Practice 1:

Logistics, RC Networks, Thevenin-Norton

Digital Electronic Circuits – Semester A 2012

Course Logistics

Logistics – Times and Location

- All practice sessions are on Mondays
 - ► 1400-1500 34/109
 - ▶ I500-I600 28/303
 - ▶ 1600-1700 28/107
- The third session will be recoded and uploaded to the course website for later viewing.
- Office Hours:
 - Monday 1300-1400 (VLSI Center, building 95)

Logistics – Grades and Homework

Grade composition:

- ► Test 100%
- Optional test bonus will be given to those who turn in all homework assignments.

Homework:

- Several homework assignments will be designated as "tasks" on the course website (highlearn).
- Every student is required to submit ALL homework assignments within 2 weeks of publication to be eligible for bonus.
- Submission is via highlearn! Homework may be done in pairs, but submission has to be individual.

Logistics – Final Exam

- The test will be <u>closed book</u>.
- A formula sheet will be attached to the test. An example sheet will be published on the course website.
- The test will include all the course material that will be covered in the lectures, practices, and homework.
- Many examples of former tests are available and you are advised to use them to prepare for the test.
- The three tests will be at the same (high!) level. They will have different questions about different parts of the material.

Logistics – Course Website

- The course website is highlearn.
- All course content and discussion will be through the website:
 - Lectures 4 slide per page pdf files will be uploaded weekly.
 - Practices Full explanations and solutions in a *pdf* document will be uploaded weekly.
 - Practices (2) Presentations used during practice sessions will be uploaded. (*ppt*) Following the practice session, annotated slides will be uploaded.
 - **Homework** Will be published and submitted through the website.
 - Discussion Forum Questions can be asked in the forum. If not answered by other students, we will try and answer them.
- Questions via direct emails to Dr. Fish or me will not be answered!

Logistics - Bibliography

- Rabaey, et al.:
 - Digital Electronic Circuits: A Design Perspective 2nd Edition
- Sedra & Smith
 - Microelectronic Circuits
- Weste & Harris
 - CMOSVLSI Design: A Circuits and Systems Perspective

Short Introduction

Introduction – Where Are We?

Practice I: Logistics, RC Networks, Thevenin-Norton

Introduction – Digital? Analog? Us?

First Order RC Circuits

RC Circuits - Motivation

RC Circuits - Example

• Given:

- R, C, Vin
- ▶ V_c(0)=V₀
- The switch closes at t=0.

RC Circuits - Example

KVL:

$$V_{in}(t) = V_c(t) + V_R(t) = V_c(t) + i_C(t)R$$

$$V_{in} = V_c + RC V_c^{\circ} = \tau V_c^{\circ} + V_c$$

RC Circuits - Example

First Order Differential Equation:

$$V_{in} = V_c + RC \overset{\circ}{V_c} = \tau \overset{\circ}{V_c} + V_c \quad \Longrightarrow \quad V_c(t) = V_{ch}(t) + V_{cp}(t)$$

Homogeneous Solution:

$$V_{ch}(t) = K e^{-t/\tau}$$

Particular Solution:

$$V_{cp}(t) = V_{in}$$

General Solution:

$$V_{c}(t) = V_{ch} + V_{cp} = Ke^{-t/\tau} + V_{in}$$
$$V_{c}(0) = V_{0} = Ke^{-0/\tau} + V_{in} = K + V_{in}$$
$$\bigvee$$
$$K = V_{0} - V_{in}$$

$$V_{c}(t) = (V_{0} - V_{in})e^{-t/RC} + V_{in}$$
$$= V_{0}e^{-t/RC} + (1 - e^{-t/RC})V_{in}$$

Practice I: Logistics, RC Networks, Thevenin-Norton

October 25, 2011

RC Circuits – Using this solution

• How long will it take to charge the capacitor to $V_{in}/2?$

Thevenin-Norton Equivalents

Thevenin - Norton – A reminder...

- Remember that in Introduction to Electrical Engineering you learned Thevenin's Theorem?
 - Any linear circuit no matter how complex can be simplified into a Voltage Source and Equivalent Impedance driving a load.
 - By using a Thevenin Equivalent circuit, we don't care what's going on inside the circuit. This simplifies the equations drastically.

Thevenin – Calculation Method

- I. Find the Open Circuit Voltage (V_{OC}) :
 - Disconnect the Load.
 - Find the Voltage between the terminals of the load.

▶ 2. Find the Short Circuit Current (I_{SC}):

- Short circuit the Load.
- Find the Current between the load terminals.

3. Calculate the Thevenin Equivalent Voltage and Impedance:

V_{Thevenin}=V_{OC}

► R_{Thevenin}=V_{OC}/I_{SC}

Thevenin – Example

Norton – Reminder

- Norton equivalent circuits are the same as Thevenin Equivalents, but they incorporate a current source instead.
- To find the Norton Equivalent:
 - I.The Norton Resistance is the same as the Thevenin Resistance.
 - > 2. The Norton Current Source is the Short Circuit Current.

