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Memory Architecture
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Memory Size: W Words of C bits
=W x C bits

Address bus: A bits
>W=2A

Number of Words in a Row; 2V
Multiplexing Factor: M

Number of Rows: 2A-M
Number of Columns; C x 2V

Row Decoder;: A-M - 2A-M

Column Decoder; M - 2M
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Synchronous SRAM Interface SR
m-1:
* A typical on-chip synchronous SRAM features: Din-1:0] Q[n-1:0]
» Single-cycle write/read latency WEN[p-1:0]
« Byte write mask CEN
* Active low Write Enable (i.e., WEN=1 - Read Enable) LK

)

* The timing diagram can be viewed, as follows:

B (1) Rising edge of the clock results
CLK in WRITE, when WE is low.
A Ag>@£>@i (2) Rising edge of the clock results

in READ, when WE is high.
Valid data appears on the
output after a delay.
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Memory Timing: Definitions

Read cycle
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Symbol Description
TIMING REQUIREMENTS & DELAY (Typical proce
minckl Minimum Clock Pulse Width Low
minckh | Minimum Clock Pulse Width High
Lye Address Setup Time

tan Address Hold Time

s CSN Setup Time

te CSN Hold Time

4s Data Input Setup Time

tan Data Input Hold Time

toe OEN Setup Time

toh OEN Hold Time

s WEN Setup Time
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Major Peripheral Circuits e

/ i

 Row Decoder : B4
« Column Multiplexer : g Ll A S———
« Sense Amplifier - §

. . = — 3
* Write Driver < 5l%
* Precharge Circuit
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Wordlines

Bitline Conditioning Bitlines
—

Row Decoders NK .
* A Decoder reduces the number of select signals by log,. ﬂm = } e
* Number of Rows: W =
* Number of Row Address Bits: A=log,W
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Row Decoders

« Standard Decoder Design:

« Each output row is driven by an AND gate with k=log,N inputs.

« Each gate has a unique combination of address inputs
(or their inverted values).

* For example, an 8-bit row address has 256 8-input AND gates, such as:

WL, = AAAAAAAA Wh,es = AAAAAAAA,
* NOR Decoder:

« DeMorgan will provide us with a NOR Decoder.
 |In the previous example, we'll get 256 8-input NOR gates:

WL =A +A+A+A+A+A+A+A

WL, :A7+A6+A3+A +A+A+A+A,
B o Docodor 2 >




How should we build it?

* Let’s build a row decoder for a 256x256 SRAM Array.

- We need 256 8-input AND Gates.
« Each gate drives 256 bitcells

* We have various options:

ule

i
}

 Which one is best?
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Reminder: Logical Effort
tpd,i :thNV ( Py + EFi)
A bi 'Cin,i+1 _ _C
erfLE g -LE s PE=F[]LE B %M.H LE,TTb
=YPE =\F-[JLE[]b

Ny =l0ge. PE=log.. F-LE-B

tpd :thNV Z( Piy + EF pINV (7/2 p, +N- W)
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* For LE calculation we need to start with:
* Output Load (C,)

* Input Capacitance (C;)
« Branching (B)

» What is the Load Capacitance?
256 bitcells on each Word Line

Cy =256-C_, +
* Let’s ignore the wire for now...

» What is the Input Capacitance?

 Let’'s assume our address drivers
can drive a bit more than a bitcell, so: Cin,addr_driver =4. CCeII
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Bitlines
—

Problem Setup

Bitcell
Array
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» What is the Branching Effort? e iy
« Lets take another look WL, = '&7'5%'&5'&4'&3'&2'&15&) Vo
at the Boolean expressions:
P Whyss = A AAAAAAA

* We see that half of the signals use A, and half use A;!

e S0 each address driver drives 128 8-input AND gates,
but only one is on the selected WL path.

Con path — Cnand , Coff path — 127- Cnand
B Con path T Coff path Cnand +127 ) Cnand . 128
add _driver C o C o
on path nand

B o Dococe 3 > >




Number of Stages

CWL — LE-128. 256CCeII

- Altogether the path effortis; PE=LE-B-F=LE-IIb

address Cell

= LE-8k =2"-LE

* Th ' '
e best case logical effort is TILE =1

* So the minimum number of .
stages for optimal delay is:  PE =2

Nopt — |Og3_6 213 — 7
 That’s a lot of stages!

B <o Dococe 3 > >



So which implementation should we use?

* The one with the minimum Logical Effort:

B _] . :}>°12 )
- } - ] 1> i
g = > o> LD
P D7 5Pt Sos
] | ] 1o

MLE=(10/3)-1 | [MLE=2:(5/3)  |[[LE=(4/3)-(5/3)-(4/3)-1 []LE = (4/3)

—10/3; ~10/3 =80/27; _2.37:
0=8+1=9 0=4+2=6 P=2+2+2+1=7 0=2.341.329
- T > >




New optimal number of Stages

* S0 now we can calculate the actual path effort:

PE =F -1Ib, -TILE, =
=2.37-2" =19.418k
Noot =10956 PE=7.7

 We could add another inverter or two
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to get closer to the optimal number of stages...
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Implementation Problems

 Address Line Capacitance:

* Our assumption was that C; .44 griver=4Ceen-

* But each address drives 128 gates
« That's a really long wire with high capacitance.

* This means that we will need to buffer the address lines
 This will probably ruin our whole analysis...

* Bit-cell Pitch:

« Each signal drives one row of bitcells.
» How will we fit 8 address signals into this pitch?

B <o oococe S > >



Predecoding - Concept

* Solution:
« Let’s look at two decoder paths: WL,-,, WL,cc

D
ﬁi}y}%_

A ) >O1 —%

o g T |
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* \We see that there are many “shared” gates.
* S0 why not share them?

* For instance, we can use the purple output for both gates...
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Predecoding - Method

Ag —
« How do we do this? ﬁ; ]
* If we look at the final Boolean expression, Az —

It has combinations of groups of inputs.
* By grouping together a few inputs,
we actually create a small decoder.

» Then we just AND the outputs of all the ﬁ4 —
“‘pre” decoders. Ag ]
* For example: Two 4:16 predecoders A7 —

WLO = Do ' Eo; WL255 — D15 ' E15; WL254 — D14 ' E15;
B <o oococor > >
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Predecoding - Example

* Let’s look at our example: WL, =D, -E,
D:deC(AO’Ai’AZ"A%) WL,es = Dis - Ejs
E:deC(AA’AS’AG’A7) WL, =D;-E,,

« What is our new branching effort?

* As before, each address drives half the lines of the small decoder.
« Each predecoder output drives 256/16 post-decoder gates.
 Altogether, the branching effort is:

B = baddr_driver ' b|Oredec:oder — 1% ' 25%6 — 128

 Same as before!

8D .. ococor | > >



Predecoding - Solution

« Why is this a better solution?

« Each Address driver is only driving eight gates
* less capacitance.

* We saved a ton of area by “sharing” gates.

* We can “Pitch Fit” 2-input NAND gates.
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Another Predecoding Example

« We can try using four 2-input predecoders:
 This will require us to use 256 4-input NAND gates.

- Xy > >



How do we choose a configuration?

« Pitch Fitting: 2-input NANDSs vs. 4-input NAND.

 Switching Capacitance: How many wires switch at each transition?
« Stages Before the large cap: Distribution of the load along the delay.
 Conclusion: Usually do as much predecoding as possmle'
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>—W|_127 >—W|_127

| [
234/ 24/ 1234 2T4 4 >16 49|16
AcA1 A2As AsAs AchAy AcA1AA; ALASAGA;
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AIDteranlve SoIDuﬁon: Dynamic Decoders

O
Sa 5 5
.J__m:l .J__Ll .J_—Ll W|_O af I:=I I::I )AE”W WL3
A T Y il Tj"” N
4 el W = T]*”
._|__| .J__Ll rl__L. WL2 F WLl
L A L | ,, = = T]”' e
db ol ol WL,
< kK < K < Kk < K
2-input NOR decoder 2-input NAND decoder
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Column Multiplexer
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Column Multiplexer

* First option — PTL Mux with decoder

« Fast — only 1 transistor in signal path.

 Large transistor Count

BL, BL, BL: BLj,
Agy, i“ﬁ
St
I
[
Al S5 ”:
4E—il'||:lL _._T_.—

o

D Colurn 3 >

27

Bitlines
—

Bitcell
Array

ININIRINIRI NN N RN RN

{| Col
Multiplexers

= — — ] Drivers &
‘ | |8ense Amps

BO B1 B2 B3

—

UU%E




28

4 to 1 tree decoder

« Second option — Tree Decoder

« For 2%:1 Mux, it uses k series transistors. fod
« Delay increases quadratically
* No external decode logic = big area reduction.

BL, BL, BL, BL.4
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Precharge and Sense Amp
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Precharge Circuitry

Address | 3
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* Precharge bitlines high before reads
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 Equalize bitlines to minimize voltage difference when using sense amplifiers
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Sense Amplifiers

make AV as small
¢ = ClAV =~ " as possible

large small

Wordlines
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Differential Sense Amplifier AR

* Non-clocked Sense Amp has high static power. sense_clk biLtI N ?
* Clocked sense amp saves power = y 9
* Requires sense_clk after enough bitline swing I ]
* Isolation transistors cut off large bitline capacitance ol 1
! [ ]
P1 |o——o| P2 -
sense sense NI
bit I:N1 N2 bit \
SEnNse sense
Regenerative
1LId\I{S Feedback
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The Computer Hall of Fame

* The machine that many of us got to know
during our military service:
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« 32-bit, CISC architecture, introduced in 1977 e
 The VAX-11/780 was TTL-based, 5SMHz, 2kB cache, reachlng 1 MIPS
 Known as a “minicomputer”, even though it took up a whole room.

 VAX means “Virtual Address Extension”,
since the VAX was one of the first minicomputers to use virtual memory.

« Ran the VMS operating system.

« Many systems that were developed during the cold war
(e.g., F-15, F-18, Hawk missiles, nuclear programs) still use VAX today!
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Further Reading

 Rabaey, et al. “Digital Integrated Circuits” (2" Edition)
* Elad Alon, Berkeley ee141 (online)
 Weste, Harris, “CMOS VLSI Design (4" Edition)”



