
5 February 2024

First Introduction
to Linux
Prof. Adam Teman

EnICS Labs, Faculty of Engineering

Bar-Ilan University

February 5, 2024© Adam Teman,

Linux

• Linux is a family of open-source Unix-like operating systems.

• The Linux kernel was released by Linus Torvalds in 1991.

• Provided under the GNU General Public License.

• Originally developed to provide a Unix experience for

personal computers based on x86

• Currently ported to more platforms than any other OS.

• Android is based on Linux.

• Linux is usually packaged as a distribution or “Distro”

• Red Hat, Fedora, Ubunto, CentOS, SUSE, others

• Commonly distributed with windowing system and

desktop environment (e.g., GNOME, KDE)

3 Photograph by Kimmo Mäntylä

February 5, 2024© Adam Teman,

The Bash Shell

• Your interface into the operating system is the “shell”

• Allows you to run programs

• Give input to programs

• Inspect the output of programs

• The “Bourne Again Shell” (bash) is the most popular Linux shell today.

• We will first open a “terminal”.

• This will provide us with a “prompt”

4

February 5, 2024© Adam Teman,

Hello, World!

• Every programming course starts with a “Hello, World!”

• To tell bash to print “Hello, World!”, we’ll use the command echo:

• echo is the name of the program and ‘Hello, World!’ is the argument.

• We can run other programs, try, for example, date:

5

$ echo ‘Hello, World!’

$ date

February 5, 2024© Adam Teman,

Paths

• How does the shell know how to find the date or echo programs?

• It searches through a list of locations on the file server.

• Where is this list stored?

• In an environment variable called PATH.

• To dereference a variable, we will use the $ character:

• We got a list of locations on the server, which are used to search for programs.

• But where did it find the echo and date programs?

• We see that these are executable files stored in the /bin (=binaries) folder

• Alternatively, we could have run:

6

$ echo $PATH

$ which date

$ /bin/echo ‘Hello, World!’

February 5, 2024© Adam Teman,

Navigating in the Shell

• So we saw that there are “locations” in the Linux environment

• / is the “root” of the filesystem, under which all directories and files lie.

• ~ is your “home” directory, but this is an alias.

• To see what the real path to your home directory is:

• pwd is short for “print working directory” – that’s “where we are” now

• We can navigate through directories with cd (change directory)

• . is the “current” directory, while .. is the “parent” directory

7

$ echo $HOME$ pwd

$ cd .. $ cd ./temanad

February 5, 2024© Adam Teman,

Directory Contents

• To see what files and directories are in the current folder, use the ls command

• Add flags and options (usually starting with a -) to modify a command’s behavior

• To get a list of options use the -h or --help flag or open the man page

• Use “globbing” to match many strings

• ? Matches any single character

• * matches any one or more characters

8

$ ls

$ ls -l

$ ls --help $ man ls

$ ls ./Downloads

$ ls myfile*

$ ls myfile?

February 5, 2024© Adam Teman,

Dot Files

• Many programs are configured using plain-text files known as dotfiles*

• Filenames that start with a . are hidden by ls unless the -a flag is used.

• Some important dotfiles are:

• ~/.bashrc, ~/.bash_profile: Configure settings for your Bash shell.

• ~/.gitconfig: Configure git.

• ~/.vimrc: Configure VIM.

• ~/.ssh/config: Configures secure shell (ssh).

9

* because the file names begin with a .

$ ls -a

February 5, 2024© Adam Teman,

File Permissions

• Files are created with default permissions (read/write/execute access)

• Create an empty file with the touch command

• Show information about the file with ls -l:

• To change file permissions, use the chmod command:

• Make the file executable: chmod +x myfile

• Make the file writeable by other group members: chmod g+w myfile

• Use a bit mask to make the file readable/writeable by all: chmod 666 myfile

10

$ touch myfile

$ ls -l myfile

-rw-r--r--. 1 temanad engguest 0 Mar 23 12:36 myfile

owner group others
directory

or link
owner group size last modified

February 5, 2024© Adam Teman,

Redirection

• By default the input/output of your program is the terminal:

• Input is from your keyboard

• Output is to the screen

• But you can “redirect” the input/output streams using < file and > file:

• Print “hello” to a file instead of the screen

• To see that it worked, use the cat command:

• Now redirect our file to be used as the input to the cat command and write the

output into a new file:

• Append “world!” to the file

11

$ echo “hello” > myfile

$ cat myfile

$ cat < myfile > myfile2

$ echo `world!’ >> myfile2

February 5, 2024© Adam Teman,

Other basic commands

• Create a directory

• Remove a directory

• Copy a file

• Rename (move) a file

• Delete a file

• Finding a file

12

$ mkdir mydir

$ cp myfile myfilecopy

$ mv myfilecopy myfile2

$ rm myfile2

$ find . -name myfile

$ find . -name myfile –exec rm {} \;

$ rmdir mydir

February 5, 2024© Adam Teman,

Other basic commands

• Seeing command history

• Viewing files

• Show the beginning or end of a file

• Compare files

13

$ history

$ cat myfile

$ more myfile

$ less myfile

$ vim myfile

$ nano myfile

$ head myfile

$ tail myfile

$ diff myfile myfile2

February 5, 2024© Adam Teman,

Pipes

• The pipe (|) operator* lets you “chain” programs

such the output of one is the input of another:

• In this example, we took the output of the ls -l command and sent it to the

grep command.

• grep is an extremely powerful shell command that lets you select lines of text

in a file that match a given string. In this case, if the line of text contains any
word starting with “my” (e.g., myfile, myfile2) then they will be printed out.

• You can get the output of a command as a variable using $(CMD)

14

* Usually find this character using shift+\

 next to the return key on your keyboard.

$ ls –l | grep my*

$ echo “The current date is $(date)”

February 5, 2024© Adam Teman,

Aliases and Symbolic Links

• Instead of writing out a whole (complex) command, use an alias with the syntax
alias alias_name="command_to_alias arg1 arg2"

• To see a list of all configured aliases, type alias.

• And you can create a link (shortcut) to a file or directory for quick access:

15

$ alias ll=“ls –ltrh”

$ alias gv=“grep –v”

$ alias grl=“grep –-color –-line-number’’

$ alias | less

$ ln –s myfile mylink

February 5, 2024© Adam Teman,

Writing an executable program

• Let’s start by writing an executable “Hello, World!” program:

• Create a file that prints out “Hello, World!”:

• Now try to execute the file:

• Ah, we need to make it executable… chmod u+x hello

• But how can we tell it to use Bash (and not something else) to run our program?

• We’ll use the very popular VIM text editor:

• Press “i“ to go into “insert” mode.

• Now type:

• Hit esc to exit “insert” mode.

• To save and exit, type :wq

16

$ vim hello

#!/bin/bash

echo "hello"

$ echo ’echo “Hello, World”’ > hello

* Note our use of single and double quotes.

$./hello

February 5, 2024© Adam Teman,

Variables

• The shell, like other programming languages, has variables.

• In Bash, we just write var=value (no spaces!) to define a variable

• Pay attention that using quotations (“”) will substitute values, while ‘’ will not:

• Variables are local to the shell, so they aren’t known to programs

• Instead, you can use environment variables, such as $PATH, $HOME.

• You can access environment variables from within programs.

• To see a list of environment variables, type env.

• To define a new environment variable, type export:

17

$ foo=bar

$ echo “$foo” $ echo ‘$foo’

$ env | more

$ export charlie=brown

February 5, 2024© Adam Teman,

Shell Scripting

• Bash supports regular control flow commands, such as if, case, while, for.

• In addition, you can write scripts, and pass arguments to them:

• $0 – name of the script

• $1-$9 – arguments

• $@ all the arguments

• $# number of arguments

• $? – exit status of previous

• You can also call a script

written in another language:

18

#!/bin/bash

echo "Running program $0 with $# arguments”

for file in "$@"; do

 grep foobar "$file" > /dev/null 2> /dev/null

 # If pattern not found, grep has exit status 1

 # Redirect STDOUT and STDERR to a null register

 if [[$? -ne 0]]; then

 # If grep exited with status 1

 echo "Adding foobar to $file"

 echo "# foobar" >> "$file"

 fi

done
#!/bin/python

print (“hello, world!”)

February 5, 2024© Adam Teman,

Compressing and Uncompressing

• To compress a file in Linux, you can use the zip command:

• To uncompress a file:

• But in Linux we often compress a whole folder using tar:

• Then extract the archive:

19

$ zip myfile.zip myfile.txt

$ unzip myfile.zip

$ tar -czvf name-of-archive.tar.gz /path/to/directory-or-file

$ tar -xzvf archive.tar.gz

February 5, 2024© Adam Teman,

Job Control

• Sometimes you need to send a software interrupt to your process, while it is

still running (or possibly stuck…)

• Ctrl-c: Sends a SIGINT signal to the process, usually killing it.

• Ctrl-\: Sends a SIGQUIT signal to the process, killing it.

• Ctrl-z: Sends a SIGSTP signal that pauses a process.

To continue a process after pausing it, type the fg command.

To continue running the process in the background, type the bg command.

• To start a command running in the background, use &.

• To see all unfinished jobs (run from this terminal) type jobs.

• The jobs are listed as [n]. You can control the specific job with %n.

• For example, move the first process to the foreground using fg %1.

• Kill the second process using kill %2.

• If you have some stubborn GUI that won’t die, use xkill.
20

$ firefox &

February 5, 2024© Adam Teman,

Job Control (ctnd.)

• To see all running processes, use the ps command.

• ps will list all process running in this terminal

• ps -u username will list all the processes associated with a specific user

• ps -A will show all running processes

• For a graphical representation, use the top or htop commands

• Sort jobs in top by memory consumption by pressing shift-M.

• Kill a job from top by pressing k and then entering the PID.

21

February 5, 2024© Adam Teman,

And some cool commands to finish

• Sort words in a file with the sort command:

• Get rid of duplicates with the uniq command:

• Count the number of words in a file:

22

$ sort names.txt $ sort –r names.txt

$ uniq names.txt $ sort names.txt | uniq

$ wc names.txt $ sort names.txt | uniq | wc

February 5, 2024© Adam Teman,

The End

• But really, it’s just the beginning…

23

Source: xkcd

	Default Section
	Slide 1: First Introduction to Linux
	Slide 3: Linux
	Slide 4: The Bash Shell
	Slide 5: Hello, World!
	Slide 6: Paths
	Slide 7: Navigating in the Shell
	Slide 8: Directory Contents
	Slide 9: Dot Files
	Slide 10: File Permissions
	Slide 11: Redirection
	Slide 12: Other basic commands
	Slide 13: Other basic commands
	Slide 14: Pipes
	Slide 15: Aliases and Symbolic Links
	Slide 16: Writing an executable program
	Slide 17: Variables
	Slide 18: Shell Scripting
	Slide 19: Compressing and Uncompressing
	Slide 20: Job Control
	Slide 21: Job Control (ctnd.)
	Slide 22: And some cool commands to finish
	Slide 23: The End

