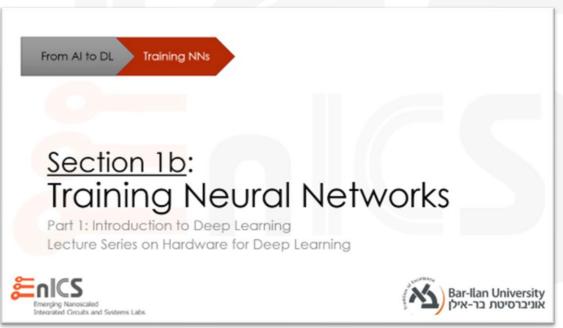
Lecture Series on Hardware for Deep Learning

Part 1: Introduction to Deep Learning

Dr. Adam Teman
EnICS Labs, Bar-llan University

15 March 2020

Outline



Training NNs

Section 1a: From Al to DL

Part 1: Introduction to Deep Learning

Lecture Series on Hardware for Deep Learning

Artificial Intelligence

Artificial Intelligence

Machine Learning

Brain Inspired Computing

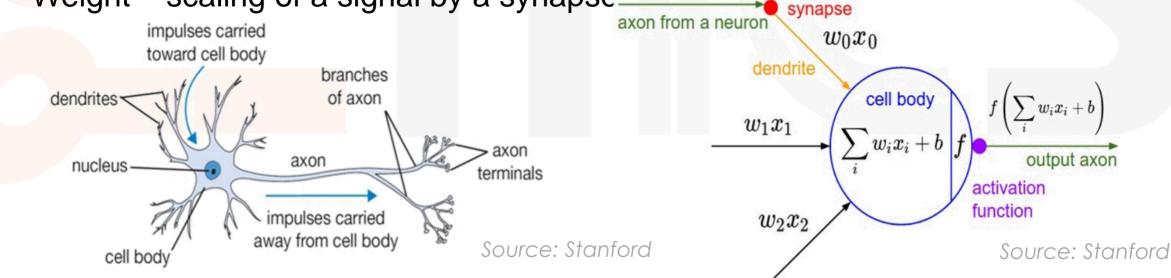
Try to use some aspects or approaches from the brain for machine learning

The Neuron

- There are ~86 Billion neurons in the human brain
 - Dendrites inputs to neurons
 - Axons outputs from neurons
 - Synapse connection between axon and dendrite
 - Activation signal propagating between neurons

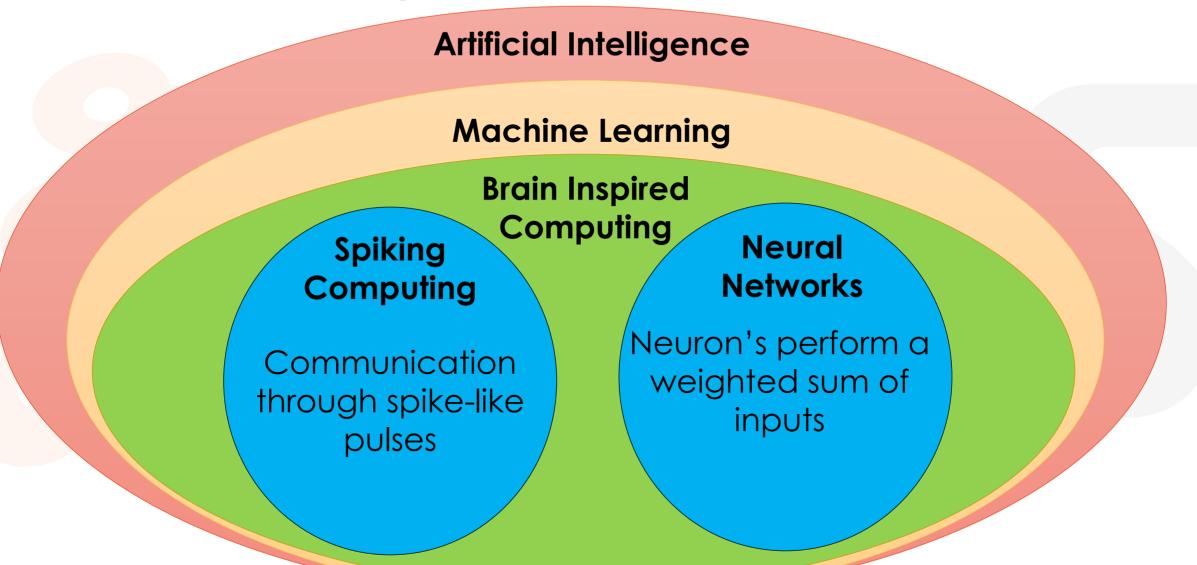
Weight – scaling of a signal by a synapse.

There are approximately 10¹⁴-10¹⁵ synapses in the average human brain



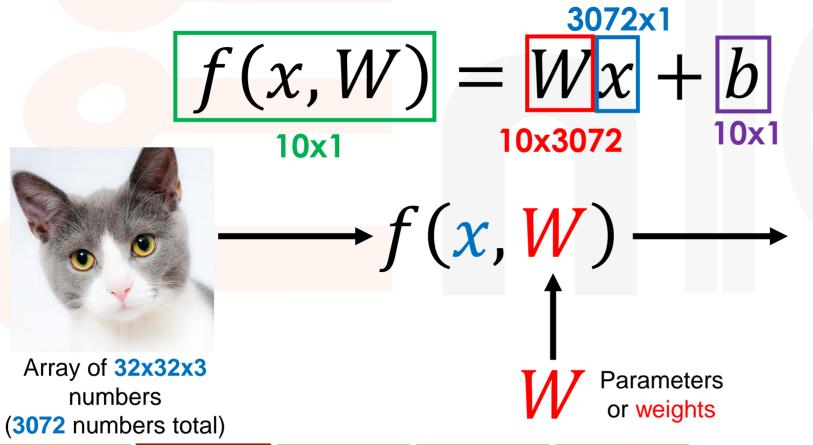
output axon

Artificial Intelligence



Linear Classification

• Given a 32x32 RGB image from the CIFAR10 database. can we use a linear approach to classify the image?



airplane automobile bird cat deer dog frog horse ship truck

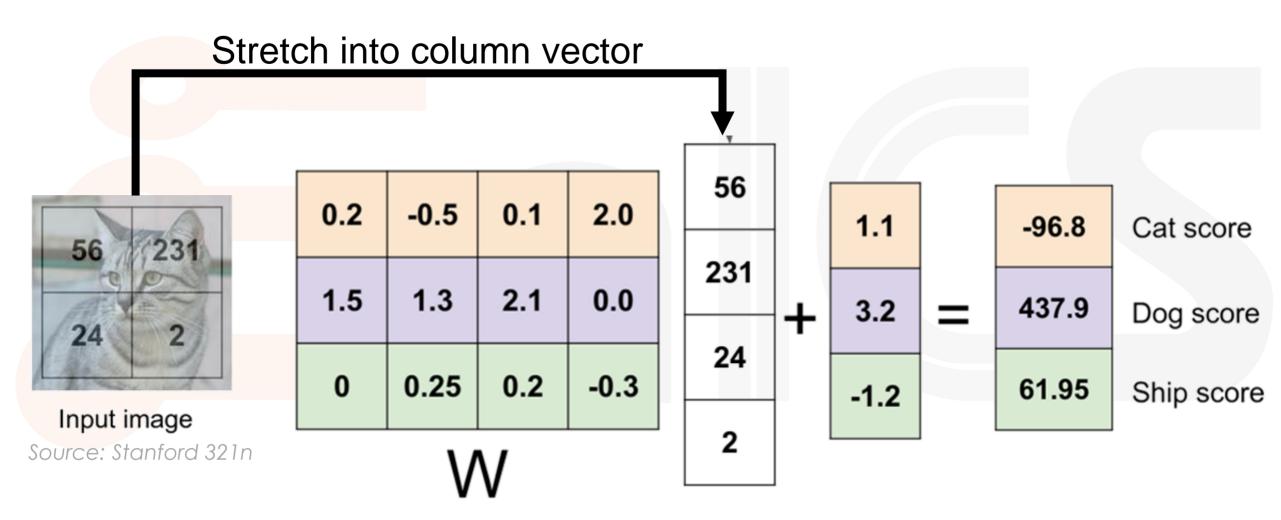
CIFAR10

50,000 images of 32x32x3

Source: Stanford 321n

10 numbers giving class scores

Example with 4 pixels and 3 classes



But Linear Classifiers are Limited

- Hard cases for a linear classifier
 - Can you draw a line to separate the two classes?

number of pixels > 0 odd

Class 2

number of pixels > 0 even

Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

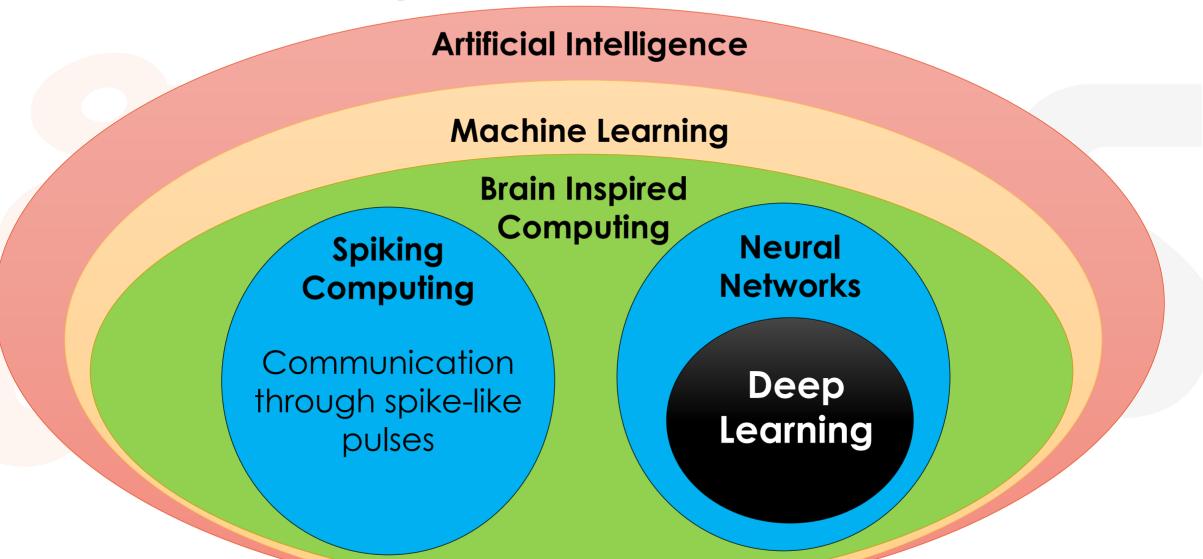
Class 1:

Three modes

Class 2

Everything else

Artificial Intelligence



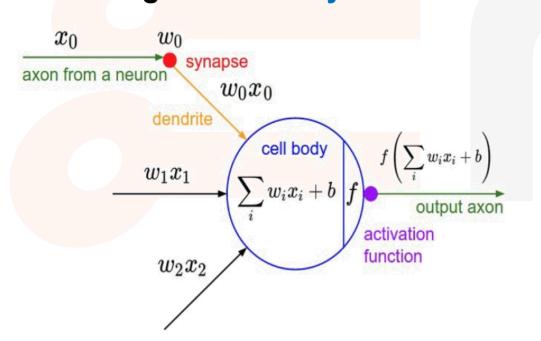
Deep Neural Networks

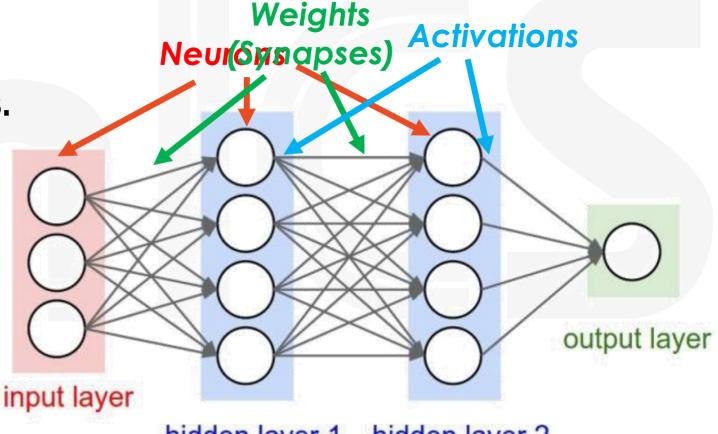
$$Y_j = \operatorname{activation}\left(\sum_{i=1}^3 W_{ij} \times X_i\right)$$

A neuron's computation involves a weighted sum of the input values

followed by some non-linearity.

 Deep Neural Networks (DNNs) go through several layers of neurons.



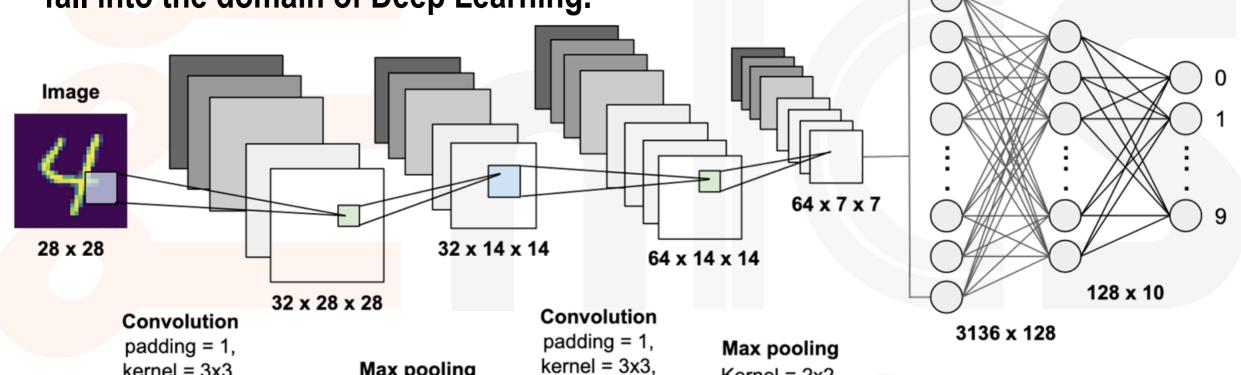


hidden layer 1 hidden layer 2

Source: Stanford 321n © Adam Teman, 2020

Deep Learning

 Neural networks with many (more than three) layers fall into the domain of Deep Learning.



kernel = 3x3,

stride = 1

ReIU

Max pooling

Kernel = 2x2,Stride = 2

stride = 1 ReIU

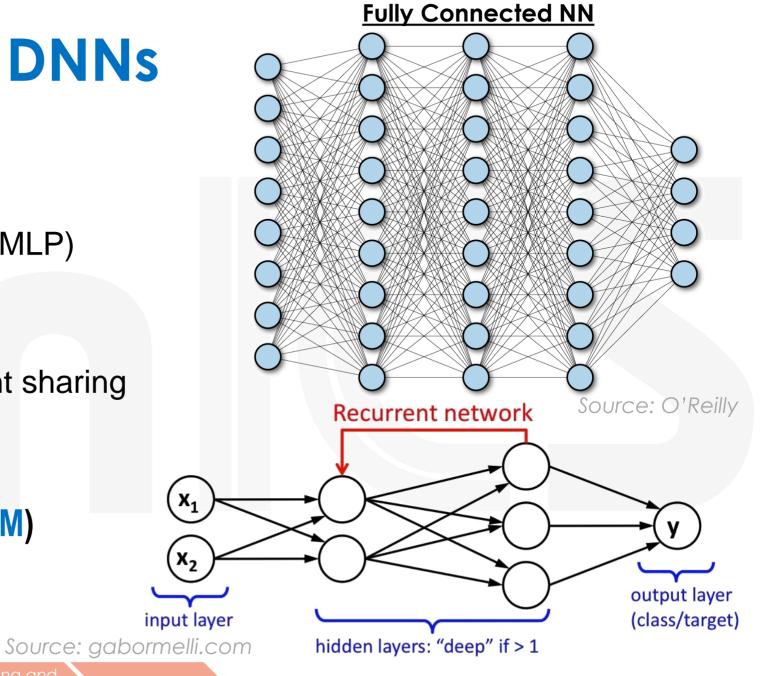
Kernel = 2x2.Stride = 2

Flatten

Source: towardsdatascience.com

Popular Types of DNNs

- Fully-Connected NN
 - Feed forward.
 - a.k.a. multilayer perceptron (MLP)
- Convolutional NN (CNN)
 - Feed forward,
 - sparsely-connected w/ weight sharing
- Recurrent NN (RNN)
 - Feedback
- Long Short-Term Memory (LSTM)
 - Feedback + storage

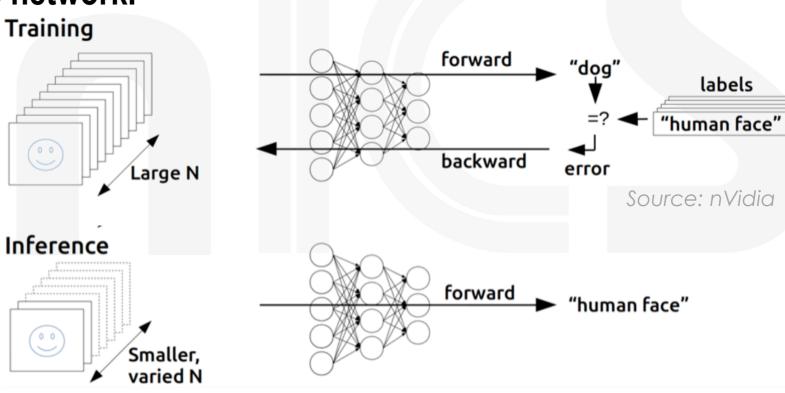


Training and Inference

Machine Learning algorithms, such as DNNs, have to learn their task.

• The learning phase is called *Training* and it involves determining the values of the weights and bias of the network.

- Supervised Learning: training set is labeled
- Unsupervised Learning: training set is unlabled
- Reinforcement Learning maximize the reward.
- After learning, running with the learned weights is known as *Inference*.



Datasets

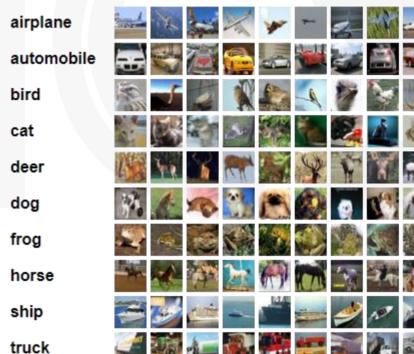
- The three components that enabled the breakthrough of deep learning are:
 - Computational Power (Moore's Law)
 - Parallelism for Training (GPUs)
 - Availability of labeled datasets.
- Several popular datasets for image classification have been developed:
 - MNIST: digit classification
 - CIFAR-10: simple images
 - ImageNet: many categories of images
 - PASCAL VOC: object detection
 - MS COCO: detection, segmentation, recognition
 - YouTube data set: 8 Million videos
 - Google audio set: 2 Million sound clips

Datasets

MNIST and CIFAR-10

- MNIST (1998)
 - Handwritten digits
 - 28x28x1 (B&W) pixels
 - 10 classes (0-9)
 - 60,000 Training
 - 10,000 Testing

- CIFAR-10 (2009)
 - Simple color images
 - 32x32x3 (RGB) pixels
 - 10 mutually exclusive classes
 - 50,000 Training
 - 10,000 Testing



A38073857 0146460243 7/28169861

http://yann.lecun.com/exdb/mnist/

ImageNet (2010)

• ImageNet:

- A large scale image data set
- 256x256x3 (RGB) pixels
- 1000 classes
 e.g., 120 different breeds of dogs
- 1.3 Million Training images
- 100,000 Testing images
- 50,000 Validation images

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - Accuracy of classification reported based on top-1 and top-5 error

http://www.image-net.org/challenges/LSVRC/

Training NNs

Section 1b: Training Neural Networks

Part 1: Introduction to Deep Learning

Lecture Series on Hardware for Deep Learning

Loss Function

- A loss function tells how good our current classifier is.
 - Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ Where x_i is image and y_i is (integer) label
 - Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

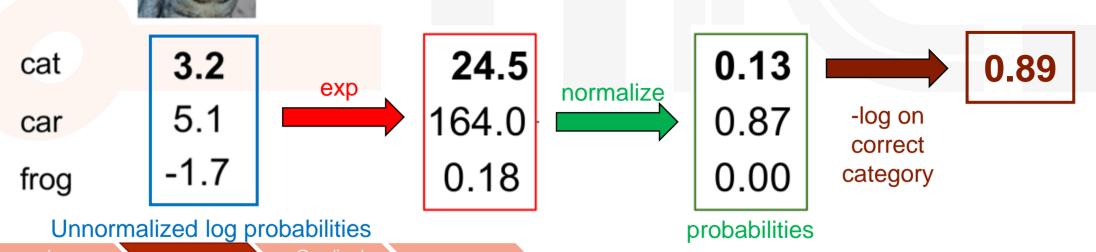
- Popular loss functions:
 - Multiclass SVM loss $L_i = \sum_{j \neq y_i} \max(0, s_j s_{y_i} + 1)$
 - SoftMax

SoftMax Classifier

• Treat the scores (outputs) of our classifier as unnormalized log probabilities of

the classes:
$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 $s=f(x_i;W)$

• We want to maximize the log likelihood or alternatively minimize the negative log likelihood of the correct class: $L_i = -\log(\frac{e^{sy_i}}{\sum_i e^{s_j}})$



Optimization through Gradient Descent

- We want to reduce our loss to reach a minimum
 - Advance in the opposite direction of the derivative
- We could find the derivative of the loss function at the current point numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- But that's a lot of work!
 - Instead, just find the analytic gradient... $\nabla_W L$

current W:

```
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
```

W + h (first dim):

```
[0.34 + 0.0001, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]
```

gradient dW:

```
[-2.5,
?,
?,
(1.25322 - 1.25347)/0.0001
= -2.5
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}?,
?,...]
```

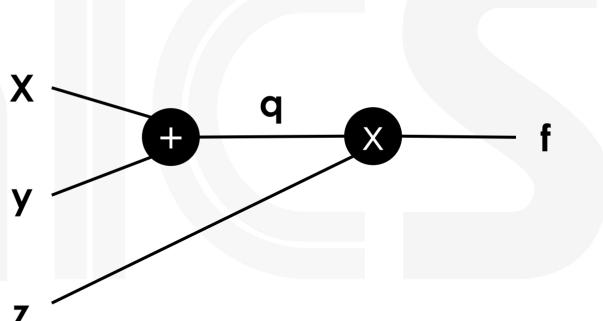
Backpropagation

- We can use backpropagation ("backprop") to find the analytic derivative.
- Let's use a simple example:
 - Our function: f(x,y,z) = (x+y)z
- Let's build a computational graph:

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

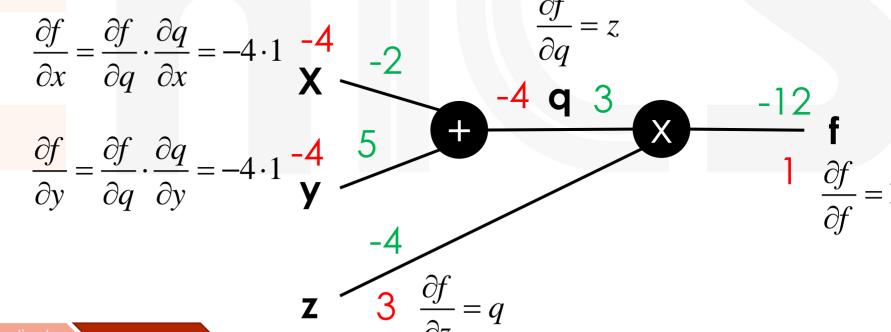
$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

• Remember the chain rule? $\frac{\partial f}{\partial u} = \frac{\partial f}{\partial a} \frac{\partial c}{\partial b}$



Backpropagation

- So, let's assume we have some current value in our network:
 - e.g., x=-2, y=5, z=-4
- We will first run inference through the network.
- Now find the derivative of the output to each input



Another Example
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$\frac{\partial f}{\partial x}(xy) = y$$

$$\frac{\partial f}{\partial w_0} = x_0 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial a} = \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial x_0} = w_0 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial w_1} = x_1 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial w_1} = x_1 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial a} = \frac{1}{h^2} e^k$$

$$\frac{\partial}{\partial a} = \frac{1}{h^2} e^k$$
 $\frac{\partial f}{\partial a}(x+y) = 0$

$$df(ax) = d$$

$$df(e^x) = e^x$$

$$df\left(\frac{1}{x}\right) = -\frac{1}{x^2}$$

$$df(c+x) = 1$$

$$\mathbf{W}_{1}$$

$$\frac{\partial f}{\partial b} = \frac{1}{h^2} e^k$$

$$-\frac{1}{2}$$
 $\frac{\partial f}{\partial x} = 1$

$$X_1$$

$$\frac{\partial f}{\partial x_1} = w_1 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial b} = \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial d} = \frac{1}{h^2} \epsilon$$

$$\frac{\partial f}{\partial k} =$$

$$\frac{\partial f}{\partial d} = \frac{1}{h^2} e^k \quad \frac{\partial f}{\partial k} = e^k \cdot \left(-\frac{1}{h^2} \right) \quad \frac{\partial f}{\partial g} = -\frac{1}{h^2} \quad \frac{\partial f}{\partial h} = -\frac{1}{h^2} \quad \frac{\partial f}{\partial f} = 1$$

$$\frac{\partial f}{\partial g} = -\frac{1}{h}$$

$$\frac{\partial f}{\partial h} = -\frac{1}{h}$$

$$\frac{\partial f}{\partial f} = i$$

$$\frac{\partial}{\partial x_1} = w_1 \frac{\partial}{\partial x_2} e^{x}$$

$$\mathbf{W_2} \quad \frac{\partial f}{\partial w_2} = \frac{1}{h^2} e^k$$

Another Example
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$\frac{\partial f}{\partial w_0} = x_0 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial w_0} = w_0 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial w_1} = w_0 \frac{1}{h^2} e^k$$

$$\frac{\partial f}{\partial w_1} = x_1 \frac{1}{h^2} e^k$$

$$\partial f = W \qquad a^k$$

$$\mathbf{W_2} \quad \frac{\partial f}{\partial w_2} = \frac{1}{h^2} e$$

$$\frac{\partial f}{\partial x_4} = -0.6$$

$$\frac{\partial f}{\partial w_2} = 0.2$$

Backprop

Batch Training

- The straightforward way to update weights:
 - Run inference on all training samples and update weights with the average loss.
 - But this is very costly!
- Instead, calculate the loss for a batch of inputs.
 - Select a batch size, i.e., n-sample subset of the entire training set.
 - Calculate the average loss for the batch of samples.
 - Backprop and update weights.
- A run through the full training set is called an epoch.
- Another option to reduce training time is called Transfer Learning
 - Start with a trained model and adjust to the new model or data set.

Main References

- Stanford C231n, 2017
- Sze, et al. "Efficient Processing of Deep Neural Networks: A Tutorial and Survey", Proceedings of the IEEE, 2017
- Sze, et al. ISCA Tutorial 2019