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Lecture Content
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Memory Peripherals Overview
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Memory Architecture
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Memory Size: W Words of C bits

=W x C bits

Address bus: A bits

W=2A

Number of Words in a Row: 2M

Multiplexing Factor: M

Number of Rows: 2A-M

Number of Columns: C x 2M

Row Decoder: A-M  2A-M

Column Decoder: M  2M
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Memory Timing: Definitions
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Major Peripheral Circuits

• Row Decoder

• Column Multiplexer

• Sense Amplifier

• Write Driver

• Precharge Circuit
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Row Decoder Design
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Row Decoders

• A Decoder reduces the number of select signals by log2.

• Number of Rows: N

• Number of Row Address Bits: log2N
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Row Decoders

• Standard Decoder Design:

• Each output row is driven by an AND gate with k=log2N inputs.

• Each gate has a unique combination of address inputs 

(or their inverted values).

• For example, an 8-bit row address has 256 8-input AND gates, such as:

• NOR Decoder:

• DeMorgan will provide us with a NOR Decoder.

• In the previous example, we’ll get 256 8-input NOR gates:
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0 7 6 5 4 3 2 1 0WL A A A A A A A A 255 7 6 5 4 3 2 1 0WL A A A A A A A A

0 7 6 5 4 3 2 1 0WL A A A A A A A A       

255 7 6 5 4 3 2 1 0
WL A A A A A A A A       



How should we build it?

• Let’s build a row decoder for a 256x256 SRAM Array.

• We need 256 8-input AND Gates.

• Each gate drives 256 bitcells

• We have various options:

• Which one is best?
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Reminder: Logical Effort
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• For LE calculation we need to start with:

• Output Load (CL)

• Input Capacitance (Cin)

• Branching (B)

• What is the Load Capacitance?

• 256 bitcells on each Word Line

• Let’s ignore the wire for now…

• What is the Input Capacitance?

• Let’s assume our address drivers 

can drive a bit more than a bitcell, so:

Problem Setup
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256WL Cell WireC C C  

, _ 4in addr driver CellC C 



Problem Setup

• What is the Branching Effort?

• Lets take another look 

at the Boolean expressions:

• We see that half of the signals use Ai and half use Ai!

• So each address driver drives 128 8-input AND gates, but only one is on the 

selected WL path.
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Number of Stages

• Altogether the path effort is:

• The best case logical effort is

• So the minimum number of 
stages for optimal delay is:

• That’s a lot of stages! 
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• The one with the minimum Logical Effort:

So which implementation should we use?
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New optimal number of Stages

• So now we can calculate the actual path effort:

• We could add another inverter or two 

to get closer to the optimal number of stages…
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Implementation Problems

• Address Line Capacitance:

• Our assumption was that Cin,addr_driver=4Ccell.

• But each address drives 128 gates

• That’s a really long wire with high capacitance.

• This means that we will need to buffer the address lines
• This will probably ruin our whole analysis...

• Bit-cell Pitch:

• Each signal drives one row of bitcells.

• How will we fit 8 address signals into this pitch?
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Predecoding - Concept

• Solution:

• Let’s look at two decoder paths: WL254, WL255

• We see that there are many “shared” gates.

• So why not share them?

• For instance, we can use the purple output for both gates…
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Predecoding - Method

• How do we do this?

• If we look at the final Boolean expression, 

it has combinations of groups of inputs.

• By grouping together a few inputs, 

we actually create a small decoder. 

• Then we just AND the outputs of all the 

“pre” decoders.

• For example: Two 4:16 predecoders
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• Let’s look at our example:

• What is our new branching effort?

• As before, each address drives half the lines of the small decoder.

• Each predecoder output drives 256/16 post-decoder gates.

• Altogether, the branching effort is:

• Same as before!

Predecoding - Example
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Predecoding - Solution

• Why is this a better solution?

• Each Address driver is only driving four gates 

• less capacitance.

• We saved a ton of area by “sharing” gates.

• We can “Pitch Fit” 2-input NAND gates.
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Another Predecoding Example

• We can try using four 2-input predecoders:

• This will require us to use 256 4-input NAND gates.
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• Pitch Fitting: 2-input NANDs vs. 4-input NAND.

• Switching Capacitance: How many wires switch at each transition?

• Stages Before the large cap: Distribution of the load along the delay.

• Conclusion: Usually do as much predecoding as possible!

How do we choose a configuration?
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Alternative Solution: Dynamic Decoders
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2-input NOR decoder 2-input NAND decoder



Column Multiplexer
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Column Multiplexer

• First option – PTL Mux with decoder

• Fast – only 1 transistor in signal path.

• Large transistor Count
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4 to 1 tree decoder

• Second option – Tree Decoder

• For 2k:1 Mux, it uses k series transistors.

• Delay increases quadratically 

• No external decode logic  big area reduction.
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Combining the Two
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Precharge and Sense Amp
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Precharge Circuitry

• Precharge bitlines high before reads

• Equalize bitlines to minimize voltage difference when using sense 

amplifiers

30



bit bit_b



bit bit_b



Sense Amplifiers
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Differential Sense Amplifier

• Non-clocked Sense Amp has high static power.

• Clocked sense amp saves power

• Requires sense_clk after enough bitline swing

• Isolation transistors cut off large bitline capacitance

32



Further Reading

• Rabaey, et al. “Digital Integrated Circuits” (2nd Edition)

• Elad Alon, Berkeley ee141 (online)

• Weste, Harris, “CMOS VLSI Design (4th Edition)”
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