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A little Background )
b4 RISC

* The EniCS Labs SoC Platform:
 |In the framework of the GenPro Consortium, the EnlCS Labs GENPRO
were mandated with developing the “Israeli RISC-V Core” N eme—
« HAMSA-DI — a superscalar version of the popular
RISCY Core was the result of this project. o Q% pl_l I_p
« HAMSA-DI is delivered as part of PulpEnIX — B Y

a full SoC Platform based on the Pulpino ﬁ iiﬁ “
U o—n X

Platform from the PULP Project.

* PulpEnIX/HAMSA-DI had already been fabricated .
on three test chips in 65nm and 16nm FIinFET. |

* In 2022, we taped out “Bianca”,
a 16nm test chip, based on the
PulpEnIX SoC platform.




Lupulus

* As a follow up to Bianca, a second tapeout was sent for fabrication in 2023.
» This tapeout included improvements to the test structures.
* Lupulus was based on the same Top Level design as Bianca, including:

* PulpEnIX SoC Platform with HAMSA-DI host.
« PULP-GCC compliant software stack with PulpEnlX bare-metal libraries.
« Same 144-pin PGA package with almost identical pinout. [ Sy eREREEEER
« Compatible with same PCB with minimal modifications.

N\

* The Lupulus test chip
was delivered and bonded
in October 2023.




What next? S

« We have done some great R&D...
Made something innovative.

=
’
-

axis label

':'.'I' 4

 But how do we make sure that it actually works? -
u ¥ Example line ——
How do we test it and make measurements | Anothersxampls —e—
to create those nice plots? .

¥ axis label

 The best way is usually to integrate your block with a control platform.
An SoC!

* Let’s remember what an SoC is and how it can help us before continuing.



Back to our early SoC101 lectures

* A basic SoC will probably contain something like the following:

 An embedded controller (a CPU) for running C-code

« Some tightly coupled memory for storing program code and data
» A bunch of peripherals for communicating with the outside world
« A system bus to send and receive data between the components

» s N N B
 Additional components and et Embedded Dat
. NStruction dla
test blocks will usually be Y K= Controller (=) Memory
(CPU)

connected to the systembus _ | J U J U J
 All components are t;II-eSL (= System Bus

memory mapped with o

-

predefined address spaces [UART] [ 2C ] [ GPIO J [ SPI ] [ JTAG ]
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Loading software on to the SoC [

~compile

* The SoC is equipped with a software toolchain

* Write programs in C code [Libraries][ .S ][Configs]
» Compile the programs to the ISA (e.g., RISC-V)

« Use “bare metal” libraries for common operations
(e.g., printf, gets)

 Link with IRQs and boot code to configure SoC

* Provide a linker script to direct binaries to instruction/data memory

» What actually happens when we hit the reset button?

« A small number of hard coded (RTL) instructions are run

* They load boot code (“bootloader”) from an external source

* The boot code loads the binaries to instruction and data memory
* The processor jumps to the first address in the program (main ())

Linker
Script

Link 1

.out

10
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Configuring the Boot Sequence

 Remember that:

* The state of a system is set by its inputs and memory

(including registers).

 |Inputs come from pads that are connected to the board.

« Every flip-flop on the chip gets a reset value.
 Memory (SRAM) is garbage at start up.

» Configuration switches (“bootstraps”)

reset

]
registers %
I

memory

* The chip will have several inputs to configure startup values.
* These are either tied to “pull ups™ (VDD) or “pull downs” (VSS) on the board.

* You can often change these by
toggling a switch or using a jumper.

o
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Example of PCB bootstraps

Boot Configuration

Pull Up
Resistor

Pull Down ,
Switch \ ! To chip
é é input

R144 R146 RE&

100K 100K 100K
DSM&%BKSW \

R176 10K
RITT TOk—— MMSPI CSO_1.8V

3> JTAG TDO_18V
R1/8 10K MMSEI DO_1.8V

RIBANANE @ AQUA_PLL_CNT_OUT

l”—Q—T—Q—
= (%] i8]
l&l
(o] (] ¥ [ws]
»>—

1—x8 R180 10K
o . AVAVAY > TDC_CNT_OUT
3A_ls
a4 s

3 EEEe | B

AEEN .0 0NN

- [99ma] [aaa]

5';‘.’3 b 1

Pull Up
Resistor

Pull Down
Switch
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So let’s go back to reset...

 Reset Sequence

reset

When we hit reset, registers are set to default values.

Some of the registers : Reset vector
sample the pull up/pull down value from the board.

* These can be configured through bootstraps!

One of registers is the reset vector,
which is the address of the program to run.

This address may be mapped to an external device
(e.g., Boot ROM or Flash).

The short program is the bootloader that copies the program to SRAM.

After the program is loaded, the CPU jumps to the instruction memory.
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What happens in PUlpEniX

 Boot is (probably) the single-most
“dangerous” part of your chip design
« Udi’'s Drawer Analogy:
“‘Slam a drawer shut, but try to throw something into it before it closes”
« Therefore, always provide several alternatives.

* PulpEnIX has several methods for booting:

- MMSPI:

As described before, Flash is memory mapped and reset vector points to it.
« JTAG:

Utilize JTAG test ports to control the SoC with the OpenOCD standard.
 SmartUART + pyShell:

Backdoor into the SoC through the UART port.

Then control the SoC through Interactive Python interface.




SmartUART UART Ti X 7 j:

 Reminder: UART

GND GND

UART is a very simple, two-wire (TX/RX) serial interface.

PulpEnlX has a UART Slave port, i.e., only the CPU can initiate transactions.
For example, om printf () sends characters over AXI/APB to a FIFO in the
UART controller. The controller serializes the data and transmits it.

This configuration does not provide e )

core_region

a good debugging interface. = @

* Introducing “SmartUART”
« Add an AXI Master port to the UART. -

* Use UART to initiate transactions:
read/write to all memory mapped locations

Unit

pulpenix

15



SmartUART

* How does SmartUART work?
» Host PC is connected to FTDI chip, which translates USB-C
into a bunch of signals, including UART, that are routed to chip.
» Reset tries to boot PulpEnIX through MMSPI by default.
» Host PC sends signal to chip (through FTDI) that stops the CPU.

« SmartUART sends write commands (Host PC through FTDI to AXI Master)
to program registers and to load code into SRAM.

 Read commands from SmartUART bypass FIFO.

* How does SmartUART signal a read/write command?

« UART transmits bytes (8 bits), usually representing ASCII chars.
« Bit 7 (MSB) is unused in ASCII. This bit is utilized to signal transactions.
« Python interface on host (PyShell) initiates transactions and polls for response.

16



Jumper for
connecting

Why did we go through all of this? .

LT3083EDF#PBF 8V (021V) Egﬁ_ Soc3 coreVID
+3.3V-15T m1 ; 100me | R i\fDD 08V 021V
* Well, our chips have just arrived... / Jo TELER %g % % % e -
? = ::_UE M:‘i e _- o L 1 e S./s;?\/s‘ ;‘A PLL VDDREF 0f
What do We do now H Input E:|_ = Sk - JEwgg@_-m;GD
» Set up our voltages! voltege | [ [¥ B \ = e
LDO Vo=50UARset C t
« Connect power supply TERRY WMeasurement

Variable _ Resistor

and/or configure LDOs. Resistor LDOs and

Variable Resistors
 Okay, Voltages all set. What now?
« Run a program, of course!

* But it doesn’t work...
* Never does, unfortunately... USB-C

(Power

* S0, we need to start debugging... and FTDI)
« Thank God for SmartUART!

.....

siv-zn g

17
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Hello, Who?

* Lupulus was supposed to be a “plug-and-play” chip

PulpEnlX platform taped out several times before.
Package compatible with silicon-proven “Sansa” board
« Toplevel design (almost) equivalent to “Bianca” chip
« Really, just put the chip in the socket, run the “Hello, World!” program from
Bianca, and no reason it won't work. & oo e
* So, why doesn’t the chip react?

* Check voltages — look fine.
* Check clock signal — looks fine.

* Where is the program crashing?
Looks like no UART communication.

 What now?




Was the chip bonded properly?

* One possible point of failure is the chip pinout

* Chip passes LVS, so we know I/Os are compatible with design.
« But how did we actually check the bonding?

 Bonding is undoubtedly a potential single point of failure...
* We have a spreadsheet mapping |/O pins to packag

» We also send a Coemor wr  aows s '§\\\\\\\\\\‘
schematic of the §
connection between ¢ PA0NAC 105, voD %
the chip and the Z T 5 =

L

g 8 V55 8 D1

If
Y

I 77
Wit flv
\ \U‘ | |

paCkage 10 9 PAD TDC CNT OUT 9 F3 im—
i 10 PAD_AQUA_IN_22 10 F2 f/f:/i
12 11 PAD AQUA IN_21 11 E1 j;fs; > q
° = S
12 PAD_AQUA_IN_11 12 G2 = S
14 13 PAD RST N 13 G3 //;/ X
15 14 PAD_AQUA_PLL CNT_OUT 14 F1 %/ NI
18 15 PAD _TOP_EDRAM VDD 0O 15 G1 » /
17 16 PAD_AQUA_IN_S 16 H2 %’
3 o 4 N\
18 17 VDDIO 17 H1 8/ NN
20 7 1) W
19 18 Vss 18 H3 ¥/




We also need the package spec...

* Not that nice, considering the 144-pin PGA was designed in 1985...

1.400+0%
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So, let's try to look at the chip...

LUPULUS

0S

 But a clc

© Adam Teman, 2025



So, we started to compare the two chips

. Somethlng was very strange on the bottom edge

T T

* It looked a little fishy...

* So we dug deeper...
e Pin 57 isn’t connected!

a7 PAD_AQUA_IN_3 47 Qs
48 PAD AQUA IN 4 a3 p7
. . |45 PAD_EXT 40M_CLK 57 Q10 | ‘ (G
¢ What IS |t? 50 PAD_ITAG_TMS 50 Q6 b e YA \ AR V~s S &
51 PAD_JTAG TDO 51 a7 \\ R \\ \ '
° the ClOCk! 52 PAD _ITAG TCK 52 :
53 VDDIO \

54 vss 54 \ A %
55 PAD ITAG TRSTN 55 \ \ B %



24

We found the culprit. Life is good!

 Not connecting the clock is a good reason for nothing to work...
« Basically, removing the chip from the socket gave the exact same response...
» We all breathed a sigh of relief and got ready for measurements.

* A quick fix at the bond house and everything will be good.

* Not so fast!



Hold
Violations

The Problems Continue
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Hello, Nothing

 So, we know that initially we had no clock.
« Obviously, nothing worked. J

* But we double-checked under the ... HELLONEWMAN
microscope and the clock is connected.
« So how come it’s as if the chip doesn’t exist.
 Okay, there are some things that are different now...

 Playing with the bootstraps, gets some activity from the chip...
« For example, we can see that it is trying to fetch code from the MMSPI...

 But the UART doesn’t work, and UART is really, really simple

* |t's such a slow interface that lowering the frequency wouldn’t help...
* Furthermore, we've used this IP on many chips, so it's not a logic bug...
 |f it's not a bug and not the frequency — could it be a hold violation?

26



Back to our STA basics

« Max Delay (Setup) * Min Delay (Hold)
 The data arrives at the capture reg  The data arrives at the capture reg
later than the foIIowing clock edge: before the same clock edge:
[T + 5skew >[lt + tl o glc s etup + 5marg1n [t + tlogm} 5marg1n [hold T 5skewJ
* Possible reasons: * Possible reasons:

« Fast corner (short delay) —
* Positive skew T

« Slow corner (long delay)
« High frequency

* Negative skew  Solution?
o ion?
Solution’  Throw away the chip?
* Lower the « Maybe we can make

clock frequency the chip slower???

27
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How can we make the chip slower?

 Remember, PVT = Process, Voltage, Temperature
* Process... well, we probably have a typical chip. We could try several, but...
» Temperature... yeah, we have an oven. We could heat it up (or cool it down...)
* Voltage... hey, that’s pretty easy, let’s just lower the voltage!
* Slightly lowering VDD and something starts happening!

« We perform write to several addresses from the UART
and can successfully read them back!
« But when we write to certain addresses, we read back “deadbeef”

 What in the world is “deadbeef”?

 |t's a hexa number that tells us that something isn’t right...
* PulpEnlIX responds with deadbeef when you access an illegal address...

 That means... that... something is working... READ is working...




Maybe we changed the memory map?

* Remember our good old “memory map”?

« When we design a chip, we give each device a region of addresses.

 These are hard coded into the chip —
the synthesized hardware checks the ?
address according to the defined memory map. g

« This is another potential point of failure, since

we define it manually (in an Excel sheet...) ar .37

uart tb.sv:
uart tb.sv:

uart tbh.sv: Remote
uart th.sv: Remote

- But, no...

 The memory map is the same as in Bianca.

« Gate-level simulations of booting through
UART show everything is okay.

File Edit View Search Terminal

Lk period ns from 25.00 to 3.33

te Py Command: U
ote Python changed UART clk div cntr value to 14 (decimal)

ote Python changed UART ns per bit actual from 150.00 to 50.00

Py Command: S
Python reque imulate for 250000 (decimal) time units

Remote Py Command:
Hello
Lupulus




So, it really looks like a hold violation...

HELLO LUPULUS

* Let’s further reduce the voltage...
» More addresses start to work.
« Even more...
« At0.67V we geta “Hello, World!”
 But it can’t be...
we checked hold before tapeout...

Path: 196 W 4 F | H

Worst UART path >500ps slack...

Type: Hold Check, reg-=reg, View: FUMNC_FF_HIV_ZeT_hold_Cbest CChest

Slack: 0.0570 (req s 00760, :‘.I r. times 0.1270) Skewe:  0,000000 (Incr Daelay: 0.0)
T CPPR: 0000 CPPR Comman Point
: Timing Debug Start: pulpenix_top_peripherals_i_apb_uart_sv_i_su_master_ascii_cmd_done_s_reg/CP (DFCNGQDIBWP16PICCPDLVT)
(clocked by PMX_CLK leading, latency: 0.0000)
Report File(s) top.mtarpt i d \_F|| End: _pulpenix_top_peripherals_i_apb_wart_sv_i_comv_ascii_rx_cmd_addr_data_val_reg_37/0 (DFCNODOBWR16PIOCPDLYVT)
Path Histogram Category Summary {clocked by PMX_CLK leading, |atency: 0.0000)
Slack Calculation
Name: all
500 - H H Total Path: 10000 [ D:
800 Everythmg 1S Passing Path: 10000 [ Hold | Uncertainty
700 Green Failing Path: 0
600 - WINS: 0.0000 Data Path | Launch€Clock | Capture Clock  PathSDC | Timing Interpretation | Schematic
500 TNS: 0.0000 Data Delay
400 4
200 - MName Arc Cell | Delay | Sratus Load | Slew
200 - |_pulpenix_top_peripherals i aplb_uart_sw. CP->Q DFCNODIB.. | 0067 0,086
100 - I_pulpenix_top_peripherals_|_aph_uart_sv.. 0004 0024 0094
01 OGNS | 61173 Bl-=fM ME2DDEWY.. 022 0.009
0 0.010 0020 0030 0040 0.050 0.080 0.070 n_230627 0000 0.083 0.0 0.009
INVS_route_|_FE_PHO110322 _n 230627 |-=Z DELGES0.. 024 oy 0.005
Path Category

IBAAT ede - T PRI EARTT . AT Ear naa P e LT



Are you sure you checked all corners?

« Well, didn’t we just say that...?

» Worst case setup is in the Slow corner.
 ...and worst-case hold is in the Fast (best case) corner.

* Yeah, but at nanoscaled technologies, things get weird

* During signoff, you have to check hold at all corners. the uncertainty margins
e ...and there are a lot of them! o
« Remember, RCbhest, RCworst, etc.

green anymore..

-
T T T
acc aan nce

ni Whoops... not that

seSEEEESE | 5|2 -
‘OEQOEQQDG =

aaaaaaaaaa
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No, no, | mean all corners TT Corner

I|m|ngPathAna|yzerx

N ical?
Even"' typlcal' Path: 9711 M 4 F H

Type: Hold Check, reg-=reg, 12 segments View: FUNC_TT_MoV_MoT_hold_RChest CChest

° Yes, even typlcal . a . Slack: _ -0.0220 (req. time: 0.5780, arr. time: 0.5560) Skew: 0.320000 (Incr Delay: 0.0)

C 0.0080 CFPR Common Point:

Start: I_pulpenix_top_peripherals_i_apb_uart_sv_i_cmd_addr_data_reg_2_7/CP (DFCNQDOBWP16P90CPD)

- 2 2 pS {clocked by PNX_CLK leading, |3#ncy: 0.2220)
End: I_pulpenix_top_|_shared m_|2_mem_axi_if_axi_mem_if_SP_i_Slave_w_buffer_LP_buffer_i_FIFO_REGISTERS_reg 3_24/D (DFCNQD1BWF
n eg ative (clocked by PMX_CLEMading, latency: 0.5330)
Slack Calculation
slack :
[ 7 Launch Latency [ Data Delay f
| Capture Latency | Uncertainty |
A path th ro u g h Data Path | Launch Clock = Capture Clock | Path SDC | Timing Interpretation | Schematic
the UART
Mame | Arc | cell | Delay | Sum | Status | Load | Slew | IncrDelay
|_pulpenix_top_peripherals_i_apb_uart_sv... 0.014 0.000
I_pulpenix_top_peripherals_i_apb_uart_sv... 0.001 0.014 0.000
GMNS_i_690108 0014 0.000
INVS_route_n_FE_PHMN149986_|_pulpenix_... 0.002 0014 0.000
INWS_route_i_FE_PHC149986_|_pulpenix_t... 0.051 0.000
0.011 0.051 0.000

I_pulpenix_top_peripherals_i_axi_uart_sla...

[ e P
b

nn-|i Iiii =

Delay Bar

* S0, yes... hold is real... —

Slew Bar

s s R = B = B

HEE P




Circuit Editing
FIB

But, we're not done yet...
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Ready, set, go!

Clock is connected.

UART works when voltage is lowered.
CPU works great.

What about our memories?

They don’t do anything, of course...

 Whatever we do,
they always read out ‘1’

* Ahhhhrrrrggghhhhh!



Reseil?

* After a few days of searching for a needle in a haystack we found the problem.

* The memory macro has a RESET input

» This disconnects the sense amplifiers and outputs a constant ‘1°...

* But the SoC has a RESET _signal

* So, the minute the SoC releases reset, the macro is reset...

* How did this happen?

* Another potential point of failure — the Behavioral Model.

—‘RESET

Memory
Macro

p—

RESET

« Logic simulations are run with a Verilog model of the IP that is written by hand.

* The behavioral model was not equivalent to the analog IP.

* Solution
« Always run (at least basic)

module memory (..

., RESET );
always@ (posedge clk or negedge RESET )

mixed-signal verification!
35
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So, the chip is dead...

* Not so fast!
* \WWe have one more rabbit up our hat...

* The FIB!

A Focused lon Beam is a machine that
enables post fabrication circuit editing.

« Atlow currents, a FIB enables Source: wikipedia
high resolution imaging (similar to a SEM). Charge Neutralization Gas Assisted Etching
+ At high currents, the FIB can drill down (etch) %(” €) i Depesi
Into the chip with sub micrometer precision. ® o -
* |t also can be used to deposit a conductive ® e &)
metal layer to make a new connection. @0 o @
« Could we fix the memory with a FIB? e

 Luckily, Yoav is an expert!



Step 1: Simulate the fix

* Find a reset net that is close to the macro.
e Connect it to VDD.
« Simulate it and see that all is okay.

Inverted net forced

strap 1o to O in simulation

INVS_place_n
NVS_place_n

n_231029
| OFN236080_n_231029
r:mmﬁmrm'{ﬁ’)—‘ -
BUP1EPIOCPILVT ~TURFIZEUPLPOOCPILNT
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Step 2: Find a place to drill

1093.331,728.423

' 1093.331,728.423

Strap1

_______________________________________________________________________________________________________________________________________________________________________________ =/ 2m o

Strap1

B M9 B M10 (Over interested line)
B M8 Interested Line M11

O ms
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Step 3: Go to the FIB

* It’s all or nothing now....

» thermo | HV WD mag O HFW | det
scientific 30.00kV | 4.8 mm 1200 x 345 pm ETD




Focusing in on the ROI

=2 )
mag o |HFW det 10 pm—— HV WD O HFW det
30.00kV 43 mm 10000 x  41.4pum ICE MASER Engineerin 30.00kV 43mm 10000 x 414 pm ICE

HV WD W C f————10pm—m f wD mag 0O HFW det

30.00 kV 4.3 mm MIASER Engineering i 44mm 15000 x 27.6 pm | ICE MASER Engine 30.00 kv 43 mm 15000 x | 27. ICE
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oing deeper

scientific

Y, mag O HFW
30.00kV 4.4mm 35000 x 11.8um

det
ICE

MASER Engineering

thermo|HV WD  mag 0O HEW  det E—
scientific: 30.00 kV 4.3 mm 120000 x 3.45 pm ICE MASER Engineering

thermo HV WD mag O HFW det — umm
scientific| 30.00 k¥ 4.4 mm 150000 x 2.76 pm ICE MASER Engineering
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And here goes nothing...

read(PNX_BOOT_ADDR_REG) - @0960008
Reading CORE_EN CTRL prior to enabling CORE

read

‘ORE_EM_CTRL_ADDR) =
Enabllng PNX_CORE

BeBesana

starting init pll
starting init plll
starting init pll2
Target Mult Fact

starting init pll4
starting init_pll5

delta ~

Tested array index = 1

Bist test start
Pattern - Zeroes

row @ :
row 1 :

: B6BER0E86BEBE0E0E0806000088860600808080800085H806000050880600808080000
! BOPER0E0EBEBenE0B00E0000006068060000506006008080000000000000000008000C0

©600E0328008000328000000088000000008008000¢ hE80860600888800000080800000000000000000000000000000000
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB'168888888896688883. Pluoe60006008888200000000000006088800000002000000000888808
B822202888882082088820200808808202208000J080888822208188800208 NG H20088880080820808202008088008022080820202808800808208008
B820200806860000800208000008088002020080020080880020200800200202002900080000020800208200008088002020080800000808800008008088
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB9 baBoaBae660880806000208000080000800000008002080000080826000000020800000808000000008008
B6086032600608005080000608080000 o PODB6G66e6000680560600080000004R00000600000050600006080800000000000000000050600000030006
B608603266680805566000000808000000000RM RE06666006032606000005800000EBEH606000206868000000680500600000500600000000600000080008
BEERSagARRBRRRE0080886860800080800000808008000000080086

0E0000868600000200800000008000000000000000000800008
B08880888P0808085800808008800806008800600008680660008880800008800MBTEYE0D880068000886050000086080000080050000080020600000088000

: 90090000000000002000000002000000002260000002260000002200000000200080000200080000000080000000088000000082000000082000600000000000
: 00020000000600000000000000000600002260000008200000000220000000200080000200080000200080000000088000000082000000082000000000000000
: 00088000000000000000000000000000000260000000260080000280080000260080000200080000800080000800080000800082000800085000800000000800
: B00B80808E60006000860006000860606800860086800860080800580006000260000600000080000000085000068085006068085000688085000608008000808
: B0BDABGG8666000050600000000606000030606000050600000002800000000000000000000800000080500000000000060080520000080550000000000800000
: B0BBABBGEE6600065066000000060600003060600003060600060586060000026000000000868000000680500000000306060080556006008055600000000880000
: B00PABBGEE600000566000000006060000326060000326060060058060060028000060000006000000002600000803060060080556000000085000008000800000
: ©00PABG8600000000000000020000000032600000022600000002800000002800000000000000000000800000000200000000850000000850000000000800000
8 : 90008D00eeEE00HEBeE0000H038E0000003280000008280000000880000000080000000000080000000080000000080000008085000000088000000008000000
: 90090000000000002000000002000000002260000002260000002200000000200080000200080000000080000000088000000082000000082000600000000000
: 00020000000600000000000000000600002260000008200000000220000000200080000200080000200080000000088000000082000000082000000000000000
: 00088000000000000000000000000000000260000000260080000280080000260080000200080000800080000800080000800082000800085000800000000800
; B00880808808000008800060008E060680086068680886008080088008000026008860088068800006808508008880880068880850008880858808080080880808



Conclusions

* Adhere to Signoff guidelines
 Signoff checklists are “written in blood”. Don'’t take them for granted.
* Identify potential points of failure

« Anything that is not automated and independently verified is a bug waiting to
happen.

* Patience and Persistence

« Nothing ever works on the first shot.
« Don’t give up. There’s almost always another workaround or fix.
You just need to find it.
* Know all the fine details
« Nothing "magic” happens in engineering.
« Debugging is like a mystery. You need all the clues to reach the solution.
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