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A Little Background

• The EnICS Labs SoC Platform:

• In the framework of the GenPro Consortium, the EnICS Labs 

were mandated with developing the “Israeli RISC-V Core”

• HAMSA-DI – a superscalar version of the popular 

RI5CY Core was the result of this project.

• HAMSA-DI is delivered as part of PulpEnIX – 

a full SoC Platform based on the Pulpino 

Platform from the PULP Project.

• PulpEnIX/HAMSA-DI had already been fabricated 

on three test chips in 65nm and 16nm FinFET. 

• In 2022, we taped out “Bianca”, 

a 16nm test chip, based on the 

PulpEnIX SoC platform.
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Lupulus

• As a follow up to Bianca, a second tapeout was sent for fabrication in 2023.

• This tapeout included improvements to the test structures.

• Lupulus was based on the same Top Level design as Bianca, including:

• PulpEnIX SoC Platform with HAMSA-DI host.

• PULP-GCC compliant software stack with PulpEnIX bare-metal libraries.

• Same 144-pin PGA package with almost identical pinout.

• Compatible with same PCB with minimal modifications.

• The Lupulus test chip 

was delivered and bonded 

in October 2023.
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What next?

• We have done some great R&D… 

Made something innovative.

• But how do we make sure that it actually works? 

How do we test it and make measurements 

to create those nice plots?

• The best way is usually to integrate your block with a control platform. 

     An SoC!

• Let’s remember what an SoC is and how it can help us before continuing.
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Source: gnuplotting.org
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Back to our early SoC101 lectures

• A basic SoC will probably contain something like the following:

• An embedded controller (a CPU) for running C-code

• Some tightly coupled memory for storing program code and data

• A bunch of peripherals for communicating with the outside world

• A system bus to send and receive data between the components

• Additional components and 

test blocks will usually be 

connected to the system bus

• All components are 

memory mapped with

predefined address spaces
7
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Booting Lupulus
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Loading software on to the SoC

• The SoC is equipped with a software toolchain

• Write programs in C code

• Compile the programs to the ISA (e.g., RISC-V)

• Use “bare metal” libraries for common operations 
     (e.g., printf, gets)

• Link with IRQs and boot code to configure SoC

• Provide a linker script to direct binaries to instruction/data memory

• What actually happens when we hit the reset button?

• A small number of hard coded (RTL) instructions are run

• They load boot code (“bootloader”) from an external source

• The boot code loads the binaries to instruction and data memory 

• The processor jumps to the first address in the program (main())
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Configuring the Boot Sequence

• Remember that:

• The state of a system is set by its inputs and memory 

     (including registers).

• Inputs come from pads that are connected to the board.

• Every flip-flop on the chip gets a reset value.

• Memory (SRAM) is garbage at start up.

• Configuration switches (“bootstraps”)

• The chip will have several inputs to configure startup values.

• These are either tied to “pull ups” (VDD) or “pull downs” (VSS) on the board.

• You can often change these by 

toggling a switch or using a jumper.
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Example of PCB bootstraps

12

Pull Up 

Resistor
Pull Down 

Switch
To chip 

input

Pull Down 

Switch

Pull Up 

Resistor



June 23, 2025© Adam Teman, 

So let’s go back to reset…

• Reset Sequence

• When we hit reset, registers are set to default values.

• Some of the registers 

sample the pull up/pull down value from the board.

• These can be configured through bootstraps!

• One of registers is the reset vector, 

which is the address of the program to run.

• This address may be mapped to an external device 

    (e.g., Boot ROM or Flash).  

• The short program is the bootloader that copies the program to SRAM.

• After the program is loaded, the CPU jumps to the instruction memory.
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What happens in PulpEnIX

• Boot is (probably) the single-most 

“dangerous” part of your chip design

• Udi’s Drawer Analogy:

“Slam a drawer shut, but try to throw something into it before it closes”

• Therefore, always provide several alternatives.

• PulpEnIX has several methods for booting:

• MMSPI: 

As described before, Flash is memory mapped and reset vector points to it.

• JTAG:

Utilize JTAG test ports to control the SoC with the OpenOCD standard.

• SmartUART + pyShell:

Backdoor into the SoC through the UART port.

Then control the SoC through Interactive Python interface.
14

Source: blum
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SmartUART

• Reminder: UART

• UART is a very simple, two-wire (TX/RX) serial interface.

• PulpEnIX has a UART Slave port, i.e., only the CPU can initiate transactions.

• For example, bm_printf() sends characters over AXI/APB to a FIFO in the 

UART controller. The controller serializes the data and transmits it.

• This configuration does not provide 

a good debugging interface.

• Introducing “SmartUART”

• Add an AXI Master port to the UART.

• Use UART to initiate transactions:

read/write to all memory mapped locations

15



June 23, 2025© Adam Teman, 

SmartUART

• How does SmartUART work?

• Host PC is connected to FTDI chip, which translates USB-C 

into a bunch of signals, including UART, that are routed to chip.

• Reset tries to boot PulpEnIX through MMSPI by default.

• Host PC sends signal to chip (through FTDI) that stops the CPU.

• SmartUART sends write commands (Host PC through FTDI to AXI Master) 

to program registers and to load code into SRAM.

• Read commands from SmartUART bypass FIFO.

• How does SmartUART signal a read/write command?

• UART transmits bytes (8 bits), usually representing ASCII chars.

• Bit 7 (MSB) is unused in ASCII. This bit is utilized to signal transactions.

• Python interface on host (PyShell) initiates transactions and polls for response.
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Why did we go through all of this?

• Well, our chips have just arrived… 

What do we do now?

• Set up our voltages!

• Connect power supply 

and/or configure LDOs.

• Okay, Voltages all set. What now?

• Run a program, of course!

• But it doesn’t work…

• Never does, unfortunately…

• So, we need to start debugging…

• Thank God for SmartUART!
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The Problems Start…
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Hello, Who?

• Lupulus was supposed to be a “plug-and-play” chip

• PulpEnIX platform taped out several times before.

• Package compatible with silicon-proven “Sansa” board

• Toplevel design (almost) equivalent to “Bianca” chip

• Really, just put the chip in the socket, run the “Hello, World!” program from 

Bianca, and no reason it won’t work.

• So, why doesn’t the chip react?

• Check voltages – look fine.

• Check clock signal – looks fine.

• Where is the program crashing? 

Looks like no UART communication.

• What now?
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Was the chip bonded properly?

• One possible point of failure is the chip pinout

• Chip passes LVS, so we know I/Os are compatible with design.

• But how did we actually check the bonding?

• Bonding is undoubtedly a potential single point of failure…

• We have a spreadsheet mapping I/O pins to package pins to PCB pins

• We also send a 

schematic of the 

connection between 

the chip and the 

package

20
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We also need the package spec…

• Not that nice, considering the 144-pin PGA was designed in 1985…

21
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• From our first look at the chip, we thought it was rotated

• But a closer look (and double check) showed that the orientation was correct.

BIANCA

So, let’s try to look at the chip…
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• Something was very strange on the bottom edge…

• It looked a little fishy…

• So we dug deeper…

• Pin 57 isn’t connected!

• What is it?

• …the clock!

So, we started to compare the two chips

23
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We found the culprit. Life is good!

• Not connecting the clock is a good reason for nothing to work…

• Basically, removing the chip from the socket gave the exact same response…

• We all breathed a sigh of relief and got ready for measurements.

• A quick fix at the bond house and everything will be good.

• Not so fast!

• We got the exact same response from the chip!

24
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Hello, Nothing

• So, we know that initially we had no clock. 

• Obviously, nothing worked.

• But we double-checked under the 

microscope and the clock is connected.

• So how come it’s as if the chip doesn’t exist.

• Okay, there are some things that are different now…

• Playing with the bootstraps, gets some activity from the chip…

• For example, we can see that it is trying to fetch code from the MMSPI…

• But the UART doesn’t work, and UART is really, really simple

• It’s such a slow interface that lowering the frequency wouldn’t help…

• Furthermore, we’ve used this IP on many chips, so it’s not a logic bug…

• If it’s not a bug and not the frequency – could it be a hold violation?
26
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Back to our STA basics

• Max Delay (Setup)

• The data arrives at the capture reg 

later than the following clock edge:

• Possible reasons:

• Slow corner (long delay)

• High frequency

• Negative skew

• Solution?

• Lower the 

clock frequency

27

skew cq logic setup marginT t t t +  + + +

• Min Delay (Hold)

• The data arrives at the capture reg 

before the same clock edge:

• Possible reasons:

• Fast corner (short delay)

• Positive skew

cq logic margin hold skewt t t + −  +

• Solution?

• Throw away the chip?

• Maybe we can make 

the chip slower???
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How can we make the chip slower?

• Remember, PVT = Process, Voltage, Temperature

• Process… well, we probably have a typical chip. We could try several, but…

• Temperature… yeah, we have an oven. We could heat it up (or cool it down…)

• Voltage… hey, that’s pretty easy, let’s just lower the voltage!

• Slightly lowering VDD and something starts happening!

• We perform write to several addresses from the UART

and can successfully read them back!

• But when we write to certain addresses, we read back “deadbeef”

• What in the world is “deadbeef”?

• It’s a hexa number that tells us that something isn’t right…

• PulpEnIX responds with deadbeef when you access an illegal address…

• That means… that… something is working… READ is working…

28
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Maybe we changed the memory map?

• Remember our good old “memory map”?

• When we design a chip, we give each device a region of addresses.

• These are hard coded into the chip – 

the synthesized hardware checks the 

address according to the defined memory map.

• This is another potential point of failure, since 

we define it manually (in an Excel sheet…)

• But, no…

• The memory map is the same as in Bianca.

• Gate-level simulations of booting through 

UART show everything is okay.

29
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So, it really looks like a hold violation…

• Let’s further reduce the voltage…

• More addresses start to work.

• Even more…

• At 0.67V we get a “Hello, World!”

• But it can’t be… 

we checked hold before tapeout…
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Are you sure you checked all corners?

• Well, didn’t we just say that…?

• Worst case setup is in the Slow corner.

• …and worst-case hold is in the Fast (best case) corner.

• Yeah, but at nanoscaled technologies, things get weird

• During signoff, you have to check hold at all corners.

• …and there are a lot of them!

• Remember, RCbest, RCworst, etc.
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No, no, I mean all corners

• Even… typical?

• Yes, even typical…

• So, yes… hold is real…
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But, we’re not done yet…
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Ready, set, go!

• Clock is connected.

• UART works when voltage is lowered.

• CPU works great.

• What about our memories?

• They don’t do anything, of course…

• Whatever we do, 

they always read out ‘1’

• Ahhhhrrrrggghhhhh!
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Reset?

• After a few days of searching for a needle in a haystack we found the problem.

• The memory macro has a RESET input

• This disconnects the sense amplifiers and outputs a constant ‘1’…

• But the SoC has a RESET_ signal

• So, the minute the SoC releases reset, the macro is reset…

• How did this happen?

• Another potential point of failure – the Behavioral Model.

• Logic simulations are run with a Verilog model of the IP that is written by hand.

• The behavioral model was not equivalent to the analog IP.

• Solution

• Always run (at least basic) 

mixed-signal verification!
35
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So, the chip is dead... 

• Not so fast!

• We have one more rabbit up our hat…

• The FIB!

• A Focused Ion Beam is a machine that 

enables post fabrication circuit editing.

• At low currents, a FIB enables 

high resolution imaging (similar to a SEM).

• At high currents, the FIB can drill down (etch)

into the chip with sub micrometer precision.

• It also can be used to deposit a conductive 

metal layer to make a new connection.

• Could we fix the memory with a FIB?

• Luckily, Yoav is an expert!
36

Source: wikipedia
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Step 1: Simulate the fix

• Find a reset net that is close to the macro.

• Connect it to VDD.

• Simulate it and see that all is okay.
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Step 2: Find a place to drill
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Step 3: Go to the FIB

• It’s all or nothing now….
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Focusing in on the ROI
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Going deeper
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And here goes nothing…
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Conclusions

• Adhere to Signoff guidelines

• Signoff checklists are “written in blood”. Don’t take them for granted.

• Identify potential points of failure

• Anything that is not automated and independently verified is a bug waiting to 

happen. 

• Patience and Persistence

• Nothing ever works on the first shot.

• Don’t give up. There’s almost always another workaround or fix. 

You just need to find it.

• Know all the fine details

• Nothing “magic” happens in engineering. 

• Debugging is like a mystery. You need all the clues to reach the solution.
43



June 23, 2025© Adam Teman, 

Acknowledgements

• This adventure required a lot of help to get to the finish line.

• Thanks to the EnICS Labs, RAAAM Technologies, Eurofins MASER, 

Beckermus Technologies for their participation in the debugging process.

• Special thanks to Udi Kra, Yoav Weitzman, 

Yonatan Shoshan and Christoph Mueller.

44


	Default Section
	Slide 1: Lecture 8: Ramp up and Debug  a.k.a. “Lupulus: A Debug Story”

	Summary Section
	Slide 2: Lecture Overview

	Introduction
	Slide 3: Introduction to Lupulus
	Slide 4: A Little Background
	Slide 5: Lupulus
	Slide 6: What next?
	Slide 7: Back to our early SoC101 lectures
	Slide 8: 16nm Lupulus SoC

	Boot Sequence
	Slide 9: Booting Lupulus
	Slide 10: Loading software on to the SoC
	Slide 11: Configuring the Boot Sequence
	Slide 12: Example of PCB bootstraps
	Slide 13: So let’s go back to reset…
	Slide 14: What happens in PulpEnIX
	Slide 15: SmartUART
	Slide 16: SmartUART
	Slide 17: Why did we go through all of this?

	Problems
	Slide 18: The Problems Start…
	Slide 19: Hello, Who?
	Slide 20: Was the chip bonded properly?
	Slide 21: We also need the package spec…
	Slide 22: So, let’s try to look at the chip…
	Slide 23: So, we started to compare the two chips
	Slide 24: We found the culprit. Life is good!

	Hold violations
	Slide 25: The Problems Continue
	Slide 26: Hello, Nothing
	Slide 27: Back to our STA basics
	Slide 28: How can we make the chip slower?
	Slide 29: Maybe we changed the memory map?
	Slide 30: So, it really looks like a hold violation…
	Slide 31: Are you sure you checked all corners?
	Slide 32: No, no, I mean all corners

	FIB
	Slide 33: But, we’re not done yet…
	Slide 34: Ready, set, go!
	Slide 35: Reset?
	Slide 36: So, the chip is dead... 
	Slide 37: Step 1: Simulate the fix
	Slide 38: Step 2: Find a place to drill
	Slide 39: Step 3: Go to the FIB
	Slide 40: Focusing in on the ROI
	Slide 41: Going deeper
	Slide 42: And here goes nothing…
	Slide 43: Conclusions
	Slide 44: Acknowledgements


