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Routing: The Problem

• Scale
• Millions of wires

• MUST connect them all

• Geometric Complexity
• Basic starting point – grid representation.

• But at nanoscale – Geometry rules are complex!

• Also, many routing layers with different “costs”.

• Electrical Complexity
• It’s not enough to just connect all the wires.

• You also have to:
• Ensure that the delays through the wires are small.

• Ensure that wire-to-wire interactions (crosstalk) 
doesn’t mess up behavior.
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Problem Definition

• Problem:
• Given a placement, and a fixed number of metal layers, find a valid pattern 

of horizontal and vertical wires that connect the terminals of the nets.

• Input:
• Cell locations, netlist

• Output:
• Geometric layout of each net 

connecting various standard cells

• Two-step process
• Global routing

• Detailed routing
3

• Objective
• 100% connectivity of a system

• Minimum area, wirelength

• Constraints
• Number of routing layers

• Design rules

• Timing (delay)

• Crosstalk

• Process variations
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Routing Algorithms
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1

Intro

2

Routing 

Algorithms

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”, 

Lecture 11 from 2013. For a better ☺ and more detailed explanation, do 

yourself a favor and go see the original!
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Routing in 

Practice
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Grid Assumption

• Despite the complexity of nanoscaled routing, we will use a grid assumption 

and add the complexity in later.

• Layout is a grid of regular squares

• A legal wire is a set of connected grid

cells through unobstructed cells.

• Obstacles (or blockages) are marked

in the grid.

• Wires are strictly horizontal and vertical

(Manhattan Routing)

• Paths go 

• North/South

• East/West.

Obstacle

S

T

Source

Target
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Maze Routers

• Also known as “Lee Routers”
• C. Y. Lee, “An algorithm for path connections and its applications” 1961

• Strategy:

• Route one net at a time.

• Find the best wiring path for the current net.

• Problems:

• Early wired nets may block path of later nets.

• Optimal choice for one net may block others.

• Basic Idea:

• Expand → Backtrace→ Cleanup

7
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Maze Routing: Expansion

• Start at the source.

• Find all paths 1 cell away.

• Continue until reaching the target.

• We approach the target with a 

“wavefront”

• We found that the shortest path to

the target is 6 unit steps.
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Maze Routing: Backtrace & Cleanup

• Backtrace:

• Follow the path lengths backwards in 

descending order.

• This will mark a shortest-path to the target.

• However, there may be many shortest 

paths, so optimization can be used to 

select the best one.

• Cleanup

• We have now routed the first net.

• To ensure that future nets do not try to use 

the same resources, mark the net path 

from S to T as an obstacle.
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Maze Routing: Blockages

• How do we deal with blockages?

• Easy. Just “go around” them!

To summarize:

• Expand: 

• Breadth-first-search (BFS) to find all 

paths from S to T in path-length order.

• Backtrace: 

• Walk shortest path back to source.

• Cleanup:

• Mark net as obstacle 

and erase distance markers.
10
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Multi-Point Nets

• How do we go about routing a net with 

multiple targets?

• Actually, pretty straightforward.

• Start with our regular maze routing 

algorithm to find the path to the nearest 

target.

• Then re-label all cells on found path as 

sources, and re-run maze router using all 

sources simultaneously.
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Multi-Point Nets

• How do we go about routing a net with 

multiple targets?

• Actually, pretty straightforward.

• Start with our regular maze routing 

algorithm to find the path to the nearest 

target.

• Then re-label all cells on found path as 

sources, and re-run maze router using all 

sources simultaneously.

• Repeat until reaching all target points.

Note that this does not guarantee the 

shortest path (=“Steiner Tree”)
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Multi-Layer Routing

• Okay, so what about dealing with several routing layers?

• Same basic idea of grid – one grid for each layer.

• Each grid box can contain one via.

• New expansion direction – up/down.

13
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Multi-Layer Routing
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Non-Uniform Grid Costs

• But we know that vias have (relatively) high resistance.

• Shouldn’t we prefer to stay on the same metal layer?

• We also prefer Manhattan Routing

• Each layer is only routed in one direction.

• A “turn” requires going through a via or a “jog” should be penalized.

• Is there a way to prefer routing in a certain layer/direction?

• Yes. 

• Let’s introduce non-uniform grid costs.

15
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Multi-Layer Routing
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How do we implement this?

• Grids are huge.

• Assume 1cm X 1cm chip.

• Assume 100 nm track

• Assume 10 routing layers

• That is 1010 (100 billion) grid cells!

• We need a low cost representation

• Only store the wavefront.

• Remember which cells have been 

reached, at what cost, and from 

which direction. 

• Use Dijkstra’s algorithm to find the 

cheapest cell first.

• Store data in a heap. 17

All of this is hard!

Use many different heuristics:

• Which net to route first

• Bias towards the right direction

• How to go about fixing problems

• etc., etc., etc.
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Divide and Conquer: Global Routing

• To deal with a big chip, we make our problem smaller

• Divide the chip into big, course regions

• e.g., 200 X 200 tracks each.

• These are called GBOXes.

• Now Maze Route through the GBOXes

18
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Divide and Conquer: Global Routing

• Global routing takes care of basic congestion.

• Balances supply vs. demand of routing resources.

• Generates regions of confinement for the wires.

• Detailed routing decides on the exact path.

19
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Routing in practice

20

1

Intro

2

Routing 

Algorithms

2

Routing in 

Practice



© Adam Teman, 2018

Layer Stacks

• Metal stacks are changing 

(and growing)

130 nm 90 nm 65 nm 45 nm 32 nm
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Global Route

• Divide floorplan into GCells

• Approximately 10 tracks 

per layer each.

• Perform fast grid routing:

• Minimize wire-length

• Balance Congestion

• Timing-driven

• Noise/SI-driven

• Keep buses together

• Also used for trial route

• During earlier stages of the flow

22
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Congestion Map

• Use congestion map and report to 

examine design routability

23

Congestion map

Congestion Report

#               Routing  #Avail      #Track     #Total     %Gcell
#  Layer      Direction   Track     Blocked      Gcell Blocked
#  --------------------------------------------------------------
#  Metal 1        H        7607        9692     1336335    62.57%
#  Metal 2        H        7507        9792     1336335    55.84%
#  Metal 3        V        7636        9663     1336335    59.51%
#  Metal 4        H        8609        8691     1336335    52.02%
#  Metal 5        V        5747       11551     1336335    56.39%
#  Metal 6        H        5400       11899     1336335    55.09%
#  Metal 7        V        1831        2486     1336335    55.30%
#  Metal 8        H        2415        1903     1336335    43.85%
#  --------------------------------------------------------------
#  Total                  46753      56.99%    10690680    55.07%
#
#  589 nets (0.47%) with 1 preferred extra spacing. 
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Detailed Route

• Using global route plan, 
within each global route cell
• Assign nets to tracks

• Lay down wires

• Connect pins to nets

• Solve DRC violations

• Reduce cross couple cap

• Apply special routing rules

• Flow:

• Track Assignment (TA)

• DRC fixing inside a Global Routing Cell (GRC)

• Iterate to achieve a solution (default ~20 iterations)

24

Detailed Route Boxes Solve

shorts

Notch

Spacing

Notch

Spacing

Thin&Fat

Spacing

Min

Spacing



© Adam Teman, 2018

Timing-Driven Routing

• Optimize critical paths 

• Route some nets first

• Most routing freedom at start

• Use shortest paths possible

• Net weights 

• Order of routing (priorities: e.g., Default : Clocks 50, others 2)

• Wire widening

• Reduce resistance

• If you have a congested design you may need to set the timing 

driven effort to “low”

• Beware when changing default options
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Signal Integrity (SI)

• Signal Integrity during routing is synonymous with Crosstalk.

• A switching signal may affect a neighboring net.

• The switching net is called the Aggressor.

• The affected net is called the Victim.

• Two major effects:

• Signal slow down
• When the aggressor and victim 

switch in opposite directions.

• Signal speed up
• When the aggressor and victim 

switch in the same direction.

26
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• Infinite Window Analysis

• An infinite noise window

applies the maximum delay 

due to crosstalk during timing analysis.

• This model was sufficient for older (pre-90nm) 

technologies, but became too severe with the 

growing sidewall capacitances at scaled nodes.

• Propagated Noise Analysis

• Min/Max vectors are propagated through the design to 

create a transition window for all aggressors in relation 

to a certain victim.

• Noise is only applied at the overlap of the two 

windows to determine the worst case noise bump.

SI Multi-Aggressor Timing Analysis

27
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Signal Integrity - Solutions

• Crosstalk Prevention

• Limit length of parallel nets

• Wire spreading

• Shield special nets

• Upsize driver or buffer

28
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Design For Manufacturing

• During route, apply additional 

design for manufacturing (DFM) 

and/or design for yield (DFY) rules:

• Via reduction

• Redundant via insertion

• Wire straightening

• Wire spreading

29

Wire straightening (reduce jogs)

Avoid 

asymmetrical 
contacts



© Adam Teman, 2018

DFM: Via Optimization

• Post-Route Via Optimization, includes:

• Incremental routing for the minimization of vias.

• Replacement of single vias with multi-cut vias.

• These operations are required for:

• Reliability:
• The ability to create reliable vias decreases with each process 

node. If a single via fails, it creates an open and the circuit is 

useless.

• Electromigration:
• Electromigration hazards are even more significant in vias, 

which are essentially long, narrow conductors.

30

extra vias 
added
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DFM: Wire Spreading

• Wire spreading achieves:

• Lower capacitance and better signal integrity.

• Lower susceptibility to shorts or opens due to 

random particle defects.
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• No timing impact!
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Routing in Innovus/Encounter

• The detailed routing engine used by Innovus/Encounter is called “NanoRoute”

• NanoRoute provides concurrent timing-driven and SI-driven routing.

• In addition, it can perform multi-cut via insertion, wire widening and spacing.

• The commands for running a route with NanoRoute are:

• Following detailed route wire optimization and timing optimization:

32

set_db route_design_with_timing_driven true 
set_db route_design_with_si_driven true 
route_design

set_db route_design_with_timing_driven false 
set_db route_design_detail_post_route_spread_wire true
set_db route_design_detail_use_multi_cut_via_effort high
route_design –wire_opt
set_db route_design_with_timing_driven true 
opt_design –post_route –setup -hold
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Routing in Innovus/Encounter

• To achieve a high percentage of multi-cut vias:

• To check your design after routing:

• To perform incremental routing (ECO routing):

set_db route_design_concurrent_minimize_via_count_effort high 
set_db route_design_detail_use_multi_cut_via_effort high 

report_route; # provide routing statistics
report_wires; # provides wire statistics including wirelength
time_design –post_route; # check timing after routing
check_drc; # Run a DRC check – in new techs: “verify_drc”
check_connectivity; # Run an LVS check

set_db route_design_with_eco true 
route_global_detail



The Chip Hall of Fame

• With RISC processors a central part of our computing lives 

today, we should really thank the revolution of the

• Scalable Processor Architecture

• Release date: 1987      SPARC v7 32-bit Architecture

• The first major commercial RISC processor taking 

Patterson’s ideas at Berkeley into a product.

• “SPARC will take Sun from a $500M/year company to a 

$1B/year company”.

• The first SPARC powered the Sun-4 workstations, 

which made Sun a $1B/year company.

• Terminated in 2017 by Oracle, but now part of Fujitsu.

2017 Inductee to the IEEE Chip Hall of Fame

Photo: Mark Richards

Photo: Wikipedia

SPARCstation 1+ “pizzabox”
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