total Weights: M*k?*C of Output Channels: M

9 N[e[glefe]fe

« Each one requires k**C MACs
. : 2%|2 H-
Total MACs: M*H=k=*C / Proportional to number

Spatial and Channel Connectivity

* To visualize the connectivity complexity, we can use a pair of illustrations

« For a 3x3 kernel, looking at one spatial dimension
(e.g., one row), the connectivity between the Input
Input activation and output fmap looks as follows:

Output
« And across channels, each input channel is
connected to each output channel, so we get:

« So we see that for convolutions:
« Spatially, the inputs and outputs are connected locally.

« Across channels, the inputs and outputs are fully connected.

10 N[e[glefe]fe

spatial

>

<

DPDIIX

channel

11

Group Convolutions

e Observation:

* The more filters in a layer (M), the more intermediate features we learn.

* Problem:
 This leads to a lot of operations (Total MACs: M*H?*k?*C)

* Grouped Convolutions:

« Reduce the number of operations by dividing the input into several groups.
« Essentially, we can learn different features through different routes.

* First used by AlexNet to

N

split a network onto two GPUSs.

Group Convolutions

 So now we have:

« G groups of M/G filters

* G output fmaps of M/G depth

« Total MACs: G*(M/G*H?*k**C/G)
e That's a reduction of 1/G.

* Visualization: Gconv 3x3
ya
Output

<€ >

Input

M/G Filters

(%7

M/G Filters

(%7

M/G Filters

>

SJ9]Jl} JO sdnol9 9

Spatial
g Channel > ,
Input [}] H
Output

12

y

=

7

il g

sdewy) 1ndinO 9

13

Pointwise (1x1) Convolution

* Problem:
« Convolving a large filter over many input channels is expensive (k?*C)

* Solution:
« Merge channels with a 1x1xC filter

« Use M filters to get the desired ;
Input channel depth 3

e Total cost: M*H2*C.

* This “blends” information across channels:

Spatial Channel
< > < >

Input

Output

Example: Inception (GoogleNet)

Filter
concatenation

* GoogLeNet was intended to solve three problems

* Previous models kept going deeper

- computationally expensive s |8 ‘
* Variation in location of information G, |

—->Need several filter sizes for each feature
* Deep networks are prone to overfitting

* Solution: Go Wider
« Use an “Inception Layer” to split activations

3x3 max pooling

) 5x5 convolutions
- N

| Previous layer

Filter
concatenation

/\

Into several routes with different filter sizes

* But this is computationally expensive
« So reduce dimensionality with 1x1

14

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

[

[)

1x1 convolutions

Qﬁons

convolution and then stack a larger filter on top

[}

3x3 max pooling

-

Previous layer

Example: SqueezeNet ot

* The “Fire Module” of SqueezeNet: o1 ('3,

« Uses 1x1 convolutions to reduce channel depth Squeeze
« Uses 1x1 and 3x3 convolutions to expand it back

1x1 Conv 3x3 Conv

Two other interesting concepts in SqueezeNet: Expand cxpand

* Downsampling Output
« Use pooling with a stride of ¥z late in the network. Concat/Eltwise
« This provides late convolution layers with many parameters 128

* No fully connected layers Source: Song Han

 Finish with N channels for N classification categories
« Use average pooling on a channel for a classification score

15

16

Depthwise Convolutions

* A popular way of doing low cost convolutions is to combine
Group Convolutions with Pointwise Convolutions.

* Let’s start by looking at a standard convolution:

 Starting with an input of HXWxC we want to arrive at an output of ExFxM.
The standard approach is to use M filters with a depth of C.

For example, a 7x7x3 input to a 5x5x128 output needs 128 3x3x3 filters.
Total MACs: 86,400
Weights: 3,456

Depthwise

Depthwise Convolutions

* Instead let’s make a group convolution with C groups:

 C filters of kxkx1.

« Each filter is applied to one input channel, providing one output fmap.

« Concatenating these we get an output of ExFxC.

* In our example, 3 3x3x1 filters, 5x5x3 output
* Now use a pointwise (1x1) convolution:

« M filters of 1x1xC.
* Provides the desired output of ExFxM.

* How much did it cost?
« Total MACs: 16,675 (-80%)
 Total weights: 411 (-90%)

Depthwise

17

Example: MobileNet

Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size
e Introduced by Google in 2017 Conv / 52 3% 3 %3 x 32 224 x 224 x 3
Conv dw / sl 3 x3dx32dw 112 x 112 x 32
« Applies Batch Normalization and RelLU i /51 S 112 > 112 > 32
. . Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64
after each Depthwise Convolution Conv /51 Tx Ix64x 128 | 56 x 56 x 64
Conv dw / sl 3 x 3 x 128 dw 56 x 56 x 128
* Better accuracy than VGG-16 Conv / sl 1x1x128 x 128 | 56 x 56 x 128
" 0 : Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Wlth 97 A) fewer Welghts Conv / sl 1 %1 %128 x 256 28 x 28 x 128
and 97% fewer MACs [3x3 Depthwise Conv| _Convdw/sT |33 x 256 dw 28 x 28 x 256
T Conv / sl 1 x 1 x 256 x 256 28 x 28 x 256
BN Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Table 8. MobileNet Comparison to Popular Models T g /5] X 1 x 256 x 512 14 x 14 x 288
— — - Convdw/sl | 3x3x512dw 14 x 14 x 512
Model ImageNet Million Million I Rel U X oo /sl 1% 1x512 x 512 14 % 14 % 512
, Accuracy Mult-Adds Parameters 1 Conv dw / 52 3% 3 x 512 dw 14 x 14 x 512
s 10.0% . B I 1%1 Conv Conv /51 Tx1x512x1024 | 7x7x 512
G\‘;gg(ljeﬁe‘ g?-g;{" 1155350% 16588] Convdw/s2 | 3 x 3 x 1024 dw 7% 7 % 1024
=7 BN Conv [/ sl 1x1x1024 % 1024 | 7 x 7 x 1024
I Avg Pool /51 Pool 7 x 7 7 x 7= 1024
| FC /sl 1024 = 1000 1x1x1024
I RelU Softmax / s1 Classifier 1 x 1 x 1000

Depthwise

18

Example: ShuffleNet

 Apply a “Channel Shuffle”

« 1x1 Group Convolution and shuffle the outputs
* Also use Depthwise Convolutions and Residuals

* Outperforms MobileNet

kKe—Channels———>{ [<———— Channels———=|

Input

GConv1

Feature

GConv2

1x1 gra

up conv

olution

Qutput

19

Depthwise

| X

3x3 depth-wise
convolution

T

\

1x1 GConv

,], BN RelLU

Channel Shuffle

\/

3x3 DWConv

v BN

1x1 GConv

/BN

Add
¢ RelLU

Factorized (Stacked) Convolutions

 Reduce the number of weights using two smaller filters:

« VGG: two 3x3 filters (18 weights) replace one 5x5 filter (25 weights)

 Inception v2: 1xn and nx1 filters (2n weights) replace nxn filter (n? weights)
For example: 3x1 and 1x3 filters (6 weights) replace 3x3 filter (9 weights)

i | |
L X
/ O
A\
7 o O e S

i . (O N |
[/ .\ A B e

\
VA — [I
— |

20

Reducing

Precision

Reducing Precision

Q:’&e'llence

O $

O== n “CS $ \’a Bar-llan University
Emerging Na.noslcaled ?‘G, |')'N—1J NU'ON2IN

21 Integrated Circuits and Systems Labs

Taxonomy

* Precision refers to the number of levels Floating Point (FP32):
* Number of bits = log, (number of levels) -1.112934 x 10-16
e Normal Precision: FP32 5|gn exponent (8-bits) mantissa (23 bits)
* Low Precision: FP16, INT8 IEIIEIEIIIEIIEIEIEIEIEEIEIEIEIIEIIEIEIEEIEIEIEEIEIEIEI
 Mixed Precision s=1 e=74 m = 20484
 Utilizing several precisions : - _
(e.g., FP32 and FP16) in model. Fixea P102| r7]t5 (INT8):
» Quantization: mapping data to a smaller set of levels sign mantissa (7-bits)
: : : : P I W——
 Linear, e.g., fixed-point (e.g., INT8, binary) np 1
* Non-linear El_l,m_,mnlm

integer fractional
(4-bits) (3-bits)

s=0 m=102

« Computed (e.qg., floating point, log-domain)
« Table lookup (e.g., learned)

24

Number Representation

1 8 23 Range Accuracy

FP32 109 10% .000006%

1 5 10

FP16 ERIS M 6x10°-6x104 .05%
1 31

Int32 0-2x10° %
1 15
1 7

Int8 S M 0-127 Vo

bfloatl6: Brain Floating Point Format

Exponent: 8 bits Mantissa (Significand): 7 bits

S EEEEEEEEMMMMMMM

Range:

Dynamic Fixed Point

I
Integer Part 1 Fractional Part

sigh mantissa :
L

r 1
lof1|1]o]1]1]o]1]f=2
|

[1]ofo1]1]of1]1]
! , » Several scaling

Integer Part 1 Fractional Part faCtorS
dgn manfisa - Different range
Lofofafafafafafaf ifi=1 for activations,

..... bias, weights
i and gradients.

Same dynamic range as FP32

Easier for training and debugging than FP16
Supported by Google TPU, Intel Xeon and
Nirvana, others

~]e™38 to ~3e38

Cost of Operations

Operation: Energy
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) | 5
32b DRAM Read 640

1

Relative Energy Cost

10

102 103

104

Area
(nm?2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

1

Relative Area Cost

10

Source: Horowitz, ISSCC 2014

102 103

Mixed Precision

 Mixed Precision refers to using both full and reduced
precision in a model:

* |dentify the steps that require FP32, and use
lower precision (e.g., FP16) everywhere else.

« Has been shown to provide 2-4X speedup.

Speedup

Model

BERT Q&A 3.3X speedup
GNMT 1.7X speedup
NCF 2.6X speedup
ResNet-50-v1.5 3.3X speedup

SSD-RN50-FPN-640

2.5X speedup

 Low precision is supported by hardware and software platforms

* Google TPUs support a mix of FP32 and bfloatl6

« Nvidia Tensor Cores accelerate FP16 matrix multiplications and convolutions

« Keras provides a mixed
precision API in TensorFlow

D =

26 FP16 or FP32

N c3,3 J
FP16/or'FP32

Quantization

200

* Quantization is mapping to a smaller set of levels .
* e.g., floating point (FP32) to integer (INT8) -
* How is it done? 2

» Well, there are a lot of tips Xf
: : X, =
and tricks, but basically 97 scale

04

~1.00 -0.75 -0.50 —0.25 000 025 050 075 100

+ of fset float

we just need to scale and offset: | et e
* The scaling factor is dependent on the range of — iniricaat
the floating point values max x, — min x; Lo s
scale = . . [\ T
maxx; —minx,; § \
. . - . min(x;) 0 max(X; '|| |||
—— e — [\
« The tighter the distribution, 1 Va : A
the better the accuracy | amannen 4 y |
 Luckily, weights tend to have a tight distribution 0 J \K
27 —DTTS —DI.SD —0'.25 D.IDD D.'25 D.ISO 0.'?5 l.E}D

‘alue DistribUtion of Selected Tensors

Uniform Quantization

 Uniform quantization is straightforward quantization of floating point to integer

* INT8 add: 30X less energy, 116X less area than FP32
* INT8 multiply: 18.5X less energy, 27.5X less area than FP32

* Precision of internal values of MAC is higher than weights and activations
* Given N-bit weights and inputs =>Need NxN multiplier->2N-bit output product

2MN+M-bits

« Accumulator: (2N+M)-bit Wlgn
M = log, CSR | >@—(£‘ ocumutig |-L{ Sierze} o Qe
 Final output activation reduced to N-bits Acivalion /N xN

(N-bits) multiply

* No significant impact on accuracy if the distribution
of weights and activations is centered near zero.
 8-bit arithmetic used in Google’'s TPU, Nvidia’'s PASCAL, Intel’'s NNP-L

28

Configurable MACs for Mixed Precision

* Use precision-scalable arithmetic for power savings

Data Gated MACs Bit Serial Designs
| 8b | 4o 10000 251000000 8 clock cycles 4 clock cycles 2 clackcycles
_ } _ . ! Wo
E
= gated
o X ‘= 8+ x| gated
g | X
L] L -
¥ +
16b B | 16bf | 16b B | b >>] |
k. I I i—
L+ + -+ +
: } i : ! |
20b B || 20bF || 20F | | 20b || 16bp | 1| 14bp |

* However, many approaches have overhead that reduce benefits.

29

Aggressive

Quantization

Aggressive Quantization

Q:’&e'llence

O 5

O== n “CS $ '\Ia Bar-Ilan University
Emerging Na.noslcaled ?‘G, |')'N—1J NU'ON2IN

30 Integrated Circuits and Systems Labs

Non-Uniform Quantization

linear quantizer
T T

T
* In standard uniform quantization, fggg 1 B
values are equally spaced out 1000f | 1 | o
« However, computing a quantization that better " S L

n n u u n D
fits the distribution, better accuracy can be achieved. 02 -01 0o 01 02
Weight Values

* e.g. with 4-bit log-domain guantization,
VGG-16 shows only a 5% loss

3000
(vs. 28% with uniform quantization) 2500 |
* Log-domain quantization further allows replacing ~ *2%|
multiplication with bit-shift 1000 |
500

 Weight sharing, for example through learned &

p . . - -0.2 -0.1 0 0.1 0.2
quantization, can provide an even better solution. Weight Values

31

(N

Trained Quantization Cluster the Weighte

\ .

<

4 N

Generate Code Book

N2

Quantize the Weight
Lwith Code Book
m—

N

\Z

Retrain Code Book

”

e,

m 8x less memory footprint

[Han et al. ICLR'16]

33

Trained Quantization

Weights (FP32)

-0.02|0.01-0.02

cluster

-0.03

0.01

-0.02

0.02

-0.01

0.01

0.04

-0.02

reduce

0.02

0.04

x learning

rate

Source: Han

Trained Quantization

" ¢ AlexNet:

| _ 8-bit quantization on CONV
layers, 5-bit quantization on FC
layers without any loss of

Count

accuracy
D * Only 2% loss of accuracy for
s WeightValue 4-bit CONV and 2-bit FC layer
guantization
; » Need “cookbook” for index
= -~ translation
| N « See “Deep Compression” later
S om om om ok on in the lecture.

Weight Value

More aggressive quantization

* Ternary Connect (2014)

« Train with real valued weights
 Ternarize the weights to Wye{-H,0,H}

* Binary Connect (2015)
* Binary weights (Wze{-1,1}), full precision activations :
- Simple multipliers, full precision accumulation p = sign(Wg)
 Training (backprop updates) uses real valued weights (\W;) clipped at -1, 1.

* BinaryNet, Binarized Neural Networks, XNOR-Net (2016) Quantize

Activations Binary
« Binary Weights and Activations Calculation
« Use XNOR for multiplication Encoding (Value) XNOR (Multiply)
17 ” : 0 {_1] 0 {_1} 1 (+1)
popcount” for accumulation 0

« Keep first and last layers
35 at full precision

Summary

Category Method nghls Activations Accuracy Loss vs.
of bits) (# of bits) 32-bit float (%)

Dynamic Fixed w/o fine-tuning
Fll w/ fine-tuning 8 8 0.6
Reduce weight Ternary weights 2% 32 3.7
Networks (TWN)
Trained Ternary 2% 32 0.6
Quantization (TTQ)
Binary Connect (BC) 1 32 19.2
Binary Weight Net 1* 32 0.8
(BWN)
Reduce weight Binarized Neural Net 1 1 29.8
and activation (BNN)
XNOR-Net 1* 1 11
Non-Linear LogNet 5(conv), 4(fc) 4 3.2
Weight Sharing 8(conv), 4(fc) 16 0

Source: Sze, MIT
* first and last layers are 32-bit float

Pruning and
Deep Comp.

Pruning and Deep
Compression

= n ‘|CS i;\\@ Bar-Ilan University

Em erging Nan |'J'N—12 NU'01D"IIN
38 Integrated Circ t dSytemsLabs

Precursor: Dropout

A well-known technique for eliminating overfitting is called “Dropout”

« During each iteration of training,
zero out a random fraction of nodes in fully connected layers

« During inference, use all connections

 But regularization through
batch normalization has almost
made this unnecessary.

* However, it raises the question:
“Do we actually need all synapses?”

(a) Standard Neural Net (b) After applying dropout.

39

Synaptic Pruning

* The human (all mammals) body prunes synapses

« Axons and dentrites completely decay and die off during lifetime
 Starts near birth and continues into the mid-20s

1000 Trillion
Synapses \
50 Trillion 500 Trillion
Synapses Synapses
v} 4 f .

]
TN

/'
e puble dor

DELOR0R is n i

P ~
TR 4

. N

HE DRSS & 0 the pubhc dommn

© Newborn 1 year old Adolescent

Optimal Brain Damage

* In 1989, Yann Lecun suggested pruning neural networks

« Compute the impact of each weight on the training loss = weight saliency
 Remove low-saliency weights and fine tune remaining weights

before pruning after pruning
* Unlike in “Dropout”,
pruned synapses
are removed for good.

pruning
synapses

——

pruning
-—
neurons

4]

Pruning Deep Neural Networks

* Pruning DNNs leads to sparsity []
. Train Connectivity
 Easierto compress
« Skip multiplications by zero
[Prune Cnnnectmns]@
 Han, et al., showed that 90% of the y:
connections in AlexNet can be pruned
without incurring accuracy loss! [Train Weights [—/

* Weights were pruned below a threshold

 The Train-Prune-Retrain pipeline was used ___60Milion

L] 10xless connections

42

Pruning Deep Neural Networks

* Iteratively Retrain to recover accuracy
© Pruning © Pruning+RetraiGingrueirifziating Fiabimgiagd Retraining

0.5%
s) ﬂ'ﬂﬂ_,r'a.-_———.-—’ﬂ-:':': --------- -~ SEE———
Train Connectivity oy 05% LT [
\ y ﬁ -1.0% 0.,
R & S Py
) Qo 2.0%
Prune Connections [@®) o
Y F, 8 s .
1T 2 8.0%
| -3.5%
Train Weights —/ -4.0%
< -4.5%

40% 50% 60%
Parameters Pruned Away

43

Pruning AlexNet

B Remaining Parameters B Pruned Parameters

44 Source: Han, NIPS "15

45

Pruning Changes Weight Distribution

Before Pruning

After Pruning After Retraining
1.0 ed 1.0 -e4 1.0 €4
0.8 - 0.8 A 0.8 -
» 0.6 - 0.6 - 0.6 4
c = £
8 3 3
0.4 4 ©o04- 0.4 -
0.2 - 0.2 - 0.2
0.0 -] 0.0 - 3 0.0 - d
-010 -005 000 005 010 -0.10 -0.05 000 005 0.10 -0.10 -0.05 0.00 005 0.10
Weight Value Weight Value Weight Value
Conv5 layer of Alexnet. Representative for other network layers as well.
Source: Han, NIPS '15

46

Hardware Efficiency Considerations in Pruning

* Pruning leads to irregularity, which is difficult to parallelize in hardware

 Load-balance aware pruning

« Sort the weights in every sub-matrix and prune the same amount in each,
such that each PE works on the same number of non-zero weights

* Need to index every non-zero weight
* Pruning with structure Imegey

* Prune by rows/columns, :;. .f ;- - .
kernels, or whole filters
« Can index a larger space H r;. = . .
* For example, prune a column
according to L2 norm ﬂ H HE . -
Fine-grained Vector-level Kernel-grained Filter-level

Sparsity (0-D) Sparsity (1-D) Sparsity (2-D) Sparsity (3-D)
(a) (b) (c) (d)

Regular

47

Deep Compression

* Deep Compression combines pruning, trained quantization and variable length

coding in a pipeline:

ﬂuamizaﬂgn fewer bits per weight

Pruning: fewer weights

]

, -m—mmEmEmemmEmEmme=me=e= -

) ‘\ E
[) l "
: Train Connectivity : I
original | J I :
model 1 Q : I
I- r E t
E> : Prune Connections : E> I
1\ vy | :
. 2 |
i
' | Retrain Weights : |
LI ¥ / I 1
\ / "

R &

T

..i'

o

Cluster the Weights

O

-

Yo

Generate Code Book

Z

Quantize the Weights

with Code Book

2

Retrain Code Book

- - . . S e S S S . .

“---------'--------'----‘-'------‘--#l

Variabl

variable bits per weight

>

[Encode Weights J

[i]

o

neth Coding:

lcompressed

model

=

Storing the Meta Data

* How do we store the index and weight?

« For each non-zero weight store the weight and the index

 |nstead of the actual index, store the distance from the previous non-zero index

« Select a small bit-width for the index representation — if the span is larger, then
pad with zeros.

* A separate codebook is stored for each layer

Span Exceed 16=2"4

idx | 1] 1 2 3 4 5 1] 7 B 18 19 20 21 22 23 24 25 26 27 28 |
diff 1 4 16 3 3
value 3.4 0.9 0 1.7 0.5
Filler Zero

Figure 4.5: Pad a filler zero to handle overflow when representing a sparse vector with relative index.

49

Variable-Length Coding

* The idea is:

* Infrequent weights: use more bits to represent
* Frequent weights: use less bits to represent

 Huffman coding is used for Deep Compression.

100000

75000

50000

Count

25000

0

1

3 56 7 9 11 13 156 17 19 21 23 26 27 29 31
Weight Index (32 Effective Weights)

Source: Han

- —

Huffman Encoding

[Encnde Welghts]

[Encode Index]

e e o o o o

""I-------l

Summary of Deep Compression

Quantization: less bits per weight

Pruning: less number of weights

o

original

Train Connectivity

network

7

—

original

Prune Connections

size

2

il I I I N S S O S R O S

Train Weights

-~

50

!

same
dccuracy

= |

9x-13x |

reduction
|

L)

Cluster the Weights

- o

<z

r 3

Generate Code Book

h .
) T
Quantize the Weigh
\with Code Book

S

r N

Retrain Code Book |

Huffman Encoding

A o mEm_———=—— -

same same
dccuracy daccuracy

= =

[Ennnda Waights]

O O . . O . . —
- . .

reduction 1 Ireduction

27x-31x | [Encode Index] 1 35x-49x
1 |

Results: Compression Ratio

Original Compressed Compression Original Compressed
Size Size Ratio Accuracy Accuracy

N Cee I 1070KB —> 27KB 98.36% 98.42%

Network

LeNet-5 1720KB —> 44KB 39x 99.20% —*> 99.26%
AlexNet 240MB — 6.9MB 35x 80.27% — 80.30%
VGGNet 550MB — 11.3MB 49x 88.68% — 89.09%
Ll e 28MB — 2.8MB 10x 88.90% —* 88.92%

s 44.6MB — 4.0MB 11x 89.24% —* 89.28%

Source: Han

Energy-Aware Pruning

 The value of weights alone is not a good metric for energy

 |nstead prune according to energy.) -

* Sort layers based on energy and prune N
layers that consume the most energy first -

» Energy-aware pruning reduces AlexNet 3
energy by 3.7x and outperforms the 2.5
previous work that uses magnitude-based 2
pruning by 1.7x 1'?

0.5
0

52

Ori.

2.1x

Magnitude
Based Pruning

3.7

Energy Aware
Pruning

53

Main References

 Song Han, various talks
* Vivienne Sze, various talks
» Bill Dally, various talks

 Towards Data Science:

« Bharath Raj

* Yusuke Uchida
 Arthur Douillard
« Sik-Ho Tsang

« Chi-Feng Wang
« Ranjeet Singh

 others

