
January 12, 2019

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 8:
Clock Tree Synthesis

Semester A, 2018-19

Lecturer: Dr. Adam Teman

mailto:adam.teman@biu.ac.il

2 © Adam Teman, 2018

Where are we in the design flow?

• We have:
• Synthesized our design into a technology

mapped gatelevel netlist

• Designed a floorplan for physical implementation.

• And provided a location for each and every gate.

• During all stages:
• We analyzed timing constraints and optimized

the design according to these constraints.

• However…
• Until now, we have assumed an ideal clock.

• Now we have all sequential elements placed,
so we have to provide them with a real clock signal.

Silicon Validation

Definition and Planning

Design and Verification

Logic Synthesis

Physical Design

Signoff and Tapeout

Design Import

Floorplan

Placement

CTS

Route

Finish Design
Clock

3 © Adam Teman, 2018

Trivial Approach?

• Question:

• Why not just route the clock net to all sequential elements,

just like any other net?

• Answer…

• Timing

• Power

• Area

• Signal Integrity

• etc…

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

Clock

4 © Adam Teman, 2018

Lecture Outline

Implications of Clocking
Timing, power, area, signal integrity

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree

Synthesis

4

Additional

Subjects

6 © Adam Teman, 2018

Implications

on Power

Implications

on SI

Implications

on Area

Implications on Timing

• Let’s remember our famous timing constraints:

• Max Delay:

• Min Delay:

skew CQ logic setup marginT t t t + + + +

CQ logic margin hold skewt t t + − +

Launch Clock

Capture Clock

Launch
Clock

Capture
Clock

Skew
and
Jitter

Implications

on Timing

7 © Adam Teman, 2018

Implications

on Power

Implications

on SI

Implications

on Area

Implications

on TimingClock Parameters

• Skew

• Difference in clock arrival time

at two different registers.

• Jitter

• Difference in clock period

between different cycles.

• Slew

• Transition (trise/tfall) of clock

signal.

• Insertion Delay

• Delay from clock source until

registers.

Clock Skew
Difference in clock arrival time
at two spatially distinct points

A

B

Skew

Compressed
timing path

Clock Jitter
Difference in clock
period over time

Period A Period B

Compressed
timing path

8 © Adam Teman, 2018

Implications

on Power

Implications

on SI

Implications

on Area

Implications

on TimingHow do clock skew and jitter arise?

• Clock Generation

• Distribution network

• Number of buffers

• Device Variation

• Wire length and variation

• Coupling

• Load

• Environment Variation

• Temperature

• Power Supply

Central Clock Driver

Clock
Distribution

Network

Local
Clock
Buffers

Variations in trace
length, metal width and
height, coupling caps

Variations in local clock
load, local power
supply, local gate

length and threshold,
local temperature

Intel 1998,

0.25um

PLL

Clock
Generator

9 © Adam Teman, 2018

Implications

on Power

Implications

on SI

Implications

on Area

Implications

on TimingImplications on Timing

• So skew and jitter eat away at our timing margins:

• Max Delay:

• Min Delay:

skew jitter CQ logic setup margin2T t t t + − + + +

CQ logic margin hold skewt t t + − +

Launch Clock

Capture Clock with

positive skew

Launch
Clock

Capture
Clock

Capture Clock

with negative

skew

Positive
Skew

Negative
Skew

Jitter

New Min
Delay

New Min
Delay

10 © Adam Teman, 2018

Implications

on Power

Implications

on SI

Implications

on Area

Implications

on TimingImplications on Power

• Let’s remember how to calculate dynamic power:

• The activity factor (α) of the clock network is 100%!

• The clock capacitance consists of:
• Clock generation (i.e., PLL, clock dividers, etc.)

• Clock elements (buffers, muxes, clock gates)

• Clock wires

• Clock load of sequential elements

• Clock networks are huge
• And therefore, the clock is responsible for a large

percentage of the total chip power.

2

dyn eff DDP f C V= eff total clock clock others othersC C C C = +

Possible power partitioning of a

microprocessor (not general!!!)

11 © Adam Teman, 2018

Implications on Signal Integrity

Signal Integrity is an obvious requirement for the clock network:

• Noise on the clock network can cause:

• In the worst case, additional clock edges

• Lower coupling can still slow down or speed up clock propagation

• Irregular clock edges can impede register operation

• Slow clock transitions (slew rate):

• Susceptibility to noise (weak driver)

• Poor register functionality (worse tcq, tsetup, thold)

• Too fast clock transitions

• Overdesign → power, area, etc.

• Bigger aggressor to other signals

• Unbalanced drivers lead to increased skew.

Best practice:

Keep trise and tfall between

10-20% of clock period

(e.g., 100-200ps @1GHz)

Implications

on Power

Implications

on SI

Implications

on Area

Implications

on Timing

12 © Adam Teman, 2018

Implications on Area
• To reiterate, clock networks consist of:

• Clock generators

• Clock elements

• Clock wires

• All of these consume area
• Clock generators (e.g., PLL) can be very large

• Clock buffers are distributed all over the place

• Clock wires consume a lot of routing resources

• Routing resources are most vital
• Require low RC (for transition and power)

• Benefit of using high, wide metals

• Need to connect to every clock element (FF)
• Distribution all over the chip

• Need Via stack to go down from high metals
Source: Universitat Bonn

For example: Intel Itanium

4% of M4/M5 used for

clock routing

Implications

on Power

Implications

on SI

Implications

on Area

Implications

on Timing

Clock Distribution
So how do we build a clock tree?

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree

Synthesis

4

Additional

Subjects

14 © Adam Teman, 2018

The Clock Routing Problem

Given a source and n sinks:

• Connect all sinks to the source by an
interconnect network so as to minimize:

• Clock Skew = maxi,j |ti - tj|

• Delay = maxi (ti)

• Total wirelength

• Noise and coupling effect

The Challenge:

• Synchronize millions (billions) of separate elements

• Within a time scale on order of ~10 ps

• At distances spanning 2-4 cm

• Ratio of synchronizing distance to

element size on order of 105

• Reference: light travels <1 cm in 10 ps

Clock Tree goals:

1) Minimize Skew

2) Meet target insertion delay

(min/max)

Clock Tree constraints:

1) Maximum Transition

2) Maximum load cap

3) Maximum Fanout

4) Maximum Buffer Levels

15 © Adam Teman, 2018

Technology Trends
• Timing

• Higher clock frequency → Lower skew

• Higher clock frequency → Faster transitions

• Jitter – PLL’s get better with CMOS scaling

• but other sources of noise increase
• Power supply noise more important

• Switching-dependent temperature gradients

• New Interconnect Materials
• Copper Interconnect → Lower RC → Better slew and potential skew

• Low-k dielectrics → Lower clock power, better latency/skew/slew rates

• Power
• Heavily pipelined design → more registers → more capacitive load for clock

• Larger chips → more wire-length needed to cover the entire die

• Complexity → more functionality and devices → more clocked elements

• Dynamic logic → more clocked elements

16 © Adam Teman, 2018

Approaches to Clock Synthesis

• Broad Classification:

• Clock Tree

• Clock Mesh (Grid)

• Clock Spines

Clock

Spines

spines

source

Clock Grid

Clock Spine

Clock Tree

17 © Adam Teman, 2018

Clock Trees

• Naïve approach:

• Route an individual clock net to each sink

and balance the RC-delay

• However, this would burn excessive power and

the large RC of each net would cause signal integrity issues.

• Instead use a buffered tree

• Short nets mean lower RC values

• Buffers restore the signal for

better slew rates

• Lower total insertion delay

• Less total switching

capacitance FF FF FF FF FFFF FF FFFF FF

RC-Tree
Clock Grid

Clock Spine

Clock Tree

18 © Adam Teman, 2018

• Perfectly balanced approach: H-Tree
• One large central driver

• Recursive H-style structure to match wire-lengths

• Halve wire width at branching points to

reduce reflections

• More realistic:
• Tapered H-Tree, but still hard to do.

• Standard CTS approach:
• Flip flops aren’t distributed evenly.

• Try to build a balanced tree

Building an actual Clock Tree

clock / PLL

chip / functional block

/ IP

sequential

elements
PLL

large skew
and jitter

medium
skew

and jitter

small skew
and jitter

Clock Grid

Clock Spine

Clock Tree

19 © Adam Teman, 2018

Industrial H-Tree Examples

• Intel Itanium 2 (2005)

Primary Buffer

Repeaters

Typical SLCB

Locations

Source: CMOS VLSI Design, 4th Ed.

• IBM PowerPC (2002)

IBM, ISSCC 2000

Clock Grid

Clock Spine

Clock Tree

20 © Adam Teman, 2018

Clock Spine

Lower Skew – Clock Grids
• Advantages:

• Skew determined by grid density
and not overly sensitive to load position

• Clock signals are available everywhere

• Tolerant to process variations

• Usually yields extremely low skew values

• Disadvantages
• Huge amounts of wiring & power

• Wire cap large

• Strong drivers needed – pre-driver cap large

• Routing area large

• To minimize all these penalties, make grid pitch coarser
• Skew gets worse

• Losing the main advantage

• Don’t overdesign – let the skew be as large as tolerable

• Still – grids seem non-feasible for SoC’s

Grid feeds flops directly,
no local buffers

Clock driver tree spans height of chip
Internal levels shorted together

Clock Grid

Clock Tree

21 © Adam Teman, 2018

Clock Grid

Clock Spine

DEC Alpha – Generations of Grids
• 21064 (EV4) – 1992

• 0.75μm, 200MHz, 1.7M trans.

• Big central driver, clock grid

• 240ps skew

• 21164 (EV5) - 1995

• 0.5 μm, 300MHz, 9.3M trans.

• Central driver, two final drivers,
clock grid

• Total driver size – 58 cm!

• 120ps skew

• 21264 (EV6) - 1998

• 0.35 μm, 600MHz, 15.2M trans.

• 4 skew areas for gating

• Total driver size: 40 cm

• 75ps skew

pre-driver

final drivers

Clock Drivers

PLL

Clock Tree

22 © Adam Teman, 2018

Clock Spine

Clock Grid

Clock Tree

Clock Spines

• Clock grids are too power (and routing) hungry.

• A different approach is to use spines

• Build an H-Tree to each spine

• Radiate local clock distribution from spines

• Pentium 4 (2001) used the clock spine approach.

Source: Bindal ISSCC 2003

delay

in ps

Later Pentium 4’s used

more spines

23 © Adam Teman, 2018

Summary of main clock dist. approaches
Three basic routing structures for global clock:

• H-tree
• Low skew, smallest routing

capacitance, low power

• Floorplan flexibility is poor.

• Grid or mesh
• Low skew, increases routing

capacitance, worse power

• Alpha uses global clock grid
and regional clock grids

• Spine
• Small RC delay because of large spine width

• Spine has to balance delays; difficult problem

• Routing cap lower than grid but may be higher than H-tree.

Structure Skew Cap/area/

power

Floorplan

Flexibility

H-Tree Low/Med Low Low

Grid Low High High

Spine High Medium Medium

24 © Adam Teman, 2018

Active Skew Management (Deskewing)

• Alpha EV7

GCLK

(CPU Core)L
2
L

_
C

L
K

(L
2
 C

a
ch

e
)

L
2
R

_
C

L
K

(L
2
 C

a
ch

e
)

NCLK

(Mem Ctrl)

DLL

P
L

L

SYSCLK

D
L

L

D
L

L
• Intel Itanium

Active Deskew
Circuits

Phase Locked
Loop (PLL)

Regional
Grid

25 © Adam Teman, 2018

Clock Concurrent Optimization

• What is the main goal of CTS?
• We are trying as hard as we can to minimize skew.

• And on the way, we are burning power, wasting area,

suffering from high insertion delay, etc.

• But is minimal skew our actual goal?

• Why are we minimizing skew in the first place?

• Maybe we should forget about skew and focus on our real goals?
• We need to meet timing and DRV constraints.

• Minimizing skew was just to correlate post-CTS and pre-CTS timing.

• But maybe we should just consider timing, while building our clock tree.

• This new approach is known as Clock Concurrent Optimization (CCOpt)

26 © Adam Teman, 2018

Clock Concurrent Optimization

• CCOpt Methodology:
• First, build a clock tree, in order to fix DRVs.

• Then check timing (setup and hold) and fix any violations.

• Why is this a good approach?
• Most timing paths are local.

• Therefore, they probably come from the same clock branch

and don’t need much skew balancing to start with.

• Less skew balancing leads to:
• Lower insertion delay (power, jitter)

• Fewer clock buffers (power, area)

• Distribution of peak current (less IR Drop)

• A heavy dose of useful skew (performance)

PLL

large skew
and jitter

medium
skew

and jitter

small skew
and jitter

The Chip Hall of Fame

• Digital introduced a ton of novelty, including clocking, with

the Alpha architecture, starting with the

• 21064 = “A 21st Century ready, 64-bit, gen. 0 uarchitecture.

• Release date: 1992 64 bit Alpha Architecture

• Process: Digital Equipment Co. CMOS-4 0.75um

• 3-metal layers, 3.3V power supply, 150-200 MHz

• 1.6 Million Transistors , 232 mm2 die size, price $3,375

• At the time of introduction, the Alphas were the world’s fastest chips.

• Phased out after DEC was acquired by Compaq in 1998 and chose

to use Intel Itanium architecture, instead.

Not yet inducted to the IEEE Chip Hall of Fame

Clock Tree Synthesis in EDA

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree

Synthesis

4

Additional

Subjects

29 © Adam Teman, 2018

Starting Point Before CTS

• So remember:

• Our design is placed, and therefore, we know

the location of all clock sinks (register and macro clock pins)

• All clock pins are driven by a single clock source,

which we considered ideal until now.

• We may have several clocks and some logic on the clock network,

such as clock gates, muxes, clock dividers, etc.

• We must now buffer the clock nets to:

• Meet DRV constraints:

• Max fanout, max capacitance,

max transition, max length

• Meet clocking goals:

• Minimum skew, minimum insertion delay

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

Clock

Design Import

Floorplan

Placement

CTS

Route

Finish Design

DRV = Design

Rule Violations

30 © Adam Teman, 2018

Some basic understanding

• What makes up a clock tree?

• A starting point
• The clock port or the output pin of the clock generator.

• Leaf/end points
• Clock pins of registers, memories, etc.

• Buffers/Inverters
• Required to ensure clock transitions and meet skew requirements.

• Special logic
• Such as multiplexers, integrated clock gates, clock dividers

• We need a “language” to define these (and other) components

• The following slides will introduce you to the CCOpt naming

conventions for these elements.

Clock

Tree

Skew

Group

Stop

Pin

Ignore

Pin

Exclude

Pin

Float

Pin

31 © Adam Teman, 2018

CTS Definitions – Sources and Sinks
Clock Source
• The pin that a clock fans out from.

• This can be:
• A primary input (port) to our design

• An output pin of an IP (e.g., PLL)

• An output pin of a gate

(e.g., clock mux, clock gate).

Clock Sink
• All pins that receive the clock signal.

• This can be:
• Clock input of a register (FF, latch)

• Clock input of an IP (e.g., SRAM)

• Primary output (if the clock is

driven outside the block)

CLK

Clock Source –

Primary Input

CLK PLL

Clock Source –

Macro output

CLK1

CLKSEL

CLK2

Clock Source –

Gate output

32 © Adam Teman, 2018

CTS Definitions – Trees and Skew Groups
• Clock Tree

• The root of a circuit graph for buffering.

• Skew Group

• A subset of clock sinks to consider for skew

balancing/analysis. By default, all the sinks of

a clock tree are in the same skew group.

• However, they can be divided into several skew groups,

sinks of several clocks can belong to the same skew group

(e.g., clock and generated clock), and a sink can even

belong to more than one skew group.

• Basic CCOpt Commands:

Clock Tree

Skew

Group 1

Skew

Group 2

create_clock_tree –name clk –source [get_ports CLK] –no_skew_group
create_skew_group –name clk –sources [get_ports CLK] –auto_sinks
update_skew_group –skew_group clk –add_sinks [get_pins FF1/CK]

33 © Adam Teman, 2018

CTS Definitions – Stop/Ignore/Exclude Pins

• Stop Pins

• A leaf of a clock tree. The clock net will be buffered

up to the stop pin but not beyond it.

• All clock sinks are implicit stop pins, and therefore,

will be considered for skew balancing/analysis.

• To define additional pins as stop pins in CCOpt, use:

• Ignore Pins

• Ignore pins are pins on the clock net that will

not be considered a sink in any skew group.

• The clock net will be buffered up to the ignore

pin but not beyond it.

set_db pin:INV1/A .cts_sink_type stop

set_db pin:div_ff1/CK .cts_sink_type ignore

Implicit

Stop Pins

Implicit

Ignore Pin

34 © Adam Teman, 2018

CTS Definitions – Stop/Ignore/Exclude Pins

• Exclude Pins

• Exclude pins are similar to ignore pins, but the clock net will

not be buffered up to an exclude pin.

• Through Pins

• Through pins are pins, which would otherwise be considered

stop pins, but we want the clock to propagate through them

(for buffering and adding pins to the skew group).

• In the new versions of Innovus, there is no explicit command

to define a through pin. Just call it an ignore pin…

set_db pin:div_ff1/CK .cts_sink_type exclude

CLKGATE

Implicit

Through Pin

35 © Adam Teman, 2018

CTS Definitions – Insertion Delay Pin

• In some cases, we would like to provide the clock to a

certain stop pin earlier or later than the average insertion delay.

• For example, if a macro block has some internal insertion delay, we would like

to provide the clock early for skew balancing.

• Such a pin is also known as a “float pin”

• For example, to provide the clock to an SRAM

called “mem”150ps earlier than the average

insertion delay :

set_db pin:mem/CK .cts_pin_insertion_delay 150ps

36 © Adam Teman, 2018

CTS Definitions – Pin Type Summary

Part of the

Clock

Tree

Considered

for DRV

fixing

Considered for

Delay

Balancing

Clock

propagates

beyond it

Stop Pin Yes Yes Yes No

Ignore Pin Yes Yes No No

Exclude Pin No No No No

Float Pin

(insertion_delay)

Yes Yes Yes –

according to

constraint

No

37 © Adam Teman, 2018

Clock Net Routing

• Clock nets are very important in terms of signal integrity

• A glitch on a clock net will cause an additional clock edge!

• Slow transitions will cause deteriorated setup/hold times of registers.

• Fast transitions are strong aggressors to neighboring nets.

• Therefore:
• We will usually pre-route the clock nets during CTS.

• First choice of routing tracks

• Use higher, thicker metals for clock routing

• Lower resistance

• Less capacitance to the substrate

• Apply shielding to clock nets!

• Consider adding DeCaps next to clock buffers.

Vdd

GND

GND VddCLK

38 © Adam Teman, 2018

How do we route clock nets?

• In Innovus, we can define special routing rules for specific nets:
• These are called Non-Default Rules (NDRs)

• For example, double-width or double-spacing.

• We can tell Innovus to use a certain NDR, by creating a Routing Type
• The routing type enables us to define preferred layers and shielding.

• In Innovus, we differentiate between three types of clock nets:
• Top – The initial branch of the clock tree. Very wide and high.

• Trunks – The main branches of the clock tree. Wide and high.

• Leaf – The bottom levels of the clock tree. Closer to the logic.

• So, we will define NDRs and routing rules and then apply them to clock nets.

39 © Adam Teman, 2018

Shielding and Non-Default Routing Rules

• First, define non-default routing rules (NDR):

• Double width and double spacing

• Then, create a routing type for CTS

• Finally, apply property to trunk type clock nets

create_route_rule –name CTS_2W2S \
–spacing_multiplier 2 –width_multiplier 2

set_db cts_route_type_trunk cts_trunk

create_route_type –name cts_trunk –non_default_rule CTS_2W2S \
-top_preferred_layer M7 –bottom_preferred_layer M6 \
-shield_net VSS –bottom_shield_layer M6

40 © Adam Teman, 2018

Analyzing Clock Trees
• Before running clock tree synthesis,

analyze each clock tree in the design to determine:

• What the clock root is.

• What the desired clock sinks and clock tree exceptions are.

• Whether the clock tree contains preexisting cells, such as clock gating cells.

• Whether the clock tree converges, either with itself (a convergent clock

path) or with another clock tree (an overlapping clock path).

• Whether the clock tree has timing relationships with other clock trees in the

design, such as inter-clock skew requirements.

• What the DRV constraints are

(maximum fanout, maximum transition time, and maximum capacitance).

• What are the library cells to use for implementing the clock tree.

• What the routing constraints (routing rules and metal layers) are.

© Adam Teman, 2018

Clock Tree Optimizations

Buffer
sizingGate

sizing
Delay

insertion

Gate
relocation

Buffer
relocation

Useful Skew

42 © Adam Teman, 2018

Issue with Post CTS Interface Timing
• Before CTS, clock is ideal.

• We define I/O constraints without thinking about the clock influence

• But after CTS:

• We added positive skew to the in2reg paths.

• We added negative skew to the reg2out paths.

• Therefore:

• Add the average

insertion delay to

the clock paths to

the I/O ports.

set_input_delay -clock clk $IN_DLY [all_inputs]
set_output_delay -clock clk $OUT_DLY [all_outputs]

43 © Adam Teman, 2018

Reducing Clock Distribution Problems
• Use latch-based design

• Time borrowing helps reduce impact of clock uncertainty

• Timing analysis is more difficult

• Rarely used in fully synthesized ASICs, but sometimes in

datapaths of otherwise synthesized ASICs

• Make logical partitioning match physical partitioning

• Limits global communication where skew is usually the worst

• Helps break distribution problem into smaller sub-problems

• Use globally asynchronous, locally synchronous design

• Divides design into synchronous regions which communicate through asynchronous channels

• Requires overhead for inter-domain communication

• Use asynchronous design

• Avoids clocks all together

• Incurs its own forms of control overhead

Additional Subjects:

Clock Generation

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree

Synthesis

4

Additional

Subjects

45 © Adam Teman, 2018

Clock Generation

• Where does the clock come from?

• The easiest way to generate a clock is by using a ring oscillator or some

other non-stable circuit, but these are susceptible to PVT variations.

• Therefore, clocks are generally generated off-chip

using a crystal and an oscillation circuit.

• However, usually only one off-chip clock can be used (a single frequency)

and the frequency that can be input to the chip is limited to around 100 MHz.

• Therefore, on-chip local clock generation is employed, usually with a PLL or DLL.

46 © Adam Teman, 2018

Local Clock Generation

• Externally generated clocks suffer from two primary problems:

• Frequency is limited, i.e., a clock multiplier is needed.

• Clock phase is uncontrolled, such that communication with the external clock

domain is unsynchronized.

• To solve both of these problems,

a Phase-Locked Loop (PLL)

is used.

• If clock multiplication

is not required, a

delay-locked loop (DLL)

is a more simple solution.

Digital
System

Divider

Crystal
Oscillator

PLL

Chip 1

Digital
System

PLL

Chip 2

fsystem = N x fcrystal

fcrystal , 200<Mhz

Data

Clock
Buffer

reference
clock

47 © Adam Teman, 2018

Local Clock Generation

• How does a PLL work?

• A phase detector (PD) produces a signal proportional to

the phase difference between the input and output clocks.

• A loop filter (LF) converts the phase error into a control signal (voltage).

• A voltage-controlled oscillator (VCO),

creates a new clock signal based on the error signal.

• What about a DLL?

• Same principle, but

instead of changing

the frequency, it just

delays the clock until

the phase is equal.

Additional Subjects:

Clock Domain Crossing

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree

Synthesis

4

Additional

Subjects

49 © Adam Teman, 2018

Clock Domain Crossing (CDC)

• Most system-on-chips have several components that communicate with

different external interfaces and run on different clock frequencies.

• In other words, they have multiple asynchronous clock domains.

• Asynchronous clocks cannot communicate with each other

in a straightforward fashion:

CLK A

CLK B

D DA DB

Clock Domain Crossing Path CLK A

DA

CLK B

DB

50 © Adam Teman, 2018

Problems with CDC
The main problems with passing data between
asynchronous domains are:

• Metastability:
• A setup/hold violation in the capture register.

May cause:
• High propagation delay at the fanout.

• High current flow in the chip (even burnout).

• Different values of the signal at different parts
of the fanout.

• Data Loss:
• New data in the source may be generated w/o

the data being captured by the destination.

• Data Incoherency:
• Data may be captured late, causing several

coherent signals to be in different states.

What is the probability of

metastability?

Let us define:

Tw – an error window (setup+hold)

around the clock cycle

f – clock frequency

fD – Frequency of data change

Now assume that a data (D) change

can come anywhere in the clock cycle

relative to the capture clock, so:

() Dmeta wRate f f T=

Assume:

()

D

6

1GHz 0.1 20ps

2 10meta
sec

wf f f T

Rate

= = =

=

51 © Adam Teman, 2018

• By cascading two or more flip flops,

we create a simple synchronizer.

• The signal has one (or more)

clock cycles to stabilize.

• However, there is a probability that

the signal will not settle within the

cycle time (T).

Solutions: Synchronizers

CLK A

CLK B

D

DA

We want the metastability to dissipate at

least tsetup before the next clock edge, so:

What is the probability of

failure?

The probability for metastability to pass is:

()
S

P t S e
−

 =
with τ a parameter

of the flip flop

() () ()
setup

failure meta exit

T t

wT
P P P e

T

−
−

= =

And the mean time between failures

(MTBF) is the inverse of the failure rate:

()

setup1 1

failure

T t

D w

MTBF e
Rate f f T

−
−

= =

For our previous example,

this is about 1024 years…

52 © Adam Teman, 2018

Are synchronizers enough?

• No!

• We may have taken care of metastability,

but data loss and data incoherence are still there.

• So we need to design our logic accordingly.

• To eliminate data loss:

• Slow to fast clock – we won’t lose any data.

• Fast to slow clock – hold source data for several cycles.

• But for data coherence, we need more thinking:

• Handshake protocols.

• First-in First-out (FIFO) interfaces

• Other solutions (Gray code, Multiplexers, etc.)

Source: ZipCPU.com

53 © Adam Teman, 2018

Main References

• Berkeley EE141

• Rabaey “Digital Integrated Circuits”

• Synopsys University Courseware

• IDESA

• Gil Rahav

• Dennis Sylvester, UMICH

• MIT 6.375 Complex Digital Systems

• Horowitz, Stanford

• Ginosar, “Metastability and Synchronizers: A Tutorial”

