First Intfroduction
to LInux

Prof. Adam Teman
EnICS Labs, Faculty of Engineering

Bar-llan University
S February 2024

E n “Cs The Alexander Kofkin NA

Emerging Nanoscaled Faculty of Engineering

Integrated Circuits and Systems Labs

Linux

* Linux is a family of open-source Unix-like operating systems.

* The Linux kernel was released by Linus Torvalds in 1991.
* Provided under the GNU General Public License.

* Originally developed to provide a Unix experience for
personal computers based on x86

« Currently ported to more platforms than any other OS.
» Android is based on Linux.

* Linux is usually packaged as a distribution or “Distro”
« Red Hat, Fedora, Ubunto, CentOS, SUSE, others
« Commonly distributed with windowing system and
desktop environment (e.g., GNOME, KDE)

The Bash Shell

* Your interface into the operating system is the “shell”
« Allows you to run programs
« Give input to programs
 |Inspect the output of programs

* The “Bourne Again Shell” (bash) is the most popular Linux shell today.

« We will first open a “terminal”.
» This will provide us with a “prompt”

BASH

THE BOURME-AGALNM SHELL

Mate Terminal

File Edit View Search Terminal Help

[enicsnx02 i |

£ | Create Folder
Create Launcher...
| ¥ Create Document

Organize Desktop by Name
v Keep Aligned

Change Desktop Background

Hello, World!

 Every programming course starts with a “Hello, World!”
» To tell bash to print “Hello, World!”, we’ll use the command echo:

S echo ‘Hello, World!’

* echo is the name of the program and ‘Hello, World!’ is the argument.

« We can run other programs, try, for example, date:

S date

Paths

* How does the shell know how to find the date or echo programs?
* |t searches through a list of locations on the file server.

 Where is this list stored?
* In an environment variable called PATH.

* To dereference a variable, we will use the $ character:
S echo $PATH

* We got a list of locations on the server, which are used to search for programs.
 But where did it find the echo and date programs?

$ which date
* We see that these are executable files stored in the /bin (=binaries) folder

* Alternatively, we could have run: s /i1 /echo ‘Hello, World!’

Navigating in the Shell

* So we saw that there are “locations” in the Linux environment
- / is the “root” of the filesystem, under which all directories and files lie.
* ~ is your “home” directory, but this is an alias.
* To see what the real path to your home directory is:

S pwd S echo $SHOME

H] 13

* pwd is short for “print working directory” — that’s “where we are” now
« We can navigate through directories with cd (change directory)

S cd .. S cd ./temanad

. is the “current” directory, while . . is the “parent” directory

Directory Contents

* To see what files and directories are in the current folder, use the 1s command
S 1s S 1ls ./Downloads

 Add flags and options (usually starting with a -) to modify a command’s behavior

S 1s -1
* To get a list of options use the -nh or --help flag or open the man page
S 1ls —--help S man 1s

 Use “globbhing” to match many strings
» ? Matches any single character S 1ls myfile?

* * matches any one or more characters S 1s myfile*

DOII. Files * because the file names begin with a .

« Many programs are configured using plain-text files known as dotfiles*

* Filenames that start with a . are hidden by 1s unless the -z flag is used.
$ 1ls -a

« Some important dotfiles are:
* ~/.bashrc, ~/.bash profile: Configure settings for your Bash shell.
* ~/.gitconfig: Configure git.
* ~/.vimrc: Configure VIM.
* ~/.ssh/config: Configures secure shell (ssh).

File Permissions

* Files are created with default permissions (read/write/execute access)

« Create an empty file with the touch command | $ touch myfile
« Show information about the file with 1s -1

S - file
1 @W ar 23 12:36 myfile

s —1

W — — — —

directory ~——"~—"~— -
or link owner group others owner group size last modified

* To change file permissions, use the chmod command:

* Make the file executable: chmod +x myfile
« Make the file writeable by other group members: chmod g+w myfile
« Use a bit mask to make the file readable/writeable by all: chmod 666 myfile

10

Redirection

* By default the input/output of your program is the terminal:

 |nput is from your keyboard
« Output is to the screen
* But you can “redirect” the input/output streams using < file and > file:

* Print "hello” to a file instead of the screen | s echo “hello” > myfile

* To see that it worked, use the cat command: $ cat myfile

* Now redirect our file to be used as the input to the cat command and write the
output into a new file:

S cat < myfile > myfile?2

 Append “world!” to the file
$ echo "world!’ >> myfile?Z

12

Other basic commands

* Create a directory

* Remove a directory

« Copy afile

* Rename (move) a file
* Delete a file

* Finding a file

S

mkdir mydir

rmdir mydir

cp myfile myfilecopy

mv myfilecopy myfile?

rm myfile?2

find . —name myfile
find . —-name myfile -exec rm {} \;

13

Other basic commands

« Seeing command history

* Viewing files

« Show the beginning or end of a file

» Compare files

$ history

cat myfile
more myfile
less myfile
vim myfile
nano myfile

v A A W

$ head myfile
S tail myfile

S diff myfile myfile?2

14

° * Usually find this character using shift+\
P I pes next to the return key on your keyboard.

* The pipe (|) operator® lets you “chain” programs
such the output of one is the input of another:

S 1s -1 | grep my*

* |In this example, we took the output of the 1s -1 command and sent it to the
grep command.
* grep is an extremely powerful shell command that lets you select lines of text

in a file that match a given string. In this case, if the line of text contains any
word starting with “my” (e.g., myfile, myfile2)then they will be printed out.

* You can get the output of a command as a variable using $ (cMD)

S echo “The current date is $(date)”

15

Aliases and Symbolic Links

* Instead of writing out a whole (complex) command, use an alias with the syntax
alias alias name='"command to alias argl arg2"

$ alias 11=%“1s —-1ltrh”
S alias gv=“grep -v”
S alias grl=“grep —--color —--line-number’’

* To see a list of all configured aliases, type alias.

S alias | less

* And you can create a link (shortcut) to a file or directory for quick access:

$ 1ln -s myfile mylink

16

Writing an executable program

* Let’s start by writing an executable “Hello, World!” program:
» Create a file that prints out “Hello, World!”: * Note our use of single and double quotes.

S echo "echo “Hello,

World”’ > hello

* Now try to execute the file:
 Ah, we need to make it executable... chmod u+x hello

 But how can we tell it to use Bash (and not something else) to run our program?

- We'll use the very popular VIM text editor: | s vim hello

S

./hello

({1}

Press “1i" to go into “insert” mode.

Now type:
Hit esc to exit “insert” mode.
To save and exit, type :wg

#! /bin/bash
echo "hello"

17

Variables

* The shell, like other programming languages, has variables.

* In Bash, we just write var=value (no spaces!)to define a variable
S foo=bar
« Pay attention that using quotations () will substitute values, while *” will not:

S echo “Sfoo” S echo ‘Sfoo!

» Variables are local to the shell, so they aren’t known to programs
 |Instead, you can use environment variables, such as SPATH, SHOME.
* You can access environment variables from within programs.

* To see a list of environment variables, type env.
. . . $ env | more
* To define a new environment variable, type export:

S export charlie=brown

18

Shell Scripting

» Bash supports regular control flow commands, such as i f, case, while, for.
* In addition, you can write scripts, and pass arguments to them:

* S0 —name of the script
$1-59 — arguments

s@ all the arguments

S+# number of arguments
S? — exit status of previous

* You can also call a script
written in another language:

#!/bin/python
print (“hello, world!”)

#!/bin/bash

echo "Running program S$0 with S$S# arguments”

for file in "$Q@"; do
grep foobar "$file" > /dev/null 2> /dev/null
If pattern not found, grep has exit status 1
Redirect STDOUT and STDERR to a null register
if [[$? -ne 0]1]; then

echo "Adding foobar to $file"
echo "# foobar" >> "S$file"
fi
done

19

Compressing and Uncompressing

* To compress a file in Linux, you can use the zip command:

$ zip myfile.zip myfile.txt

 Touncompress afile: |5 unzip myfile.zip

* But in Linux we often compress a whole folder using tar:

S tar -czvf name-of-archive.tar.gz /path/to/directory-or-file

* Then extract the archive:

S tar -xzvf archive.tar.gz

20

Job Control

« Sometimes you need to send a software interrupt to your process, while it is

still running (or possibly stuck...)

 Ctrl-c: Sends a SIGINT signal to the process, usually killing it.
 Ctrl-\:Sends a SIGQUIT signal to the process, killing it.

* Ctrl-z:3Sends a SIGSTP signal that pauses a process.

To continue a process after pausing it, type the £g command.
To continue running the process in the background, type the bg command.

« To start a command running in the background, use &.

S firefox &

* To see all unfinished jobs (run from this terminal) type jobs.

 The jobs are listed as [n]. You can control the specific job with $n.
« For example, move the first process to the foreground using fg %1.

 Kill the second process using kill %2.

* |f you have some stubborn GUI that won't die, use xkil1.

21

Job Control (cind.)

 To see all running processes, use the ps command.
* ps Will list all process running in this terminal

 ps —u username Will list all the processes associated with a specific user

* ps -A will show all running processes

* For a graphical representation, use the top or htop commands

top - 15:52:50 up 10:52, 1 user, load average: ©.08, 0.01, 0.05 1 []]
Tasks: 232 total, 1 running, 229 sleeping, 1 stopped, 1 zombie 2 [
sCpu(s): @.5 us, 8.1 sy, @.8 ni, 99.4 id, 0.8 wa, 9.0 hi, 0.8 si, 0.0 st 3 0[]
KiB Mem : 16266504 total, 14004452 free, 1047116 used, 1214936 buff/cache 4 1
KiB Swap: 12582908 total, 12582908 free, 0 used. 14763592 avail Mem Mem[|||
Swpl

PID USER NI VIRT RES %CPU %MEM TIME+ COMMAND
12648 temanad 20 0 3850708 224352 78764 5 2.0 1.4 1:20.82 gnome-shell
12423 temanad 200 0 304732 89764 35784 5 0.7 0.6 0:14.16 Xvnc

627 root 20 0 90608 3260 23365 0.3 0.0 0:03.22 rngd 12403 root 20 0 172M 19208 2452 S 0.7 0.1 0:0
12783 temanad 20 0 902920 27492 207365 6.3 0.2 0:02.61 goa-daemon 12423 temanad 20 0 207M 89764 35784 S 0.7 0.6 0:1
13472 temanad 20 © 756588 39504 17576 5 0.3 0.2 0:08.10 gnome-terminal- 12659 temanad 20 0 3I760M 2719M 78768 S ©.7 1.4 8:1

« Sort jobs in top by memory consumption by pressing shift-M.

+ Kill a job from top by pressing k and then entering the PID.

1.166/15.5G]

%

L= == I S]

(=T]
5GP of
e e ot

0K/12.08G]

Tasks: , Tl
Load average: 0.0
Uptime:

71.34 fusr/shin/xrdp --nodaemon
4,29 Xvnc :1@ -auth .Xauthority -g
5.14 fusr/bin/gnome-shell

22

And some cool commands to finish

* Sort words in a file with the sort command:

S sort names.txt

S sort —-r names.txt

* Get rid of duplicates with the uniqg command:

S unig names.txt

e Count the number of words in a file:

S wC names.txt

$ sort names.txt | unig

$ sort names.txt | unig | wc

23

The End

* But really, it’s just the beginning...

| LINUX: A TRUE STORY:

WEEK ONE
HEY T35 Youkr COUSIN
T GOT A NEW COMPUTER
BUT DONT WANT WINDOWS,
CAN YCU HELP ME \‘\}

INSTALL “LINUX™?

SURe. <~

WEEK TWO |

IT SAYS MY XORG

IS BROKEN. WHAT'S
AN "XORG"? \JHERE
CAN I LOOK THAT Up

/
HMM,
AL LEMME
SHOW YOu
MAN PrGES,

| \WJEEK SIx

DUE TO AUTO -
CONFIG ISSUES, TM
LEAVING UBUNTD
FOR DEBAN.

(

WEEK TWELVE

JH
Mﬂﬁ
P
™ UHOM.

YOU HAVEN THMEED'
YOUR PHONE. IN DAY,

CANT SLEEP
MusT comPie
KERNEL.

“Im \11
Q)

L7 =

PARENTS: TRLK T YOUR,
KIDS ABOUT UNUX.. .
BEFORE. SOMEBODY Elsg DOES,

	Default Section
	Slide 1: First Introduction to Linux
	Slide 3: Linux
	Slide 4: The Bash Shell
	Slide 5: Hello, World!
	Slide 6: Paths
	Slide 7: Navigating in the Shell
	Slide 8: Directory Contents
	Slide 9: Dot Files
	Slide 10: File Permissions
	Slide 11: Redirection
	Slide 12: Other basic commands
	Slide 13: Other basic commands
	Slide 14: Pipes
	Slide 15: Aliases and Symbolic Links
	Slide 16: Writing an executable program
	Slide 17: Variables
	Slide 18: Shell Scripting
	Slide 19: Compressing and Uncompressing
	Slide 20: Job Control
	Slide 21: Job Control (ctnd.)
	Slide 22: And some cool commands to finish
	Slide 23: The End

