
Practice 4: Semiconductors

When discussing pMOS transistors:

- 1. Everything that was positive is now negative, for example we need V_{GS} <0 to turn the transistor on.
- To make it more intuitive, we can look at the voltages upside down, in other words, use V_{SG}, V_{SD}, I_{SD}, etc.
- 3. In any case, the threshold voltage of a pMOS is negative (V_{Tp} <0). To use our "upside down" voltages, we need to use the absolute value of V_{Tp} , so we get:

$$I_{SD} = \begin{cases} \longrightarrow 0 & V_{SG} < |V_{Tp}| & \text{Cut-Off} \\ k_p' \frac{W}{L} \left[\left(V_{SG} - |V_{Tp}| \right) V_{SD} - \frac{V_{SD}^2}{2} \right] & V_{SG} > |V_{Tp}|, V_{SD} < V_{SG} - |V_{Tp}| & \text{Linear/Ohmic} \\ k_p' \frac{W}{2L} \left(V_{SG} - |V_{Tp}| \right)^2 \left(1 + \lambda V_{SD} \right) & V_{SG} > |V_{Tp}|, V_{SD} > V_{SG} - |V_{Tp}| & \text{Saturation} \\ I_{SD} = k_p' \frac{W}{L} \left(\left(V_{SG} - |V_{Tp}| \right) |V_{DSAT}| - \frac{|V_{DSAT}|^2}{2} \right) & V_{SG} > |V_{Tp}|, V_{SD} > |V_{DSAT}| & \text{Velocity Saturation} \end{cases}$$

Exercise 1:

Consider a process technology for which:

$$L_{\min} = 0.4 \,\mu m \quad t_{ox} = 8nm \quad \mu_n = 450 \frac{cm^2}{V \cdot s} \quad V_T = 0.7V \quad \lambda \approx 0 \quad \varepsilon_{ox} = 3.45 \cdot 10^{-11}$$

- a. Find C_{ox} and k_n '
- b. For a MOSFET with $W_{L} = \frac{8\mu m}{0.8\mu m}$, calculate the values of V_{GS} and V_{DSmin} needed to operate the transistor in the saturation region with a DC current of $I_{DS} = 100\mu A$.
- c. For the device in (b), find the value of V_{GS} required to cause the device to operate as a 1000 Ω resistor for very small V_{DS} .

Solution

a.
$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3.45 \cdot 10^{-11}}{8 \cdot 10^{-9}} = 4.32 \cdot 10^{-3} \frac{F}{m^2} = 4.32 \frac{fF}{\mu m^2}$$

 $k_n' = \mu_n C_{ox} = 450 \frac{cm^2}{V \cdot s} \cdot 4.32 \frac{fF}{\mu m^2} = 1.94 \cdot 10^{-6} \frac{F}{V \cdot s} = 194 \frac{\mu A}{V^2}$
b. For operation in the saturation region: $I_{DS} = \frac{k_n'}{2} \cdot \frac{W}{L} (V_{GS} - V_T)^2$
so for a current of 100µA, we get: $100 = 0.5 \cdot 194 \cdot \frac{8}{0.8} (V_{GS} - 0.7)^2$
 $V_{GS} - 0.7 = 0.32V \longrightarrow V_{GS} = 1.02V$ and $V_{DS \min} = V_{GS} - V_T = 0.32V$
c. For the MOSFET in the Ohmic/Linear/Triode region with a very small V_{DS} (so V

c. For the MOSFET in the Ohmic/Linear/Triode region with a very small V_{DS} (so $V_{DS}^2 \rightarrow 0$): $I_{DS} = k_n \frac{W}{L} (V_{GS} - V_T) V_{DS}$. To find the drain to source resistance: $R_{DS} = \frac{V_{DS}}{I_{DS}} = \frac{1}{k_n \frac{W}{L} (V_{GS} - V_T)}$.

Thus:
$$1000 = \frac{1}{194 \cdot 10^{-6} \cdot 10(V_{GS} - 0.7)} \longrightarrow V_{GS} - 0.7 = 0.52V \longrightarrow V_{GS} = 1.22V$$

Exercise 2:

Two serially connected NMOS transistors are connected to the same gate voltage, as shown. The following parameters are given: V_{DD}

$$K = K_1 = K_2 = 20 \frac{\mu A}{V^2}$$
 $V_{T1} = V_{T2} = V_T = 1V$ $V_{DD} = 3V$

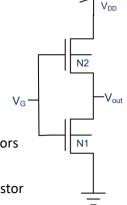
- A. Prove that if N_1 is cut off, M_2 is cut off as well.
- B. Prove that N_1 can never be saturated.
- C. Find the state of the transistors as we raise V_G from 0 to 5V.
- D. The threshold of M_1 was doubled ($V_{T1}=2V$). Can both transistors be saturated at the same time?
- E. Show that the given configuration is equivalent to one transistor with K_{eq} =0.5K when M_1 is ohmic and M_2 is saturated.

Solution

- A. We know that N₁ is cut off, so: $V_{GS1} = V_G < V_T$ Looking at N₂ we see that $V_{GS2} = V_G - V_{out} < V_G < V_T \rightarrow$ Cut-off!
- B. Let's assume that N₁ is saturated, so: $V_{DS1} > V_{GS1} V_T \iff V_{out} > V_G V_T$ Now we'll see what state N₂ is in: $V_{GS2} = V_G - V_{out} < V_G - (V_G - V_T) = V_T$

So V_{GS2} < V_T meaning that N_2 is cut off. That contradicts the conduction of N_1 , so we proved that N_1 can't be saturated!

C. For a $V_G < V_T$ we know both transistors are cut off. When $V_G = V_T$, N_1 turns on and we know it can't be saturated, so it's ohmic.


Now $V_{GS2} - V_T = V_G - V_{out} - V_T |_{V_G \approx V_T} = -V_{out} < V_{DS2}$ so N₂ is saturated!

If V_G and V_{out} get high enough, N₂ will go into ohmic conduction. Let's see if and when it happens. We'll see what happens on the border of saturation: $V_{DS2} = V_{GS2} - V_T$

 $V_{DD} - V_{out} = (V_G - V_{out}) - V_T \implies V_G = V_{DD} + V_T$ (note: this is higher than the supply) Let's summarize it in a table:

V _G	N ₁	N ₂
0 <v<sub>G<v<sub>T</v<sub></v<sub>	Cut-off	Cut-off
$V_T < V_G < V_{DD} + V_T$	Linear	Saturation
$V_G > V_{DD} + V_T$	Linear	Linear

D. Our condition for M₂ to be saturated still stands: $V_G < V_{DD} + V_{T2}$ Now let's assume M₁ is saturated and we'll equate the current of the transistors:

$$I_{DS1} = \frac{K_1}{2} (V_G - (2 \cdot V_T))^2 = I_{DS2} = \frac{K_2}{2} (V_G - V_{out} - V_T)^2$$

This is true when $2V_T = V_{\scriptscriptstyle Out} + V_T \implies V_{\scriptscriptstyle Out} = V_T$

We'll check that this holds for saturation of M₁ and M₂. For M₁, we need: $V_{DS1} = V_{out} = V_T > V_{GS1} - V_{T1} = V_G - 2V_T \implies V_G < 3V_T$

Combining the two conditions, we have saturation when: $3V_T < V_G < V_{DD} + V_T$

E. We'll equate the current through the two transistors:

$$I_{DS2} = \frac{K_2}{2} (V_G - V_{out} - V_T)^2 = I_{DS1} = K \left((V_G - V_T) V_{out} - \frac{V_{out}^2}{2} \right)$$
$$V_{out}^2 - 2V_{GT} V_{out} + 0.5 V_{GT}^2 = 0 \qquad V_{GT} \equiv V_G - V_T$$
$$V_{out} = V_{GT} \left(1 \pm \frac{1}{\sqrt{2}} \right)$$

Exercise 3:

The threshold voltage of a pMOS transistor was measured at standard conditions (no body biasing) to be $|V_{TH}|=0.4V$. Calculate the threshold voltage with a reverse body biasing of 2.5V. The body effect coefficient is -0.4 and the Fermi potential is 0.3V.

Solution

Calculation of V_{TH} is done with the following equation:

$$V_{TH} = V_{T0} + \gamma \left(\left(\sqrt{\left| -2\Phi_F + V_{SB} \right|} \right) - \left(\sqrt{\left| -2\Phi_F \right|} \right) \right)$$

With:

	nMOS	pMOS
$\Phi_{\rm F}$	-	+
γ	+	-
V _{SB}	+	-

We were given a reverse body biasing of 2.5V, so V_{SB} =-2.5V. Accordingly:

$$V_{TH} = -0.4 - 0.4 \left(\left(\sqrt{\left| -0.6 - 2.5 \right|} \right) - \left(\sqrt{\left| -0.6 \right|} \right) \right) = -0.4 - 0.4 \cdot 0.98 = -0.79V$$

This is twice the standard threshold voltage of the transistor!