
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital Integrated Circuits
(83-313)

Lecture 8:

Memory Peripherals
Semester B, 2016-17

Lecturer: Dr. Adam Teman

TAs: Itamar Levi,
Robert Giterman

20 May 2017

mailto:adam.teman@biu.ac.il

Lecture Content

2

Memory Peripherals Overview

3

Memory Architecture

4

Memory Size: W Words of C bits

=W x C bits

Address bus: A bits

W=2A

Number of Words in a Row: 2M

Multiplexing Factor: M

Number of Rows: 2A-M

Number of Columns: C x 2M

Row Decoder: A-M 2A-M

Column Decoder: M 2M

Word Line

Bit Line

Storage Cell

R
o

w
 D

ec
o

d
er

Sense Amplifiers /Drivers

Column Decoder

A
D

D
A

-1
 :

A
D

D
M

ADDM-1 :

ADD0

C×2M

Input/Output
(C bits)

Memory Timing: Definitions

5

Major Peripheral Circuits

• Row Decoder

• Column Multiplexer

• Sense Amplifier

• Write Driver

• Precharge Circuit

6

Word Line

Bit Line

Storage Cell

R
o

w
 D

ec
o

d
er

Sense Amplifiers /Drivers

Column Decoder

A
W

-1
 :

A
M

AM-1 : A0

C×2M

Input/Output
(C bits)

Row Decoder Design

7

Row Decoders

• A Decoder reduces the number of select signals by log2.

• Number of Rows: N

• Number of Row Address Bits: log2N

8

Row Decoders

• Standard Decoder Design:

• Each output row is driven by an AND gate with k=log2N inputs.

• Each gate has a unique combination of address inputs

(or their inverted values).

• For example, an 8-bit row address has 256 8-input AND gates, such as:

• NOR Decoder:

• DeMorgan will provide us with a NOR Decoder.

• In the previous example, we’ll get 256 8-input NOR gates:

9

0 7 6 5 4 3 2 1 0WL A A A A A A A A 255 7 6 5 4 3 2 1 0WL A A A A A A A A

0 7 6 5 4 3 2 1 0WL A A A A A A A A

255 7 6 5 4 3 2 1 0
WL A A A A A A A A

How should we build it?

• Let’s build a row decoder for a 256x256 SRAM Array.

• We need 256 8-input AND Gates.

• Each gate drives 256 bitcells

• We have various options:

• Which one is best?

10

Reminder: Logical Effort

11

 ,pd i pINV i it t p EF

, 1

,

i in i

i i i i

in i

b C
EF LE f LE

C

,1

L
i i

in

C
PE F LE B LE b

C

N N
opt i iEF PE F LE b

log log
opt optopt EF EFN PE F LE B

 N

pd pINV i i pINV it t p EF t p N PE

• For LE calculation we need to start with:

• Output Load (CL)

• Input Capacitance (Cin)

• Branching (B)

• What is the Load Capacitance?

• 256 bitcells on each Word Line

• Let’s ignore the wire for now…

• What is the Input Capacitance?

• Let’s assume our address drivers

can drive a bit more than a bitcell, so:

Problem Setup

12

256WL Cell WireC C C

, _ 4in addr driver CellC C

Problem Setup

• What is the Branching Effort?

• Lets take another look

at the Boolean expressions:

• We see that half of the signals use Ai and half use Ai!

• So each address driver drives 128 8-input AND gates, but only one is on the

selected WL path.

13

0 7 6 5 4 3 2 1 0

255 7 6 5 4 3 2 1 0

WL A A A A A A A A

WL A A A A A A A A

_

; 127

127
128

on path nand off path nand

on path off path nand nand
add driver

on path nand

C C C C

C C C C
B

C C

Number of Stages

• Altogether the path effort is:

• The best case logical effort is

• So the minimum number of
stages for optimal delay is:

• That’s a lot of stages!

14

13

256
128

4

8 2

WL Cell
i

address Cell

C C
PE LE B F LE b LE

C C

LE k LE

1LE

13

13

3.6

2

log 2 7opt

PE

N

• The one with the minimum Logical Effort:

So which implementation should we use?

15

 10 3 1

10 3;

8 1 9

LE

p

 2 5 3

10 3

4 2 6

LE

p

 4 3 5 3 4 3 1

80 27;

2 2 2 1 7

LE

p

3

4 3

2.37;

2 3 1 3 9

LE

p

New optimal number of Stages

• So now we can calculate the actual path effort:

• We could add another inverter or two

to get closer to the optimal number of stages…

16

13

3.6

2.37 2 19.418

log 7.7

i i

opt

PE F b LE

k

N PE

Implementation Problems

• Address Line Capacitance:

• Our assumption was that Cin,addr_driver=4Ccell.

• But each address drives 128 gates

• That’s a really long wire with high capacitance.

• This means that we will need to buffer the address lines
• This will probably ruin our whole analysis...

• Bit-cell Pitch:

• Each signal drives one row of bitcells.

• How will we fit 8 address signals into this pitch?

17

Predecoding - Concept

• Solution:

• Let’s look at two decoder paths: WL254, WL255

• We see that there are many “shared” gates.

• So why not share them?

• For instance, we can use the purple output for both gates…
18

Predecoding - Method

• How do we do this?

• If we look at the final Boolean expression,

it has combinations of groups of inputs.

• By grouping together a few inputs,

we actually create a small decoder.

• Then we just AND the outputs of all the

“pre” decoders.

• For example: Two 4:16 predecoders

19

 0 1 2 3 4 5 6 7

0 0 0 255 15 15 254 15 14

, , , ; , , , ;

; ; ;

D dec A A A A E dec A A A A

WL D E WL D E WL D E

• Let’s look at our example:

• What is our new branching effort?

• As before, each address drives half the lines of the small decoder.

• Each predecoder output drives 256/16 post-decoder gates.

• Altogether, the branching effort is:

• Same as before!

Predecoding - Example

20

0 1 2 3

4 5 6 7

, , ,

, , ,

D dec A A A A

E dec A A A A

0 0 0

255 15 15

254 15 14

WL D E

WL D E

WL D E

_
16 256 128

2 16addr driver predecoderB b b

Predecoding - Solution

• Why is this a better solution?

• Each Address driver is only driving four gates

• less capacitance.

• We saved a ton of area by “sharing” gates.

• We can “Pitch Fit” 2-input NAND gates.

21

Another Predecoding Example

• We can try using four 2-input predecoders:

• This will require us to use 256 4-input NAND gates.

22

• Pitch Fitting: 2-input NANDs vs. 4-input NAND.

• Switching Capacitance: How many wires switch at each transition?

• Stages Before the large cap: Distribution of the load along the delay.

• Conclusion: Usually do as much predecoding as possible!

How do we choose a configuration?

23

2 4 2 4 2 4 2 4

A0A1 A2A3 A4A5 A6A7

WL0

WL127

WL1

4 4 4 4

WL0

WL127

WL1

4 16

A0A1A2A3

16

4 16

A4A5A6A7

16

Alternative Solution: Dynamic Decoders

24

2-input NOR decoder 2-input NAND decoder

Column Multiplexer

25

Column Multiplexer

• First option – PTL Mux with decoder

• Fast – only 1 transistor in signal path.

• Large transistor Count

26

A0A1

B0 B1 B2 B3

Y

4 to 1 tree decoder

• Second option – Tree Decoder

• For 2k:1 Mux, it uses k series transistors.

• Delay increases quadratically

• No external decode logic big area reduction.

27

Combining the Two

28

Precharge and Sense Amp

29

Precharge Circuitry

• Precharge bitlines high before reads

• Equalize bitlines to minimize voltage difference when using sense

amplifiers

30

bit bit_b

bit bit_b

Sense Amplifiers

31

t
p

C DV

Iav

----------------=

make DV as small

as possible

smalllarge

Idea: Use Sense Amplifer

outputinput

s.a.
small
transition

Differential Sense Amplifier

• Non-clocked Sense Amp has high static power.

• Clocked sense amp saves power

• Requires sense_clk after enough bitline swing

• Isolation transistors cut off large bitline capacitance

32

Further Reading

• Rabaey, et al. “Digital Integrated Circuits” (2nd Edition)

• Elad Alon, Berkeley ee141 (online)

• Weste, Harris, “CMOS VLSI Design (4th Edition)”

34

