Behind the scenes of the SPICE Circuit Simulator

Prof. Adam Teman

2 April 2022

Introduction

Motivation

- Are you a "Spice Monkey"?
- According to Kenneth Kundert, there are two types of circuit designers:

Reactive users:

- Run the simulator and hope that nothing goes wrong.
- If something goes wrong, try different "tricks" hoping that one will solve it.
- If not solved, redesign circuit to avoid the problem or don't use simulator...

• Proactive users:

- Anticipate the problems.
- When one occurs, knows why and what to do.
- Let's turn you from *reactive* into *proactive* users!

- Circuit simulators started to appear in the late 1960s and early 1970s
- Two major contributors:
 - IBM ASTAP group
 - Berkeley SPICE group

Larry Nagel

Ron Rohrer

Don Pederson

- SPICE started as a class project of Prof. Ron Rohrer (called CANCER)
 - 1972: SPICE released by Larry Nagel (under Prof. Don Pederson)
 - 1975: SPICE2 released, 1989: SPICE3 released
- Why did SPICE succeed?
 - It was targeted at Integrated Circuit design
 - The source code was made available (for a small price)
 - It was disseminated by Berkeley graduates

Reminder: Kirchoff's Laws

• Kirchhoff's Current Law (KCL)

• The sum of all currents flowing out of a node at any instant is zero.

Kirchhoff's Voltage Law (KVL)

• The algebraic sum of all branch voltages around a loop at any instant is zero.

Associated Reference Direction

 Current runs from the high potential (+) to the low potential (-)

 $V_{AB} + V_{BC} + V_{CD} + V_{DA} = 0$

© Adam Teman, 2022

6 Source: Khan Academy

Circuit Simulation

• A circuit simulator is provided with:

- Circuit connectivity by means of *netlist*.
- Component behavior by means of *device models* and *model parameters*.
- The initial state of the circuit, known as initial conditions.
- Something that is input to the circuit, called stimulus.
- This information is used to:
 - Construct a set of ordinary differential equations that describe the circuit.
 - Solve the equations using nodal analysis*, which for a circuit containing resistors, capacitors and current sources is simply:

current (i) entering
nodes (v) from resistors
$$i(v(t)) + \frac{d}{dt}q(v(t)) + u(t) = 0$$

charge (q) entering
nodes (v) from capacitors $v(0) = a$ initial
 $v(0) = a$ initial
condition *In practice, modified rodal analysis is used

Main Analysis Types

DC Analysis

- Find the DC operating point of the circuit, i.e., all voltages and currents.
- Since it is not possible to explicitly solve a system of nonlinear algebraic equations, the systems are linearized and solved using Newton's method.
- This is an iterative process the run to convergence.

Transient Analysis

- Since there is no known method to solve the nonlinear differential equations, the simulator discretizes time.
- In other words, it solves a DC Analysis for each timestep based on initial conditions.

AC Analysis

• Find the DC operating point and assume linearity for small signals.

Example: A simple RC Circuit

```
RC Circuit
 \mathbf{2}
                                                                           \sim \sim
 3
   *** SETTINGS ***
                                                                   ·N1
                                                                                    ·N2
                                                                            R1
   simulator lang=spice
 4
 5
 6
   *** NETLIST ***
                                                            VIN
   ** Parameters **
 8
   .PARAM vdd=5 *Supply voltage
 9
10 ** Voltage Source **
11 *VIN N1 0 AC 5 SIN(0 5 1MEG)
12
   VIN N1 0 PULSE(0 vdd 1u) *5V pulse with 1us delay
13
14
   ** Elements **
15 R1 N1 N2 50
16
   C1 N2 0 1u
17
18
   *** Analysis ***
19
   *.AC DEC 10 0.1 100MEG
20
   *.PRINT AC V(N2)
21
   .TRAN 1n 200u *200us simulation with 1ns steps.
22
   .MEAS TRAN tau TRIG V(N2) VAL=0.000001 RISE=1
23
   + TARG V(N2) VAL='0.63*vdd' RISE=1
24
    .PRINT TRAN V(N2)
25
26
                spectre rc.cir
    .END
```


DC Analysis

Why DC Operating Point?

- Every simulation starts with calculation of the DC Operating Point (DC OP).
 - .op calculates the voltage, current, power, etc. at each component.
 - .dc computes the op point as a function of some independent variable.
 - .ac and .noise first compute the DC OP and the linearize the circuit around it to compute the small-signal behavior of the circuit.
 - .tran computes the DC OP for an initial state of the circuit.

Transient simulations are then basically a collection of sequential DC Ops,

starting with these initial conditions.

DC Analysis Starting point

• DC OPs are equilibrium points, i.e., do not change with time

- Independent sources are configured to be constant.
- $dv/dt=0 \rightarrow$ capacitors are open circuits.
- $di/dt=0 \rightarrow$ inductors are short circuits.

DC OP Starting State

- All Caps and Inductors are removed.
- DC Sources values are assigned.
- Node Sets are assigned.
- Time varying part of signal sources is ignored.
- Initial Conditions are ignored.
- Now Nodal Analysis can be applied. $i(v(t)) + \frac{d}{dt}q(v(t)) + u(t)$

DC OP Nodal Analysis

13

• We will write Kirchoff's Current Law (KCL) using branch constitutive equations.

DC OP Nodal Analysis

- We can directly write the conductance matrix:
- Diagonal Elements:
 - For element a_{ii} add all conductances <u>attached directly</u> to node i.
- Off Diagonal Elements:
 - For element a_{ij}, add all conductances connected directly between node *i* and node *j*.
 Multiply by -1.
 - For most off-diagonal elements there are no direct connections, so we get a sparse matrix, which is easy to solve.

-G₁

 $-\mathbf{G}_1 \quad \mathbf{G}_1 + \mathbf{G}_2 + \mathbf{G}_3 \bigg) \bigg| V_2$

 G_1

 V_1

DC OP Nodal Analysis

• Source Vector (I):

- For element *i* of the source vector, sum all source currents <u>flowing into</u> node *i* and subtract all currents <u>flowing out of</u> node *i*.
- Modified nodal analysis
 - Nodal analysis doesn't work with voltage sources
 - However, we know the voltage on its node, so we get an equation such as $V_1 = V_{in}$.
 - But we don't have an ohmic relationship on the voltage source, so we add another unknown to the voltage node vector (V), i.e. I_1
- Let's see this by example

 V_1

-G₁

 $-\mathbf{G}_1 \quad \mathbf{G}_1 + \mathbf{G}_2 + \mathbf{G}_3 \bigg| \bigg| V_2 \bigg|$

 G_1

Modified Nodal Analysis Exercise

Solution

Start with diagonals

- Add the conductances for each node.
- Next the off-diagonals
 - Minus the conductances between nodes
 - Zero for all others
- Current sources
- The voltage source adds a variable
 - I_1 added to node V_3
 - V_3 is equal to 1V

© Adam Teman, 2022

Newton-Raphson Method

Nonlinear Devices

Modified nodal analysis works for solving circuits made up of linear elements

- Resistors, capacitors, inductors, current/voltage sources
- However, not all devices are linear
 - Diodes,
 - BJTs

. . .

MOSFETs

• Nodal analysis attempts to solve equations of the form: $i(v_{dc}) + u_{dc} = 0$

- However, when nonlinear elements are part of the circuit, these are nonlinear algebraic systems and so cannot be solved directly.
- We need an algorithmic approach to find a solution

Solving Nonlinear Equations

- The Newton-Raphson algorithm (a.k.a. "Newton's Method"):
 - Makes an initial guess on the solution $v^{(0)}$
 - Linearizes the circuit around the guess $J(v^{(0)}) = \frac{d}{dv}f(v^{(0)})$
 - Solves the resulting system of linear equations $v^{(k)}$
 - Re-linearizes the circuit around the new point $J(v^{(k)}) = \frac{d}{dv} f(v^{(k)})$
 - Repeats until the process converges
- Formally, Newton's method solves:
 - By repeatedly solving $f(\hat{v}) = 0$

or
$$J(v^{(k)})(v^{(k+1)}-v^{(k)}) = -f(v^{(k)})$$

where $v^{(k+1)} = v^{(k)} - J^{-1}(v^{(k)})f(v^{(k)})$

Step 0: Initialize set $k \leftarrow 0$ choose $v^{(0)}$ Step 1: Linearize about $v^{(k)}$ $J(v) = \partial f(v^{(k)}) / \partial v$ where J_f is the Jacobian of fStep 2: Solve the linearized system $v^{(k+1)} \leftarrow v^{(k)} - J_f^{-1}(v^{(k)}) f(v^{(k)})$ Step 3: Iterate set $k \leftarrow k+1$ if not converged, go to Step 1

Newton-Raphson Method

- First thing is we need to linearize our non-linear elements
 - For example, a diode.
 - Linearizing the diode at the operating point gives us: $I_{\rm DO} = G_{\rm eq} \cdot V_{\rm DO} + I_{\rm eq}$
 - So, we replace the diode with this expression (equivalent to an I_{eq} current source in parallel to an R_{eq} resistor)
- But what is the operating point?
 - It looks like a chicken and egg question...
 - We need to know the operating point (I_{DO} and V_{DO}) to find G_{eq} and I_{eq} .
 - But we are looking for the operating point, aren't we?
 - Exactly, so we'll guess, solve and check if we were right.
 - If not, we'll use the solution as our guess, re-linearize, and solve again.

Slope=Gea

Vd

ы

ido.

lea

Vdo

Convergence

- When do we stop?
 - We'll never get the exact answer. So, we stop based on convergence criteria.
- The Residue Criterion
 - The first criterion is that KCL should be satisfied to a given degree $\left|f_n(v^{(k)})\right| < \varepsilon_f$
 - In practice, a relative criterion is used:
 - reltol is by default 0.001
 - iabstol is by default 1pA
- The Update Criterion
 - The second criterion is that the difference in error between the last two iterations is small:
 - In practice, a relative criterion is used:
 - vabstol is by default $1\mu V$

$$\left| \boldsymbol{v}_{n}^{(k)} - \boldsymbol{v}_{n}^{(k-1)} \right| < \boldsymbol{\mathcal{E}}_{x}$$

$$\left|v_{n}^{(k)}-v_{n}^{(k-1)}\right| < \texttt{reltol} \cdot \max\left(v_{n}^{(k)},v_{n}^{(k-1)}\right) + \texttt{vabstol}$$

 $\sum I(node_i) < reltol \cdot |I_{max}| + iabstol$

Changing Convergence Criteria

• Simulation \rightarrow Options \rightarrow Analog

ADE XL Te	st Edito	- testbench:Wri	teTest:1	
ses <u>V</u> ariables	<u>O</u> utputs	<u>i</u> mulation		cāden
Value	Ana Ty 1 tran	<u>M</u> DL Control Rel <u>X</u> pert Options <u>N</u> etlist <u>C</u> onvergence Aids	Arguments Analog Digital Mixed Signal	? & ×
	Outp	uts		? 🗗 🗙
		Name/Signal/Expr =	Value Plot Save	Save Options 🛆
	1 WW	L		
	2 WBL	-		

Opening from ADE Test Editor (L or XL)

Launch <u>F</u> ile <u>C</u>	reate <u>T</u> ools <u>O</u> ptions R <u>u</u> n Pa	a <u>r</u> asitics <u>W</u> indow <u>H</u> elp
No Parasitics	No Sweeps	🔄 🔦 🛄 🔤 Sensitivit
Data View	2 B S	
🗄 🔽 😪 Tests		Outputs Setup Res
testben	ch:WriteTest:1 r spectre	∕₀ • × @ □.
ran v tran	0 VAB("T")*2 conservative	Test testhench:WriteTest:1
⊡ 🍰 Desigr	Edit	testbench:WriteTest:1 testbench:WriteTest:1
Click to add	Delete	testbench:WriteTest:1
🖽 🗹 🎆 Global	Design	testbench:WriteTest:1
Parami	Load State	testbench:WriteTest:1
🖽 💆 🍡 Comer	Save State	testbench: WriteTest: 1
Setun Stat	Cimulator	testhench:WriteTest:1
Cetap Ota	<u>Simulator</u>	testbench:WriteTest:1
	High-Performance Simulation.	
Dete U	Model Libraries	testbench:WriteTest:1
	<u>T</u> emperature	testbench:WriteTest:1
Run Summary	Stim <u>u</u> li	testbench:WriteTest:1
1 Test	Simulation <u>F</u> iles	testbench:WriteTest:1
👿 - 5 Point Swe	MATLAB/Simulink	testbench:WriteTest1
📝 1 Corner	<u>E</u> nvironment	testbench: WriteTest:1
📃 Nominal Co	MDI Control	testbench:WriteTest:1
(9 .5)	BolVnort	
	Options	
	Detions	<u>Analog</u>
	Netiist Convergence Aide	<u>D</u> igital
History Item	Convergence Alus	Mixed Signal
_	<u>R</u> F	
∣ ∞mouse L:	MTS Options	м
1(2) Add new our	tput	

Opening from ADE-XL Data View

			Simula	tor Optio	ns		×
Ma	un 📔	Algorithm	Component	Check	Annotation	Miscellaneous	
тс	LERAN	CE OPTIONS					Â
reito		1e-3					
resi	dualtol						
vab	stol	1e-6					
iabs	tol	1e-12					
TE	MPERA	TURE OPTIONS					
tem	0	27					
tnon	n	27					
temp	peffects	vt to	all				
м	JLTITHF	READING OPTIO	NS				
				ОК	Cancel Defai	ults Apply He	elp

Simulation \rightarrow Options \rightarrow Analog (Main Tab)

What if the circuit fails to converge?

- Spectre performs maxiters iterations (default 150).
 - This usually only happens due to bad models or non-physical elements (non-continuities in the transfer curves).

CONVERGENCE PARAMETERS
homotopy gmin source dptran
ptran none all
restart yes no
maxiters 150
maxsteps 10000

DC Analysis → Options

- If convergence hasn't been met, it tries alternative methods to converge.
 - These are known as homotopies.
 - There are 5 homotopy algorithms: gmin, source, dptran, ptran, none
 - The default is all, which tries each algorithm one after the other.
 - If you see that your solution is converging with a certain homotopy, you can select it without going through all of the options, and thus reduce runtime.

	Simula	ator Optio	ns		×
Main	Algorithm Component	Check	Annotation	Miscellaneous	
CONVERGE homotopy	ENCE OPTIONS	e 🔲 dptran	I		\leq
limit	🗌 delta 🛄 log 🛄 dev				
gmethod	🔲 dev 🛄 node 🛄 both				

Simulation → Options → Analog (Algorithm Tab) ?

Convergence aids: minr

• Really small resistors cause terrible convergence problems.

- A $1\mu V$ drop over a $1n\Omega$ resistor results in 1kA of current.
- This is easily due to a "wrong guess" in the convergence process.

• The minr parameter:

- All resistors with R<minr will be converted to minr.
- The default is 1mΩ and shouldn't be reduced.

• In addition:

- You also shouldn't extract really small resistors when extracting parasitics...
- If you do, then increase iabstol.

Simulator Options							
Main Alg	gorithm	Component	Check	Annotation	Miscellaneous		
COMPONENT	OPTIONS	i					
scalem	1.0						
scale	1.0						
approx	🔄 no 🗧	yes					
macromodels	🗌 no 🗌	yes					
maxrsd							
auto_minductor	🔄 no 🗧	yes					
minr							
						_	

Simulation → Options → Analog (Component Tab)

© Adam Teman, 2022

Convergence aids: gmin

- Circuits with a *non-isolated solution* have a singular Jacobian
 - For example, if there is a floating component, there are infinite solutions.
 - Another example is a CMOS inverter with VIN=VDD/2.
 If the FETs have infinite output impedance in saturation, the output has a range of voltages that satisfy KCL.
- Therefore, Spectre automatically adds big resistors to ground between potentially floating nets.
 - This is done for all nonlinear components.
 - The size of the resistors is 1/gmin.
- Pay attention for MOSFETs, a resistor is added between the source and drain!

The danger of gmin

- The gmin resistors are very big, so they will not affect the calculation.
 - By default, $gmin=10^{-12}$ ($R=1T\Omega$).
- However, that may not always scale...
 - For example, for a 1V supply, this results in a "fake" current of 1pA through a closed transistor.
 - Therefore, when dealing with small currents, gmin should be reduced substantially.
- Example:
 - A cutoff ($V_{GS}=0$) transistor $I_D=11.7$ pA with the default gmin.
 - Changing gmin=10⁻¹⁸ shows only 9.8pA.
 - That is a 20% increase in leakage that is non-existent!!!

	S	imulator Opti	ons		X
Main 🛛 🖌	Algorithm Compone	ent Check	Annotation	Miscellaneous	
CONVERGE	NCE OPTIONS				_
homotopy	🔄 none 🔄 gmin 🛄 🔄 ptran 🛄 all	source 🔲 dptra	n		l
limit	🗌 delta 🛄 log 🔲 di	lev			
gmethod	🛄 dev 🛄 node 🛄 t	both			
try_fast_op	🗌 yes 🛄 no				
gmin	1e-12				
gmin_check	🗌 no 🔲 max_v_only	/ 🗌 max_only 🕻	all		
rforce	1				

Simulation \rightarrow Options \rightarrow Analog (Algorithm Tab)

ullCurrent 🕊	aueni			
Outputs Setup	Results	Diagnostics		
Detail	- ©	🖽 🕂 🗠	Replace	
Τe	est	Output	Nominal	S
Te transistorMeasure	est ments:offCurrent:1	Output	Nominal	S
Te transistorMeasure transistorMeasure	est ments:offCurrent:1 ments:offCurrent:1	Output IDC("/M0/D") IDC("/M0/S")	Nominal 11.87p -8.941p	S
Te transistorMeasure transistorMeasure transistorMeasure	est ments:offCurrent:1 ments:offCurrent:1 ments:offCurrent:1	Output IDC("/M0/D") IDC("/M0/S") IDC("/M0/B")	Nominal 11.87p -8.941p -2.403p	S

With gmin=10e-12 (default)

Convergence aids: nodeset

- Providing Newton's Method with an initial guess is beneficial:
 - If the guess is close enough to the real DC point, convergence will be faster and will most likely succeed.
- To bias a multi-stable circuit (e.g., latch) towards a particular solution, an initial guess is provided with the nodeset option.
 - Node Sets connect a DC source with a 1Ω resistor to a defined node.
 - Node Sets are <u>only used during the first convergence iteration</u> and then released.
 - Continuation methods (i.e., DC Sweep) use the previous solution as the initial guess for the next simulation.
 - The OP of the circuit can be saved to a file (write command) to load as a nodeset for a future simulation (with the readns command).

Node Set: 6T Example

• Without setting Node Sets, the 6T settles at its metastable state:

Add nodeset statements to q and qb

• Bitcell settles as expected:

Test	Output	Nominal
transistorMeasurements:6TnodeSetExample:1	VDC("/q")	1.1
transistorMeasurements:6TnodeSetExample:1	VDC("/qb")	139.1n

Saving and loading Node Sets

- Two options for writing a nodeset file:
 - write: File will include state after initial DC solution
 - writefinal: will include state after final DC sweep
- To load a saved nodeset as the initial guess of your simulation, use the readns option.
 - Note that readforce and force are slightly different (generally, don't use them).

homotop

restart

🔄 yes 🔄 no

DC Analysis \rightarrow Options

150

10000

- Another option is restart:
 - restart=yes (default) means the DC OP is calculated from the beginning if any change has occurred.
 - Usually, there's no reason to change this.

DC Analysis \rightarrow Options

q	1.099999	976167207
qb	1.391267	719681416e-07
vdd!	1.1	
vss!	Θ	
I0.M1:i	nt_d	1.09999976160319
I0.M1:i	nt_s	5.07922470231393e-11
I0.M2:i	nt_d	1.09999999998177
I0.M2:i	nt_s	1.09999976165384
I0.M3:i	nt_d	1.09999976189583
I0.M3:i	nt_s	1.09999999975509
I0.M4:i	nt_d	1.38796083077854e-07
I0.M4:i	nt_s	4.0189891047523e-10
I0.M5:i	nt_d	1.09999999961391
I0.M5:i	nt_s	1.3949457641895e-07
I0.M6:i	nt_d	1.39177502299711e-07
I0.M6:i	nt_s	1.0999999995642
I1.gnd_s	supply:p	-4.57967001638684e-17
I1.vdd_s	supply:p	-7.23916508216806e-11

DCop file (spectre.dc) for the 6T run

AC Analysis

Start with a DC Operating Point

An AC Analysis needs a bias point

- Equivalent to a DC Operating Point.
- In other words, the bias point is found by DC OP convergence
- However, due to phase shifts, the solution may be different
 - Usually due to setting a DC Voltage on sources.
- One thing to do to eliminate some of these differences is Do Not set the DC Voltage to 0 on Vpulse/VAC sources.

Comprise the AC Matrix

- Equivalent to the DC Matrix, with caps and inductors added as admittances.
 - *jwC* for a cap
 - 1/jwL for an inductor

Transient Analysis

Transient Analysis

- Transient analysis generates a system of non-linear ordinary differential equations.
- There is no known method to directly solve these equations.
- Instead discretize time:
 - e.g., using the Euler formulation

$$\frac{dq(t_i)}{dt} \approx \frac{q(t_i) - q(t_{i-1})}{t_i - t_{i-1}}$$

- This converts the problem into a system of non-linear algebraic equations.
- In other words:
 - First a DC OP is calculated (a.k.a. the "initial transient solution").
 - Then caps and inductors are added and their currents/voltages are linearized according to their integral values.
 - Non-linear elements are linearized.
 - Newton-Raphson is used to find the DC OP for each time step throughout the transient.

Transient Analysis

- Timesteps are important to tradeoff accuracy vs. runtime.
- After each timestep, the simulator:
 - Decides when the next timestep should be.
 - *Predicts* the values at the next timestep.
 - Calculates the DC OP at the next timestep.
 - If the error between the prediction and calculation is bigger than the Local Truncation Error (LTE), a closer (sooner) timestep is taken.
 - The maxstep parameter sets the maximum allowed size of a timestep.
- Breakpoints are set where pre-known discontinuities are simulated
 - Such as at VPULSE or VPWL points.
- Calculations around breakpoints are handled separately to ensure convergence.

Local Truncation Error

- LTE is the error between the calculated and predicted values at the next timestep.
- If the LTE is:
 - Smaller than the convergence criteria, the timestep is kept.
 - Otherwise, <u>a closer timestep is chosen</u>.

- pointlocal the largest value at this node during this iteration.
- local the largest value at this node so far.
- global the larges value at any node so far.

© Adam Teman, 2022

Integration method

- Caps and Inductors present an integral relationship:
 - $L*I = \int V dt \quad C*V = \int I dt$
- The method parameter sets the integration scheme.
 - euler (first order gear): only good around discontinuities $\frac{d}{dx}v(t_{k+1}) \approx \frac{1}{h} \left[v(t_{k+1}) - v(t_k)\right]$
 - trap (trapezoidal):
 good but can cause oscillations
 - gear2 (second order gear): good curve fitting but can damp oscillations.
- If you have "fake" oscillations, $\frac{d}{dx}v(t_{k+1}) \approx \frac{3}{2h}v(t_{k+1}) \frac{2}{h}v(t_k) + \frac{1}{2h}v(t_{k-1})$ it's due to using trapezoidal integration.

S			Trans	ient Optio	ns		
)	Time Ste	o Alg	orithm	State File	Output	Misc	
	INITIAL C		I PARAMET	ERS			
	ic	dc 📄	node 📃 de	v 🔲 all			
	skipdc	🔲 yes 🔲 rampup	🛄 no 🔲 autodc	🔜 waveless 🔲 sigrampu	; p		
	readic						
	CONVER	GENCE P	ARAMETER	S			
	readns						3
	cmin]
	INTEGRA	TION MET	HOD PARA	METERS			
	method	euler	🔄 trap	🗹 traponly	1		
	I	- yearz	_ yearzonn	y 🔲 napgea			
			ОК	Cancel	Defaults	Apply H	elp

Transient Analysis → Options (Algorithm Step Tab)

Fake Oscillations

trapezoidal integration

Gear-2 integration

© Adam Teman, 2022

errpreset

- Most of the important parameters for transient analysis are preset according to the errpreset parameter:
 - liberal Fast simulation but can lose accuracy.
 - moderate moderate simulation and accuracy.
 - conservative high accuracy but slow simulation.

🔳 Choosing Analyses -- Virtuoso® Analog Design E 🗙 Analysis 💌 tran 🔘 dc 🛛 🔘 ac O noise 🔘 Xf 🔘 sens 🔘 dcmatch 🔘 stb 🔘 pz 🔘 sp 🔘 envip O pss 🔘 pac 🔘 pstb 🔘 pnoise 🔘 pxf 🔘 psp 🔾 gpss 🔘 gpac 🔘 apnoise 🔘 qpsp 🔘 hb 🔘 qpxf 🔘 hbac hbnoise Transient Analysis Stop Time Accuracy Defaults (errpreset) 📃 conservative 🔛 moderate 🔛 liberal Transient Noise 📃 Dynamic Parameter Options... OK Cancel Defaults Apply Help Transient Analysis \rightarrow Options

Convergence Aids: Initial Conditions

- Initial Conditions are the same as Node Sets, but they are not removed after the first DC OP iteration.
 - Node sets are to assist in convergence.
 - Initial Conditions are to set a value at a node at the beginning of the transient.
 - DC OP and DCSweep analyses ignore Initial Conditions.
- Initial Conditions can be set on the test (.ic) or on caps/inds.

dc- ⊈ tran_	1m moderate	Test	Onomin		nsistor	Measurements	:6Tno	deSetExample:1	_ O X	
Elick to add	Delete	isistorMeasurements:6Tnoc isistorMeasurements:6Tnoc	Opening	g Irom ADE	tputs <mark> S</mark>	<u>i</u> mulation			cādence	Model na
⊡	Design Load State	isistorMeasurements:6Tnoc isistorMeasurements:6Tnoc	lest Edit	or (L or XL)	Ana	<u>M</u> DL Control			? . ×	Capacitar
Documents	Save State Simulator				_ Ту	Rel <u>X</u> pert	- • T	Arguments	e e e e e e e e e e e e e e e e e e e	Length
Data Histor	<u>Hig</u> h-Performance Simulation <u>M</u> odel Libraries				1 dC 2 trar	<u>O</u> ptions Notlict			C AC	Multiplier
Run Summary	Temperature Stim <u>u</u> li				2	Convergence Aid	is 🕨 🗖		(11)	Scale fac
 ✓ 1 Point Sweep ✓ 0 Corner ✓ Nominal Corner 	Simulation <u>Fi</u> les <u>M</u> ATLAB/Simulink <u>Environment</u>							Node Set Initial Condition		Initial con
	MDL Control	-							- and	Temperati
	Options								*	. Temperati
History Item Interactive.8	Convergence Aids	<u>N</u> ode Set Initial Condition	Opening from		Outp	uts			? 5 ×	Capacitor
mouse L:	MTS Options	M:	ADE-XL Data	View		ame/Signal/Expr	- Valu	ie Plot Save Save	Options	

On capacitor properties

	Add	i Instar	ice			
Library	analogLib				Browse	
Cell	cap					
View	symbol					
Names			_			
Array	Rows	1) c	olumns	1	
	🕰 Rotate 📃 🚺	۵ Sidewa	iys	🗲 Ups	ide Down	
Model nar	me					
Capacitan	ice	1p F				
Width						
Length						
Multiplier						
Scale fact	or					
Temp rise	from ambient					
Initial con	dition			-		
Temperatu	ure coefficient 1			_		
Temperatu	ure coefficient 2					
Capacitor	Area					
Capacitor	Perimeter					
	Hi	de Ca	ancel	Defau	ilts Hel	p

Saving Time Points

• Initial conditions can also be written to a file and loaded to a simulation:

- write: file that ic of *current simulation* are written to.
- writefinal: file that final state of simulation is written to.
- readic: file to read initial conditions from.
- Other saving options:
 - saveclock: periodically save in real time minutes.
 - **saveperiod**: periodically save in simulation time.
 - savetime: save at specific simulation timepoints.
 - savefile: name of the save file.
 - recover: start simulation from this file.
 - infotimes: times to save DC OP.
 - actimes: times to run AC simulation.

Time Step	Algorithm	State File	Output	Misc
inne erep			e aip ai	
STATE FILI	E PARAMETERS			
write	spectre.ic			
writefinal	spectre.fc	-		
SAVE-RES	TART PARAMETE	ERS		
SAVE-RES		ERS		
SAVE-RES saveclock saveperiod		ERS		
SAVE-RES saveclock saveperiod savetime		ERS		
SAVE-RES saveclock saveperiod savetime savefile		FRS		

Tran Analysis → Options (State File Tab)

	Transient Options					
Time Step	Algorithm	State File	Output	Misc		
INITIAL C	ONDITION PARAM	1ETERS				
ic [dc 🗌 node 🗌	dev 🛄 all				
skipdc	yes no rampup auto	📃 waveless odc 📃 sigrampup				
readic	_					
CONVER	GENCE PARAMET	ERS				
readns						
cmin						

Tran Analysis \rightarrow Options (Output Tab)

ANALYSIS DURING TRAN

Save Final Op Pt 🖌

Tran Analysis \rightarrow Options (Algorithm Tab)

Other Stuff

Tools and Versions

- The Cadence Custom IC Design includes the following tool suites:
 - Virtuoso (IC 6.1.8) including schematic and layout editors, Analog Design Environment (ADE), VIVA, etc.
 - Spectre (MMSIM) including APS, Spectre X, XPS, Spectre AMS Designer, Spectre FX, Spectre X-RF, etc.
- Different simulation options are:
 - Spectre SPICE engine
 - Spectre Accelerated Parallel Simulator (APS) for high-precision and scalable multi-core simulation
 - Spectre X for high-performance, high-capacity simulation
 - Spectre Extensive Partitioning Simulator (XPS), an advanced FastSPICE engine
 - Spectre AMS Designer for mixing these with Xcelium

Spectre APS

• Full baseline Spectre accuracy

- No change to core Spectre timestep algorithms
- Same use model as baseline Spectre technology
 - Just add +aps to the command line, or enable the ADE option
- Significant performance gain on single/multiple cores
 - 5-100x simulation performance vs. baseline Spectre technology for non-RF

Simulation Performance Mode

- 5-20x vs. baseline SpectreRF
- Much larger simulation capacity
 - Designs up to 10M transistors, 50M RCs (no reduction)
 - EM/IR simulations with > 500M elements
- Improved convergence over core Spectre technology

Unless your design is trivial in size, use the APS option

High-Performance Simulation Options

○ Spectre ● APS ○ XPS MS

Faster Spectre APS

- Designed to produce identical simulation results as baseline Spectre.
 - More accurate: spectre +aps
 - Faster: spectre ++aps
- Since postlayout is often hard on convergence and transient simulation:
 - spectre ++aps +postlayout
- Sometimes lightweight simulation can further speed things up
 - spectre ++aps +lite
- To manually specify the number of multithreads (default=8)
 - spectre +aps +mt=16

	High-Perf	ormance Si	mulation	Options		>
Simulation Performan	ce Mode	🔾 Spectre 🧕	APS 🔾 XPS	MS		
Accuracy + Speed Error Preset:	● Do not overr	ide 🔾 Liberal	O Moderate	Conserv	ative	
Use ++aps:						
	++aps conservative		++aps moderate		++aps liberal	
Performance	•	0	•	0	•	
Accuracy	•	0	•	0	•	~
cor	+aps servative	+aps moderate		+aps liberal		
Performance	+postiayout=upa	+pos			+postiayout	
Accuracy			•			

Multi-Threading	
🔾 Auto 🔾 Disable 🖲 Manual 🛛 # Threads:	16
Processor affinity (e.g. 0-3 or 0,2,4,6):	
© Adam Tema	n, 2022

Getting The Most Out Of Spectre APS

© Adam Teman, 2022

Spectre X

• Spectre X is the next generation of Spectre including:

- Enhanced simulation performance and capacity with a simple +preset use model
- Highly scalable multi-core simulation with +mt, and distributed multi-process simulation with +xdp.

• To run Spectre X with a specific preset:

- spectre +preset=mx input.scs
- ax These presets ignore errpreset options
- For postlayout you can set:
 - spectre +preset=mx +postlpreset=cx

Option Name When to Use when a golden simulation reference is needed for high-precision analog applications for most analog applications (default) for power management and other relaxed analog applications for custom IC verification

Spectre X uses the +xdp for distributed simulation on up to 512 cores

CX

lx

VX

Check with your sysadmin what options can work

Spectre XPS

- Spectre XPS is the new advanced FastSpice simulator
 - spectre +xps +mt=16 +cktpreset=dram +speed=1
- Spectre XPS has +cktpreset options for several circuit types
 - dram, sram, sram_pwr, pcram, flash
- There are also many options for reducing parasitics, partitioning, providing more accurate analog simulations, etc.

Spectre MDL

- Spectre MDL (Measurement Description Language) is a scripting language that enables you to define measurements and batch process simulations.
- Create an mdl control file
 - "export" defines measurements
 - "run" tells which analysis to run (from your netlist)
- Run the spectremdl command
 - spectremdl -batch myfile.mdl
 -design input.scs
- Postprocess the .raw data
 - mdl -b test.mdl -r input.raw -m input.measure

References

- Andrew Beckett "Using Spectre Simulator Effectively"
- Kenneth S. Kundert, "The Designer's Guide to Spice and Spectre", 2003
- Spectre Userguide 20.1