Practice 3:

Semiconductors

Digital Electronic Circuits – Semester A 2012

VLSI Fabrication Process

VLSI – Very Large Scale Integration

- The ability to fabricate many devices on a single substrate within a given process flow/timeframe – independent of the number of devices fabricated.
- One of the most important inventions of the 20th Century.
- Similar to a printing press.

VLSI – Transistor Fabrication

4

VLSI – nMOS Transistor

Practice 3: Semiconductors

5

MOS Operation

MOS Operation – Terminals and Sizes

MOS Operation – Cut Off

VGS<VT</p>

- The channel is not Inverted.
- IDS=0

MOS Operation – Linear Region

VGS>VT

- The channel is Inverted.
- VDS>0
 - The channel has an equivalent resistance.
 - The current is approximately V_{DS}/R_{eq} .
- But how is this estimated?
 - We can integrate the charge over the channel, because:

MOS Operation – Linear Region

• Charge Density: $\frac{Q(x)}{dx} = \frac{C(x) \cdot V(x)}{dx}$ $C(x) \approx C_{pp_ox} = \frac{\varepsilon_{ox}}{t_{ox}} \cdot W \cdot dx = C_{ox}Wdx$ $V_{cap}(x) = V_{GS} - V_{XS} - V_T = V_{GS} - V(x) - V_T$ $\frac{Q(x)}{dx} = \frac{C_{ox}W(V_{GS} - V(x) - V_T)dx}{dx}$ • Velocity: $v(x) = \mu \cdot \xi(x) = \mu \cdot \frac{dV(x)}{dx}$

Current estimation:

$$I(x) = Q(x) \cdot v(x) = C_{ox} W(V_{GS} - V(x) - V_T) \cdot \mu \frac{dV(x)}{dx}$$

$$v \left[\frac{m}{\text{sec}} \right] = \xi \left[\frac{V}{m} \right] \cdot \mu \left[\frac{m^2}{V \cdot \text{sec}} \right]$$

MOS Operation – Linear Region

Integrate the total current in the channel:

$$\int_{x=S}^{x=D} I(x) dx = \int_{V=V_S}^{V=V_D} C_{ox} W(V_{GS} - V(x) - V_T) \cdot \mu dV(x)$$
$$I_{DS} \cdot L = \mu C_{ox} W\left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$
$$I_{DS} = K \left[V_{GT} V_{DS} - \frac{V_{DS}^2}{2} \right]$$
$$K \triangleq \mu C_{OS}$$

OX

MOS Operation – Saturation Region

VGS>VT

The channel is Inverted.

VDS>VGS-VT

- The channel is *pinched off*.
- The voltage drop over the channel is constant (VGS-VT).
- The channel resistance is almost constant.
- Therefore the current is almost constant.

$$I_{DS} = \frac{K_N}{2} \left(V_{GS} - V_{Tn} \right)^2$$

MOS Operation – Velocity Saturation

VGS>VT

The channel is Inverted.

For a high electric field, the mobility becomes saturated.

- We will call the VDS at which this happens "VDSAT"
- Increasing VDS past VDSAT will not increase the current.

$$I_{DS} = K_N \left(\left(V_{GS} - V_{Tn} \right) V_{DSATn} - \frac{V_{DSATn}^2}{2} \right)^2 \underbrace{ \begin{array}{c} \upsilon_{sat} = 10^5 \\ \text{Constant velocity} \\ (\text{slope} = \mu) \end{array}}_{\xi_c = 1.5} \underbrace{ \xi \left(V/\mu m \right) } \right)$$

MOS Operation – Channel Length Modulation

- Is the resistance truly constant as VDS increases?
 - No, it gets smaller.
 - The depletion region of the Drain "digs in" to the channel.
 - > The effective length is reduced.
- We call this effect "Channel Length Modulation"
 - This is almost linearly dependent on VDS.
 - We will characterize this effect with a coefficient: λ

$$I_{DS}\left(CLM\right) = I_{DS}\left(1 + \lambda V_{DS}\right)$$

□ During linear operation, this effect is almost negligible...

$$V_{DS,eff} = \min(V_{DS}, V_{DSAT}, V_{GT})$$

$$V_{GT} \triangleq V_{GS} - V_T$$

$$K_N \triangleq \mu_N C_{ox} \frac{W_N}{L_N}$$

$$I_{DS} = K_N \left(V_{GT} V_{DS,eff} - \frac{V_{DS,eff}^2}{2} \right) \left(1 + \lambda V_{DS} \right)$$

Examples

Trick Question: Moed Aleph 2009-10

מהנדס פיתוח בחברת "טרנזיסטור" בע"מ החליט לייעל את המעגלים הדיגיטליים שתוכננו בחברה . לשם כך המהנדס החליט לנצל את תכונות הטרנזיסטור NMOS בצורה טובה יותר. המהנדס התבונן באופיין זרם I_{DS} של הטרנזיסטור, אשר נתון באיור הבא:

להפתעתו המהנדס גילה שהמעגלים שתוכנו בחברה מנצלים רק את תכונות הטרנזיסטור כאשר V_{DS} הינו חיובי ומתעלמים לחלוטים מהערכים השליליים של V_{DS}.

עליך לצייר בצורה איכותית את התנהגות הזרם IDs עבור מתחים שליליים של NDS יש להסביר בקצרה.

Example: Linear vs. Saturation

• Consider a process with:

$$L_{\min} = 0.4\,\mu m \quad t_{ox} = 8nm \quad \mu_n = 450\frac{cm^2}{V \cdot s} \quad V_T = 0.7V \quad \lambda \approx 0 \quad \varepsilon_{ox} = 3.45 \cdot 10^{-11}$$

- For a long channel transistor with $\frac{W_N}{L_N} = \frac{8\mu m}{0.8\mu m}$:
 - Bias the transistor as a current source with of $100\mu A$.
- First we will calculate the Transconductance:

$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}} = \frac{3.45 \cdot 10^{-11}}{8 \cdot 10^{-9}} = 4.32 \cdot 10^{-3} \frac{F}{m^2} = 4.32 \frac{fF}{\mu m^2}$$
$$k_n' = \mu_n C_{ox} = 450 \frac{cm^2}{V \cdot s} \cdot 4.32 \frac{fF}{\mu m^2} = 1.94 \cdot 10^{-6} \frac{F}{V \cdot s} = 194 \frac{\mu A}{V^2}$$
$$k_n = k_n' \frac{W_N}{L_N} = 194 \frac{\mu A}{V^2} \cdot \frac{8\mu m}{0.8\mu m} = 1.94m \frac{A}{V^2}$$

To use our nMOS as a current source, we need to bias it in the Saturation region:

$$I_{DS} = \frac{K_N}{2} (V_{GS} - V_{Tn})^2 = 100 \,\mu A$$
$$V_{GS} = 1.02V$$

But we still need to make sure we are in saturation, so:

$$V_{DS} > V_{GS} - V_T = 0.32V$$

Example: Linear vs. Saturation

- Now use the device as a resistor with $R=1k\Omega$.
 - We now want to operate our transistor in the linear region with a very smallVDS.

$$I_{DS} = K_N \left[V_{GT} V_{DS} - \frac{V_{DS}^2}{2} \right] \approx K_N V_{GT} V_{DS}$$

$$R_{eq} = \frac{V_{DS}}{I_{DS}} \approx \frac{V_{DS}}{K_N V_{GT} V_{DS}} = \frac{1}{K_N V_{GT}} = 1000\Omega$$

$$1000 = \frac{1}{194 \cdot 10^{-6} \cdot 10(V_{GS} - 0.7)} \longrightarrow V_{GS} - 0.7 = 0.52V \longrightarrow V_{GS} = 1.22V$$

The Body Effect

The Body Effect - Introduction

The threshold voltage (VT) of a transistor is affected by a non-zero potential between the Source and Body:

$$V_{T} = V_{T0} + \gamma \left(\left(\sqrt{\left| -2\Phi_{F} + V_{SB} \right|} \right) - \left(\sqrt{\left| -2\Phi_{F} \right|} \right) \right) \qquad \begin{array}{c} \Phi_{F} & - & + \\ \gamma & + & - \\ \hline \nabla_{SB} & + & - \end{array} \right)$$

The Body Effect - Example

Moed Aleph, Semester B, 2008-9

הבא: אני טרנזיסטורי NMOS הוברו כפי שמתואר באיור הבא: (4) 4.2

יש לסמן את התשובה הנכונה:

- א. מתח הסף (VTH) של טרנזיסטור א' שווה לזה של טרנזיסטור ב'
- ב. מתח הסף (V_{TH}) של טרנזיסטור א' גדול מזה של טרנזיסטור ב'.
- . ג. מתח הסף (VTH) של טרנזיסטור א' קטן מזה של טרנזיסטור ב'.
 - ד. אין מספיק נתונים על מנת לענות על השאלה.

The Body Effect - Example

- The threshold voltage of a pMOS was measured at standard conditions to be $V_{Tp}(V_{BS}=0)=-0.4V$.
- Given a body effect coefficient of -0.4 and Fermi Potential of 0.3V, calculate the threshold voltage with a Reverse Body Bias of 2.5V.

$$V_{T} = V_{T0} + \gamma \left(\left(\sqrt{|-2\Phi_{F} + V_{SB}|} \right) - \left(\sqrt{|-2\Phi_{F}|} \right) \right)$$

= $(-0.4) - (0.4) \left(\left(\sqrt{|-0.6 - 2.5|} \right) - \left(\sqrt{|-0.6|} \right) \right)$
= $-0.4 - 0.4 \cdot 0.98 = -0.79V$