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The Neuron

* There are ~86 Billion neurons in the human brain There are
— inputs to neurons approximately

Axons — outputs from neurons

Synapse — connection between axon and dendrite
Activation — signal propagating between neurons
Weight — scaling of a signal by a synapse__*° e
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Linear Classification

* Given a 32x32 RGB image from the CIFAR10 database, o

can we use a linear approach to classify the image?
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Example with 4 pixels and 3 classes

Stretch into column vector
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But Linear Classifiers are Limited

 Hard cases for a linear classifier
« Can you draw a line to separate the two classes?

Class 1: Class 1: Class 1:
number of pixels > 0 odd 1<=L2norm <=2 Three modes
Class 2: Class 2: Class 2:
number of pixels > 0 even Everything else Everything else

Linear
Classification
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Deep Neural Networks }’j=activati0n(ilﬁfx)ff]

A neuron’s computation involves a weighted sum of the input values
followed by some non-linearity. Weights

* Deep Neural Networks (DNNs) go NeulSpsgpses)
through several layers of neurons.
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Deep Learning

* Neural networks with many (more than three) layers
fall into the domain of Deep Learning.

Image
| 1
\‘Eﬁ/_ — 64x7x7
28 x 28 32x14x 14 64 x 14 x 14
32 x 28 x 28 .
Convolution Convolution 3136 x 128
padding = 1, padding = 1, Max pooling X
kernel = 3x3, Max pooling kernel = 3x3, Kernel =2x2,  Fjatten
stride = 1 Kernel = 2x2, Str'df =1 Stride = 2
+ Stride = 2
RelU RelU

Deep
12 Learning



Popular Types of DNNs

Fully-Connected NN

» Feed forward,
 a.k.a. multilayer perceptron (MLP)

Convolutional NN (CNN)

* Feed forward,
 sparsely-connected w/ weight sharing

Recurrent NN (RNN)
 Feedback

Long Short-Term Memory (LSTM)
* Feedback + storage

Deep
Learning
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Training and Inference

* Machine Learning algorithms, such as DNNs, have to learn their task.
* The learning phase is called Training and it involves determining the values of

the weights and bias of the network.

. Supervised Learning: ~ T"aining
training set is labeled |
» Unsupervised Learning: 1,
training setis unlabled ¥ Aarge N
* Reinforcement Learning '
maximize the reward. Inference
* After learning, running R
with the learned weights L e
is known as Inference. 4 variedN

ligellgligleKelgle
14 Inference

Forward » “dog”
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backward error
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Datasefts

* The three components that enabled the breakthrough of deep learning are:

- Computational Power (Moore's Law)
 Parallelism for Training (GPUS)
 Avallability of labeled datasets.

 Several popular datasets for image classification have been developed:

« MNIST: digit classification

* CIFAR-10: simple images

* ImageNet: many categories of images

« PASCAL VOC: object detection

« MS COCO: detection, segmentation, recognition

* YouTube data set: 8 Million videos
« Google audio set: 2 Million sound clips




MNIST and CIFAR-10

» MNIST (1998)

« Handwritten digits

28x28x1 (B&W) pixels

10 classes (0-9)

60,000 Training

10,000 Testing
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+ CIFAR-10 (2009)

« Simple color images

« 32x32x3 (RGB) pixels

« 10 mutually exclusive classes
« 50,000 Training
« 10,000 Testing
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ImageNet (2010)

» ImageNet: * ImageNet Large Scale Visual

« Alarge scale image data set
256x256x3 (RGB) pixels

1000 classes

e.g., 120 different breeds of dogs
1.3 Million Training images
100,000 Testing images

50,000 Validation images

Recognition Challenge (ILSVRC)

« Accuracy of classification reported
based on top-1 and top-5 error
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Loss Function

* A loss function tells how good our current classifier is.

. Given a dataset of examples {(;, ;) }iv

Where x; is image and y; is (integer) label
* Loss over the dataset is a sum of loss over examples:

ZL T?a ys)

* Popular loss functions:
» Multiclass SVM loss Li =}, max(0,s; — sy, + 1)
« SoftMax




SoftMax Classifier

* Treat the scores (outputs) of our classifier as unnormalized log probabilities of

the classes: P(Y = k|X = z;) = 5; §I=UF (.- W)
» We want to maximize the log likelihood or alternatively Ui
minimize the negative log likelihood of the correct class: L; = —log( > Esj)
Wik J

cat 3.2 24.5 013 | s | 0.89
EXp normalize

car 5.1 | ) (1640 =) | 0.87 | ovon

frog -1.7 0.18 0.00 | category

Unnormalized log probabilities probabilities




Optimization through Gradient Descent

* We want to reduce our loss to reach a minimum
« Advance in the opposite direction of the derivative

* We could find the derivative
of the loss function at the
current point numerically
df(z) _ . f(@+h) - f(z)

dx h —0 h

* But that’s a lot of work!

* Instead, just find the
analytic gradient... Vw L

Gradient
21 Descent

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

.

(1.25322 - 1.25347)/0.0001
=-2.5

df(z) .. flz+h) - f(x)
N h

7,

?,...]
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Backpropagation

» We can use backpropagation (“backprop”) to find the analytic derivative.

* Let’s use a simple example:
» Our function: f(z,y,2) = (z +y)z

X
* Let’s build a computational graph: >a g
g=z+y 2=12=)

o 0
f=qz 5~ %8 19
Z
* Remember the chain rule? ¢ of g
0y  Oq 9y

Backprop
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Backpropagation

* So, let’s assume we have some current value in our network:
* €.0., X=-2,y=5,7=4

» We will first run inference through the network.

* Now find the derivative of the output to each input

o
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Another Example f(w,x) =

1

1 4+ e~ (WoXo+wix1+w3)
of
a(x)’)—y
of 1,
dwg H0pz° g:iek 1 1
Wo da hE Txty) =1 df (e¥) = e* df(;>=—p
Py et a df(ax) = a df(c+x) =1
0
of Xp f
= X{-—=€
ow; L h2
W, o
af
X1
o _ 1 «
ax, 1pz®

Backprop
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1 _I_ e —(Woxo +W1x1 +W2)

Another Example f(w,x) =

ox;  thz° W) aaf = hlz ¥ ] o 0w
W>
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Batch Training

* The straightforward way to update weights:

* Run inference on all training samples
and update weights with the average loss.

* But this is very costly!
* Instead, calculate the loss for a batch of inputs.

« Select a batch size, I.e., n-sample subset of the entire training set.
« Calculate the average loss for the batch of samples.
« Backprop and update weights.

* A run through the full training set is called an epoch.

 Another option to reduce training time is called Transfer Learning
 Start with a trained model and adjust to the new model or data set.
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