
23 June 2025

Lecture 8:

Ramp up and Debug
a.k.a. “Lupulus: A Debug Story”

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

SoC 101:
 a.k.a., “Everything you wanted to know about a computer but were afraid to ask”

June 23, 2025© Adam Teman,

Lecture Overview

2

Introduction to Lupulus

Introduction
Booting
Lupulus

Bonding
Problems

Hold
Violations

Circuit
Editing FIB

June 23, 2025© Adam Teman,

A Little Background

• The EnICS Labs SoC Platform:

• In the framework of the GenPro Consortium, the EnICS Labs

were mandated with developing the “Israeli RISC-V Core”

• HAMSA-DI – a superscalar version of the popular

RI5CY Core was the result of this project.

• HAMSA-DI is delivered as part of PulpEnIX –

a full SoC Platform based on the Pulpino

Platform from the PULP Project.

• PulpEnIX/HAMSA-DI had already been fabricated

on three test chips in 65nm and 16nm FinFET.

• In 2022, we taped out “Bianca”,

a 16nm test chip, based on the

PulpEnIX SoC platform.

June 23, 2025© Adam Teman,

Lupulus

• As a follow up to Bianca, a second tapeout was sent for fabrication in 2023.

• This tapeout included improvements to the test structures.

• Lupulus was based on the same Top Level design as Bianca, including:

• PulpEnIX SoC Platform with HAMSA-DI host.

• PULP-GCC compliant software stack with PulpEnIX bare-metal libraries.

• Same 144-pin PGA package with almost identical pinout.

• Compatible with same PCB with minimal modifications.

• The Lupulus test chip

was delivered and bonded

in October 2023.

5

June 23, 2025© Adam Teman,

What next?

• We have done some great R&D…

Made something innovative.

• But how do we make sure that it actually works?

How do we test it and make measurements

to create those nice plots?

• The best way is usually to integrate your block with a control platform.

 An SoC!

• Let’s remember what an SoC is and how it can help us before continuing.

6

Source: gnuplotting.org

June 23, 2025© Adam Teman,

Back to our early SoC101 lectures

• A basic SoC will probably contain something like the following:

• An embedded controller (a CPU) for running C-code

• Some tightly coupled memory for storing program code and data

• A bunch of peripherals for communicating with the outside world

• A system bus to send and receive data between the components

• Additional components and

test blocks will usually be

connected to the system bus

• All components are

memory mapped with

predefined address spaces
7

Embedded

Controller

(CPU)

UART I2C GPIO SPI JTAG

Instruction

Memory

Data

Memory

System Bus
Test

block

June 23, 2025© Adam Teman,

L2
GCRAM
Arrays

L2
GCRAM
Arrays

PLL

AXI4 Interconnect

APB

Bridge

SoC
control

Timer
Event
Unit

MMSPI
Slave

Debug
Unit

GPIO

GPIO

UART

Smart
UART

I2C

I2C

SPI
Master

SPI MMSPI JTAG

pulpenix

S

m m

m

s

IRAM
(SRAM)

B
ri

d
ge

DRAM
(SRAM)

Instr

B
ri

d
ge

B
ri

d
ge

DI core

core_region

Debug

Data

SMS

GPP

s

M

s
L2

GCRAM
Arrays

A
P

B

GPRF

Reset
control

Clock sources

S

m

OSC

CARPs

L2
GCRAM
Arrays

L2
GCRAM
Arrays

L2
SRAM
Arrays

16nm Lupulus SoC S

Legend:

s

Dest. Slave

I/C slave

Initiator Master

I/C master

M

m

M

Booting Lupulus

9

Introduction
Booting
Lupulus

Bonding
Problems

Hold
Violations

Circuit
Editing FIB

June 23, 2025© Adam Teman,

Loading software on to the SoC

• The SoC is equipped with a software toolchain

• Write programs in C code

• Compile the programs to the ISA (e.g., RISC-V)

• Use “bare metal” libraries for common operations
 (e.g., printf, gets)

• Link with IRQs and boot code to configure SoC

• Provide a linker script to direct binaries to instruction/data memory

• What actually happens when we hit the reset button?

• A small number of hard coded (RTL) instructions are run

• They load boot code (“bootloader”) from an external source

• The boot code loads the binaries to instruction and data memory

• The processor jumps to the first address in the program (main())

10

High Level

Language

Libraries Configs

Linker

Script L
in

k

.s

c
o

m
p

il
e

.out

June 23, 2025© Adam Teman,

Configuring the Boot Sequence

• Remember that:

• The state of a system is set by its inputs and memory

 (including registers).

• Inputs come from pads that are connected to the board.

• Every flip-flop on the chip gets a reset value.

• Memory (SRAM) is garbage at start up.

• Configuration switches (“bootstraps”)

• The chip will have several inputs to configure startup values.

• These are either tied to “pull ups” (VDD) or “pull downs” (VSS) on the board.

• You can often change these by

toggling a switch or using a jumper.

11

memory

registers

in
p

u
ts

re
s
e

t

VDD

VSS

June 23, 2025© Adam Teman,

Example of PCB bootstraps

12

Pull Up

Resistor
Pull Down

Switch
To chip

input

Pull Down

Switch

Pull Up

Resistor

June 23, 2025© Adam Teman,

So let’s go back to reset…

• Reset Sequence

• When we hit reset, registers are set to default values.

• Some of the registers

sample the pull up/pull down value from the board.

• These can be configured through bootstraps!

• One of registers is the reset vector,

which is the address of the program to run.

• This address may be mapped to an external device

 (e.g., Boot ROM or Flash).

• The short program is the bootloader that copies the program to SRAM.

• After the program is loaded, the CPU jumps to the instruction memory.

13

reset

VDD

VSS

Reset vector

Flash

June 23, 2025© Adam Teman,

What happens in PulpEnIX

• Boot is (probably) the single-most

“dangerous” part of your chip design

• Udi’s Drawer Analogy:

“Slam a drawer shut, but try to throw something into it before it closes”

• Therefore, always provide several alternatives.

• PulpEnIX has several methods for booting:

• MMSPI:

As described before, Flash is memory mapped and reset vector points to it.

• JTAG:

Utilize JTAG test ports to control the SoC with the OpenOCD standard.

• SmartUART + pyShell:

Backdoor into the SoC through the UART port.

Then control the SoC through Interactive Python interface.
14

Source: blum

June 23, 2025© Adam Teman,

SmartUART

• Reminder: UART

• UART is a very simple, two-wire (TX/RX) serial interface.

• PulpEnIX has a UART Slave port, i.e., only the CPU can initiate transactions.

• For example, bm_printf() sends characters over AXI/APB to a FIFO in the

UART controller. The controller serializes the data and transmits it.

• This configuration does not provide

a good debugging interface.

• Introducing “SmartUART”

• Add an AXI Master port to the UART.

• Use UART to initiate transactions:

read/write to all memory mapped locations

15

June 23, 2025© Adam Teman,

SmartUART

• How does SmartUART work?

• Host PC is connected to FTDI chip, which translates USB-C

into a bunch of signals, including UART, that are routed to chip.

• Reset tries to boot PulpEnIX through MMSPI by default.

• Host PC sends signal to chip (through FTDI) that stops the CPU.

• SmartUART sends write commands (Host PC through FTDI to AXI Master)

to program registers and to load code into SRAM.

• Read commands from SmartUART bypass FIFO.

• How does SmartUART signal a read/write command?

• UART transmits bytes (8 bits), usually representing ASCII chars.

• Bit 7 (MSB) is unused in ASCII. This bit is utilized to signal transactions.

• Python interface on host (PyShell) initiates transactions and polls for response.

16

IMEM

Smart

UART

USB-C UART

FTDI

Flash
MMSPI

CPU

DMEM

June 23, 2025© Adam Teman,

Why did we go through all of this?

• Well, our chips have just arrived…

What do we do now?

• Set up our voltages!

• Connect power supply

and/or configure LDOs.

• Okay, Voltages all set. What now?

• Run a program, of course!

• But it doesn’t work…

• Never does, unfortunately…

• So, we need to start debugging…

• Thank God for SmartUART!

17

USB-C

(Power

and FTDI)

LDOs and

Variable Resistors

Input

Voltage

LDO

Variable

Resistor

Current

Measurement

Resistor

Jumper for

connecting

external supply

The Problems Start…

18

Introduction
Booting
Lupulus

Bonding
Problems

Hold
Violations

Circuit
Editing FIB

June 23, 2025© Adam Teman,

Hello, Who?

• Lupulus was supposed to be a “plug-and-play” chip

• PulpEnIX platform taped out several times before.

• Package compatible with silicon-proven “Sansa” board

• Toplevel design (almost) equivalent to “Bianca” chip

• Really, just put the chip in the socket, run the “Hello, World!” program from

Bianca, and no reason it won’t work.

• So, why doesn’t the chip react?

• Check voltages – look fine.

• Check clock signal – looks fine.

• Where is the program crashing?

Looks like no UART communication.

• What now?

June 23, 2025© Adam Teman,

Was the chip bonded properly?

• One possible point of failure is the chip pinout

• Chip passes LVS, so we know I/Os are compatible with design.

• But how did we actually check the bonding?

• Bonding is undoubtedly a potential single point of failure…

• We have a spreadsheet mapping I/O pins to package pins to PCB pins

• We also send a

schematic of the

connection between

the chip and the

package

20

June 23, 2025© Adam Teman,

We also need the package spec…

• Not that nice, considering the 144-pin PGA was designed in 1985…

21

June 23, 2025© Adam Teman,

• From our first look at the chip, we thought it was rotated

• But a closer look (and double check) showed that the orientation was correct.

BIANCA

So, let’s try to look at the chip…

22

L
U

P
U

L
U

S

June 23, 2025© Adam Teman,

• Something was very strange on the bottom edge…

• It looked a little fishy…

• So we dug deeper…

• Pin 57 isn’t connected!

• What is it?

• …the clock!

So, we started to compare the two chips

23

Package

Pin #57

BIANCA LUPULUS

June 23, 2025© Adam Teman,

We found the culprit. Life is good!

• Not connecting the clock is a good reason for nothing to work…

• Basically, removing the chip from the socket gave the exact same response…

• We all breathed a sigh of relief and got ready for measurements.

• A quick fix at the bond house and everything will be good.

• Not so fast!

• We got the exact same response from the chip!

24

The Problems Continue

Introduction
Booting
Lupulus

Bonding
Problems

Hold
Violations

Circuit
Editing FIB

June 23, 2025© Adam Teman,

Hello, Nothing

• So, we know that initially we had no clock.

• Obviously, nothing worked.

• But we double-checked under the

microscope and the clock is connected.

• So how come it’s as if the chip doesn’t exist.

• Okay, there are some things that are different now…

• Playing with the bootstraps, gets some activity from the chip…

• For example, we can see that it is trying to fetch code from the MMSPI…

• But the UART doesn’t work, and UART is really, really simple

• It’s such a slow interface that lowering the frequency wouldn’t help…

• Furthermore, we’ve used this IP on many chips, so it’s not a logic bug…

• If it’s not a bug and not the frequency – could it be a hold violation?
26

Source:

YARN

June 23, 2025© Adam Teman,

Back to our STA basics

• Max Delay (Setup)

• The data arrives at the capture reg

later than the following clock edge:

• Possible reasons:

• Slow corner (long delay)

• High frequency

• Negative skew

• Solution?

• Lower the

clock frequency

27

skew cq logic setup marginT t t t +  + + +

• Min Delay (Hold)

• The data arrives at the capture reg

before the same clock edge:

• Possible reasons:

• Fast corner (short delay)

• Positive skew

cq logic margin hold skewt t t + −  +

• Solution?

• Throw away the chip?

• Maybe we can make

the chip slower???

June 23, 2025© Adam Teman,

How can we make the chip slower?

• Remember, PVT = Process, Voltage, Temperature

• Process… well, we probably have a typical chip. We could try several, but…

• Temperature… yeah, we have an oven. We could heat it up (or cool it down…)

• Voltage… hey, that’s pretty easy, let’s just lower the voltage!

• Slightly lowering VDD and something starts happening!

• We perform write to several addresses from the UART

and can successfully read them back!

• But when we write to certain addresses, we read back “deadbeef”

• What in the world is “deadbeef”?

• It’s a hexa number that tells us that something isn’t right…

• PulpEnIX responds with deadbeef when you access an illegal address…

• That means… that… something is working… READ is working…

28

June 23, 2025© Adam Teman,

Maybe we changed the memory map?

• Remember our good old “memory map”?

• When we design a chip, we give each device a region of addresses.

• These are hard coded into the chip –

the synthesized hardware checks the

address according to the defined memory map.

• This is another potential point of failure, since

we define it manually (in an Excel sheet…)

• But, no…

• The memory map is the same as in Bianca.

• Gate-level simulations of booting through

UART show everything is okay.

29

June 23, 2025© Adam Teman,

So, it really looks like a hold violation…

• Let’s further reduce the voltage…

• More addresses start to work.

• Even more…

• At 0.67V we get a “Hello, World!”

• But it can’t be…

we checked hold before tapeout…

30

Everything is

Green

Worst UART path >500ps slack…

June 23, 2025© Adam Teman,

Are you sure you checked all corners?

• Well, didn’t we just say that…?

• Worst case setup is in the Slow corner.

• …and worst-case hold is in the Fast (best case) corner.

• Yeah, but at nanoscaled technologies, things get weird

• During signoff, you have to check hold at all corners.

• …and there are a lot of them!

• Remember, RCbest, RCworst, etc.

31

Whoops… not that

green anymore…

But UART paths are within

the uncertainty margins

June 23, 2025© Adam Teman,

No, no, I mean all corners

• Even… typical?

• Yes, even typical…

• So, yes… hold is real…

32

TT Corner

A path through

the UART

-22ps

negative

slack

But, we’re not done yet…

33

Introduction
Booting
Lupulus

Bonding
Problems

Hold
Violations

Circuit Editing
FIB

June 23, 2025© Adam Teman,

Ready, set, go!

• Clock is connected.

• UART works when voltage is lowered.

• CPU works great.

• What about our memories?

• They don’t do anything, of course…

• Whatever we do,

they always read out ‘1’

• Ahhhhrrrrggghhhhh!

June 23, 2025© Adam Teman,

Reset?

• After a few days of searching for a needle in a haystack we found the problem.

• The memory macro has a RESET input

• This disconnects the sense amplifiers and outputs a constant ‘1’…

• But the SoC has a RESET_ signal

• So, the minute the SoC releases reset, the macro is reset…

• How did this happen?

• Another potential point of failure – the Behavioral Model.

• Logic simulations are run with a Verilog model of the IP that is written by hand.

• The behavioral model was not equivalent to the analog IP.

• Solution

• Always run (at least basic)

mixed-signal verification!
35

RESET_

Memory

Macro

RESET

module memory(..., RESET_);

 always@(posedge clk or negedge RESET_)

 ...

June 23, 2025© Adam Teman,

So, the chip is dead...

• Not so fast!

• We have one more rabbit up our hat…

• The FIB!

• A Focused Ion Beam is a machine that

enables post fabrication circuit editing.

• At low currents, a FIB enables

high resolution imaging (similar to a SEM).

• At high currents, the FIB can drill down (etch)

into the chip with sub micrometer precision.

• It also can be used to deposit a conductive

metal layer to make a new connection.

• Could we fix the memory with a FIB?

• Luckily, Yoav is an expert!
36

Source: wikipedia

June 23, 2025© Adam Teman,

Step 1: Simulate the fix

• Find a reset net that is close to the macro.

• Connect it to VDD.

• Simulate it and see that all is okay.

37

June 23, 2025© Adam Teman,

Step 2: Find a place to drill

38

M10 (Over interested line)

M11

Cut1Strap1

1093.331,728.423

M9

M8 Interested Line

M8

Strap1

1093.331,728.423

Cut1

June 23, 2025© Adam Teman,

Step 3: Go to the FIB

• It’s all or nothing now….

39

June 23, 2025© Adam Teman,

Focusing in on the ROI

40

June 23, 2025© Adam Teman,

Going deeper

41

June 23, 2025© Adam Teman,

And here goes nothing…

42

June 23, 2025© Adam Teman,

Conclusions

• Adhere to Signoff guidelines

• Signoff checklists are “written in blood”. Don’t take them for granted.

• Identify potential points of failure

• Anything that is not automated and independently verified is a bug waiting to

happen.

• Patience and Persistence

• Nothing ever works on the first shot.

• Don’t give up. There’s almost always another workaround or fix.

You just need to find it.

• Know all the fine details

• Nothing “magic” happens in engineering.

• Debugging is like a mystery. You need all the clues to reach the solution.
43

June 23, 2025© Adam Teman,

Acknowledgements

• This adventure required a lot of help to get to the finish line.

• Thanks to the EnICS Labs, RAAAM Technologies, Eurofins MASER,

Beckermus Technologies for their participation in the debugging process.

• Special thanks to Udi Kra, Yoav Weitzman,

Yonatan Shoshan and Christoph Mueller.

44

	Default Section
	Slide 1: Lecture 8: Ramp up and Debug a.k.a. “Lupulus: A Debug Story”

	Summary Section
	Slide 2: Lecture Overview

	Introduction
	Slide 3: Introduction to Lupulus
	Slide 4: A Little Background
	Slide 5: Lupulus
	Slide 6: What next?
	Slide 7: Back to our early SoC101 lectures
	Slide 8: 16nm Lupulus SoC

	Boot Sequence
	Slide 9: Booting Lupulus
	Slide 10: Loading software on to the SoC
	Slide 11: Configuring the Boot Sequence
	Slide 12: Example of PCB bootstraps
	Slide 13: So let’s go back to reset…
	Slide 14: What happens in PulpEnIX
	Slide 15: SmartUART
	Slide 16: SmartUART
	Slide 17: Why did we go through all of this?

	Problems
	Slide 18: The Problems Start…
	Slide 19: Hello, Who?
	Slide 20: Was the chip bonded properly?
	Slide 21: We also need the package spec…
	Slide 22: So, let’s try to look at the chip…
	Slide 23: So, we started to compare the two chips
	Slide 24: We found the culprit. Life is good!

	Hold violations
	Slide 25: The Problems Continue
	Slide 26: Hello, Nothing
	Slide 27: Back to our STA basics
	Slide 28: How can we make the chip slower?
	Slide 29: Maybe we changed the memory map?
	Slide 30: So, it really looks like a hold violation…
	Slide 31: Are you sure you checked all corners?
	Slide 32: No, no, I mean all corners

	FIB
	Slide 33: But, we’re not done yet…
	Slide 34: Ready, set, go!
	Slide 35: Reset?
	Slide 36: So, the chip is dead...
	Slide 37: Step 1: Simulate the fix
	Slide 38: Step 2: Find a place to drill
	Slide 39: Step 3: Go to the FIB
	Slide 40: Focusing in on the ROI
	Slide 41: Going deeper
	Slide 42: And here goes nothing…
	Slide 43: Conclusions
	Slide 44: Acknowledgements

