
January 25, 2019

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 9:
Routing

Semester A, 2018-19

Lecturer: Dr. Adam Teman

mailto:adam.teman@biu.ac.il

© Adam Teman, 2018

Routing: The Problem

• Scale
• Millions of wires

• MUST connect them all

• Geometric Complexity
• Basic starting point – grid representation.

• But at nanoscale – Geometry rules are complex!

• Also, many routing layers with different “costs”.

• Electrical Complexity
• It’s not enough to just connect all the wires.

• You also have to:
• Ensure that the delays through the wires are small.

• Ensure that wire-to-wire interactions (crosstalk)
doesn’t mess up behavior.

2

© Adam Teman, 2018

Problem Definition

• Problem:
• Given a placement, and a fixed number of metal layers, find a valid pattern

of horizontal and vertical wires that connect the terminals of the nets.

• Input:
• Cell locations, netlist

• Output:
• Geometric layout of each net

connecting various standard cells

• Two-step process
• Global routing

• Detailed routing
3

• Objective
• 100% connectivity of a system

• Minimum area, wirelength

• Constraints
• Number of routing layers

• Design rules

• Timing (delay)

• Crosstalk

• Process variations

© Adam Teman, 2018

Lecture Contents

Routing Algorithms

5

1

Intro

2

Routing

Algorithms

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”,

Lecture 11 from 2013. For a better ☺ and more detailed explanation, do

yourself a favor and go see the original!

2

Routing in

Practice

© Adam Teman, 2018

Grid Assumption

• Despite the complexity of nanoscaled routing, we will use a grid assumption

and add the complexity in later.

• Layout is a grid of regular squares

• A legal wire is a set of connected grid

cells through unobstructed cells.

• Obstacles (or blockages) are marked

in the grid.

• Wires are strictly horizontal and vertical

(Manhattan Routing)

• Paths go

• North/South

• East/West.

Obstacle

S

T

Source

Target

© Adam Teman, 2018

Maze Routers

• Also known as “Lee Routers”
• C. Y. Lee, “An algorithm for path connections and its applications” 1961

• Strategy:

• Route one net at a time.

• Find the best wiring path for the current net.

• Problems:

• Early wired nets may block path of later nets.

• Optimal choice for one net may block others.

• Basic Idea:

• Expand → Backtrace→ Cleanup

7

© Adam Teman, 2018

Maze Routing: Expansion

• Start at the source.

• Find all paths 1 cell away.

• Continue until reaching the target.

• We approach the target with a

“wavefront”

• We found that the shortest path to

the target is 6 unit steps.

8

S

T

1 2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

5 6

6

6

6

66

© Adam Teman, 2018

Maze Routing: Backtrace & Cleanup

• Backtrace:

• Follow the path lengths backwards in

descending order.

• This will mark a shortest-path to the target.

• However, there may be many shortest

paths, so optimization can be used to

select the best one.

• Cleanup

• We have now routed the first net.

• To ensure that future nets do not try to use

the same resources, mark the net path

from S to T as an obstacle.

9

1 2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

5 6

6

6

6

66

S

T

© Adam Teman, 2018

Maze Routing: Blockages

• How do we deal with blockages?

• Easy. Just “go around” them!

To summarize:

• Expand:

• Breadth-first-search (BFS) to find all

paths from S to T in path-length order.

• Backtrace:

• Walk shortest path back to source.

• Cleanup:

• Mark net as obstacle

and erase distance markers.
10

S

T

12

2

2

3

3 3

3

4

4 4

4

5

5 5

6

6

© Adam Teman, 2018

Multi-Point Nets

• How do we go about routing a net with

multiple targets?

• Actually, pretty straightforward.

• Start with our regular maze routing

algorithm to find the path to the nearest

target.

• Then re-label all cells on found path as

sources, and re-run maze router using all

sources simultaneously.

11

T

S

T

1 2

2

2

2

3

3

3

3

3

3

3

S

4

4

4

4

4

4

4

4S S

S

© Adam Teman, 2018

Multi-Point Nets

• How do we go about routing a net with

multiple targets?

• Actually, pretty straightforward.

• Start with our regular maze routing

algorithm to find the path to the nearest

target.

• Then re-label all cells on found path as

sources, and re-run maze router using all

sources simultaneously.

• Repeat until reaching all target points.

Note that this does not guarantee the

shortest path (=“Steiner Tree”)

12

S

T

5

55 44

4

4

4

4

4

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

S S

S

1 1

1

1

© Adam Teman, 2018

Multi-Layer Routing

• Okay, so what about dealing with several routing layers?

• Same basic idea of grid – one grid for each layer.

• Each grid box can contain one via.

• New expansion direction – up/down.

13

© Adam Teman, 2018

Multi-Layer Routing

14

T

8

8

8

8

8

8

8

8

7

7

7 7

7

7 7

66

6

6

7

7

7

6

6 6

6

6

5

5

5

5

5

5

2

2

2

2

3

3

3

3

3

3

S1

Metal 1 Metal 2

V V

VV

4

4

4

4 4

8

8

5

© Adam Teman, 2018

Non-Uniform Grid Costs

• But we know that vias have (relatively) high resistance.

• Shouldn’t we prefer to stay on the same metal layer?

• We also prefer Manhattan Routing

• Each layer is only routed in one direction.

• A “turn” requires going through a via or a “jog” should be penalized.

• Is there a way to prefer routing in a certain layer/direction?

• Yes.

• Let’s introduce non-uniform grid costs.

15

© Adam Teman, 2018

Multi-Layer Routing

16

T

27 2717

26

16

1615

15

6

13

4S

11

2

Metal 1 Metal 2

V

V

V

V 5

14

2525

1

Horizontal
V

e
rt

ic
a

l

Cost of Via = 10

12

3 13

16

25

14

23

24

15

35

26

35

26 26

Cost of wrong

way route = 10

Cost of wrong
way route = 10

© Adam Teman, 2018

How do we implement this?

• Grids are huge.

• Assume 1cm X 1cm chip.

• Assume 100 nm track

• Assume 10 routing layers

• That is 1010 (100 billion) grid cells!

• We need a low cost representation

• Only store the wavefront.

• Remember which cells have been

reached, at what cost, and from

which direction.

• Use Dijkstra’s algorithm to find the

cheapest cell first.

• Store data in a heap. 17

All of this is hard!

Use many different heuristics:

• Which net to route first

• Bias towards the right direction

• How to go about fixing problems

• etc., etc., etc.

© Adam Teman, 2018

Divide and Conquer: Global Routing

• To deal with a big chip, we make our problem smaller

• Divide the chip into big, course regions

• e.g., 200 X 200 tracks each.

• These are called GBOXes.

• Now Maze Route through the GBOXes

18

© Adam Teman, 2018

Divide and Conquer: Global Routing

• Global routing takes care of basic congestion.

• Balances supply vs. demand of routing resources.

• Generates regions of confinement for the wires.

• Detailed routing decides on the exact path.

19

GBOXes have a

dynamic cost

according to how

congested they are!

Routing in practice

20

1

Intro

2

Routing

Algorithms

2

Routing in

Practice

© Adam Teman, 2018

Layer Stacks

• Metal stacks are changing

(and growing)

130 nm 90 nm 65 nm 45 nm 32 nm

M1

M2
M3

M4

M5

B1

B2

M1

M2
M3

M4

B1

B2

B3

E1

E2

M1

M2
M3

M4

B1

B2

C1

C2

B3

E1

U1

U2

M1

M2
M3

M4

B1

B2

B3

E1

E2

M5

W1

W2

M1

M2

M4

M5

M6

M3

Representative layer stacks for

130 nm - 32 nm technology

nodes

Intel 45nm 8 metal stack

UMC 6 metal stack

© Adam Teman, 2018

Global Route

• Divide floorplan into GCells

• Approximately 10 tracks

per layer each.

• Perform fast grid routing:

• Minimize wire-length

• Balance Congestion

• Timing-driven

• Noise/SI-driven

• Keep buses together

• Also used for trial route

• During earlier stages of the flow

22

Horizontal routing

capacity = 9

tracks

Vertical routing

capacity = 9

tracks

X

X

Y

Y

© Adam Teman, 2018

Congestion Map

• Use congestion map and report to

examine design routability

23

Congestion map

Congestion Report

Routing #Avail #Track #Total %Gcell
Layer Direction Track Blocked Gcell Blocked
--
Metal 1 H 7607 9692 1336335 62.57%
Metal 2 H 7507 9792 1336335 55.84%
Metal 3 V 7636 9663 1336335 59.51%
Metal 4 H 8609 8691 1336335 52.02%
Metal 5 V 5747 11551 1336335 56.39%
Metal 6 H 5400 11899 1336335 55.09%
Metal 7 V 1831 2486 1336335 55.30%
Metal 8 H 2415 1903 1336335 43.85%
--
Total 46753 56.99% 10690680 55.07%
#
589 nets (0.47%) with 1 preferred extra spacing.

© Adam Teman, 2018

Detailed Route

• Using global route plan,
within each global route cell
• Assign nets to tracks

• Lay down wires

• Connect pins to nets

• Solve DRC violations

• Reduce cross couple cap

• Apply special routing rules

• Flow:

• Track Assignment (TA)

• DRC fixing inside a Global Routing Cell (GRC)

• Iterate to achieve a solution (default ~20 iterations)

24

Detailed Route Boxes Solve

shorts

Notch

Spacing

Notch

Spacing

Thin&Fat

Spacing

Min

Spacing

© Adam Teman, 2018

Timing-Driven Routing

• Optimize critical paths

• Route some nets first

• Most routing freedom at start

• Use shortest paths possible

• Net weights

• Order of routing (priorities: e.g., Default : Clocks 50, others 2)

• Wire widening

• Reduce resistance

• If you have a congested design you may need to set the timing

driven effort to “low”

• Beware when changing default options

© Adam Teman, 2018

Signal Integrity (SI)

• Signal Integrity during routing is synonymous with Crosstalk.

• A switching signal may affect a neighboring net.

• The switching net is called the Aggressor.

• The affected net is called the Victim.

• Two major effects:

• Signal slow down
• When the aggressor and victim

switch in opposite directions.

• Signal speed up
• When the aggressor and victim

switch in the same direction.

26

Aggressor

Victim

Delay

net 1

net 2

Speed Up

© Adam Teman, 2018

• Infinite Window Analysis

• An infinite noise window

applies the maximum delay

due to crosstalk during timing analysis.

• This model was sufficient for older (pre-90nm)

technologies, but became too severe with the

growing sidewall capacitances at scaled nodes.

• Propagated Noise Analysis

• Min/Max vectors are propagated through the design to

create a transition window for all aggressors in relation

to a certain victim.

• Noise is only applied at the overlap of the two

windows to determine the worst case noise bump.

SI Multi-Aggressor Timing Analysis

27

Net X

aggressor

Net Y

aggressor

Crosstalk

noise from

X

Crosstalk

noise from Y

Propagated

noise from B

Worst-case

combination of noise

bumps on net C

Noise bumps on net C

© Adam Teman, 2018

Signal Integrity - Solutions

• Crosstalk Prevention

• Limit length of parallel nets

• Wire spreading

• Shield special nets

• Upsize driver or buffer

28

Extra space

Spacing

Shielding

Same layer (H)

Adjacent layers (V)

Grounded shields

Net Ordering

Critical Nets

Wire Spreading

Adding shielding

Inserting buffer

Upsizing

victim

driver

Increasing

wire

spacing

© Adam Teman, 2018

Design For Manufacturing

• During route, apply additional

design for manufacturing (DFM)

and/or design for yield (DFY) rules:

• Via reduction

• Redundant via insertion

• Wire straightening

• Wire spreading

29

Wire straightening (reduce jogs)

Avoid

asymmetrical
contacts

© Adam Teman, 2018

DFM: Via Optimization

• Post-Route Via Optimization, includes:

• Incremental routing for the minimization of vias.

• Replacement of single vias with multi-cut vias.

• These operations are required for:

• Reliability:
• The ability to create reliable vias decreases with each process

node. If a single via fails, it creates an open and the circuit is

useless.

• Electromigration:
• Electromigration hazards are even more significant in vias,

which are essentially long, narrow conductors.

30

extra vias
added

© Adam Teman, 2018

DFM: Wire Spreading

• Wire spreading achieves:

• Lower capacitance and better signal integrity.

• Lower susceptibility to shorts or opens due to

random particle defects.

31

Center of conductive defects within

critical area – causing shorts

Center of non-conductive defects within

critical area – causing opens

Center of conductive defects

outside critical area – no shorts

Center of non-conductive defects

outside critical area – no opens

Critical Areas

Metal 3

+
+

+

+
+ +

+ +

• High-density

critical area

• High probability of

yield-killing defect

• Density reduced,

yield risk reduced

• No timing impact!

© Adam Teman, 2018

Routing in Innovus/Encounter

• The detailed routing engine used by Innovus/Encounter is called “NanoRoute”

• NanoRoute provides concurrent timing-driven and SI-driven routing.

• In addition, it can perform multi-cut via insertion, wire widening and spacing.

• The commands for running a route with NanoRoute are:

• Following detailed route wire optimization and timing optimization:

32

set_db route_design_with_timing_driven true
set_db route_design_with_si_driven true
route_design

set_db route_design_with_timing_driven false
set_db route_design_detail_post_route_spread_wire true
set_db route_design_detail_use_multi_cut_via_effort high
route_design –wire_opt
set_db route_design_with_timing_driven true
opt_design –post_route –setup -hold

© Adam Teman, 2018

Routing in Innovus/Encounter

• To achieve a high percentage of multi-cut vias:

• To check your design after routing:

• To perform incremental routing (ECO routing):

set_db route_design_concurrent_minimize_via_count_effort high
set_db route_design_detail_use_multi_cut_via_effort high

report_route; # provide routing statistics
report_wires; # provides wire statistics including wirelength
time_design –post_route; # check timing after routing
check_drc; # Run a DRC check – in new techs: “verify_drc”
check_connectivity; # Run an LVS check

set_db route_design_with_eco true
route_global_detail

The Chip Hall of Fame

• With RISC processors a central part of our computing lives

today, we should really thank the revolution of the

• Scalable Processor Architecture

• Release date: 1987 SPARC v7 32-bit Architecture

• The first major commercial RISC processor taking

Patterson’s ideas at Berkeley into a product.

• “SPARC will take Sun from a $500M/year company to a

$1B/year company”.

• The first SPARC powered the Sun-4 workstations,

which made Sun a $1B/year company.

• Terminated in 2017 by Oracle, but now part of Fujitsu.

2017 Inductee to the IEEE Chip Hall of Fame

Photo: Mark Richards

Photo: Wikipedia

SPARCstation 1+ “pizzabox”

© Adam Teman, 2018

Main References

• Rob Rutenbar “From Logic to Layout” 2013

• Synopsys University Courseware

• IDESA

• Kahng, et al. “VLSI Physical Design: From Graph Partitioning to Timing

Closure” – Chapter 6

35

