
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 8: 
Clock Tree Synthesis

Semester A, 2016-17

Lecturer: Dr. Adam Teman

22 January 2017

mailto:adam.teman@biu.ac.il


Where are we in the design flow?

• We have:
• Synthesized our design into a technology 

mapped gatelevel netlist

• Designed a floorplan for physical implementation.

• And provided a location for each and every gate.

• During all stages:
• We analyzed timing constraints and optimized

the design according to these constraints.

• However…
• Until now, we have assumed an ideal clock.

• Now we have all sequential elements placed, 

so we have to provide them with a real clock signal.

Silicon Validation

Definition and Planning

Design and Verification

Logic Synthesis

Physical Design

Signoff and Tapeout

Design Import

Floorplan

Placement

CTS

Route

Finish Design
Clock



Trivial Approach?

• Question:
• Why not just route the clock net to all sequential elements, 

just like any other net?

• Answer…
• Timing

• Power

• Area

• Signal Integrity

• Etc…

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

Clock  



Implications of Clocking
Timing, power, area, signal integrity

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree 

Synthesis

4

Additional 

Subjects



Implications on Timing

• Let’s remember our famous timing constraints:

• Max Delay:

• Min Delay:

skew logic marginCQ SUT t t t     

logic margin skewCQ holdt t t    

Launch Clock

Capture Clock

Launch 
Clock

Capture 
Clock

Skew 
and 
Jitter

Implications 

on Timing



Clock Parameters

• Skew
• Difference in clock arrival time 

at two different registers.

• Jitter
• Difference in clock period 

between different cycles.

• Slew
• Transition (trise/tfall) of clock 

signal.

• Insertion Delay
• Delay from clock source until 

registers.

Clock Skew
Difference in clock arrival time 
at two spatially distinct points

A

B

Skew

Compressed 
timing path

Clock Jitter
Difference in clock 
period over time

Period A  Period B

Compressed 
timing path

Implications 

on Timing



How do clock skew and jitter arise?

• Clock Generation

• Distribution network
• Number of buffers

• Device Variation

• Wire length and variation

• Coupling

• Load

• Environment Variation
• Temperature

• Power Supply

Central Clock Driver

Clock 
Distribution 

Network

Local 
Clock 
Buffers

Variations in trace 
length, metal width and 
height, coupling caps

Variations in local clock 
load, local power 
supply, local gate 

length and threshold, 
local temperature

Implications 

on Timing

Intel 1998, 

0.25um

PLL

Clock 
Generator



Implications on Timing

• So skew and jitter eat away at our timing margins:

• Max Delay:

• Min Delay:

skew jitter logic margin2 CQ SUT t t t       

logic margin skewCQ holdt t t    

Launch Clock

Capture Clock with 

positive skew

Launch 
Clock

Capture 
Clock

Capture Clock 

with negative 

skew

Positive 
Skew

Negative 
Skew

Jitter

New Min 
Delay

New Min 
Delay

Implications 

on Timing



Implications on Power

• Let’s remember how to calculate dynamic power:

• The activity factor (α) of the clock network is 100%!

• The clock capacitance consists of:
• Clock generation (i.e., PLL, clock dividers, etc.)

• Clock elements (buffers, muxes, clock gates)

• Clock wires

• Clock load of sequential elements

• Clock networks are huge
• And therefore, the clock is responsible for a large

percentage of the total chip power.

Implications 

on Power

2

dyn eff DDP f C V   eff total clock clock others othersC C C C      

Possible power partitioning of a 

microprocessor (not general!!!)



Implications on Signal Integrity

Signal Integrity is an obvious requirement for the clock network:

• Noise on the clock network can cause:
• In the worst case, additional clock edges

• Lower coupling can still slow down or speed up clock propagation

• Irregular clock edges can impede register operation

• Slow clock transitions (slew rate):
• Susceptibility to noise (weak driver)

• Poor register functionality (worse tcq, tsetup, thold)

• Too fast clock transitions
• Overdesign  power, area, etc.

• Bigger aggressor to other signals

• Unbalanced drivers lead to increased skew.

Implications 

on SI

Best practice:
Keep trise and tfall between 

10-20% of clock period

(e.g., 100-200ps @1GHz)



Implications on Area

• To reiterate, clock networks consist of:
• Clock generators

• Clock elements

• Clock wires

• All of these consume area
• Clock generators (e.g., PLL) can be very large

• Clock buffers are distributed all over the place

• Clock wires consume a lot of routing resources

• Routing resources are most vital
• Require low RC (for transition and power)

• Benefit of using high, wide metals

• Need to connect to every flip-flop and clock element
• Distribution all over the chip

• Need Via stack to go down from high metals

Implications 

on Area

Source: Universitat Bonn

For example: Intel Itanium 

4% of M4/M5 used for

clock routing



Clock Distribution
So how do we build a clock tree?

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree 

Synthesis

4

Additional 

Subjects



The Clock Routing Problem

Given a source and n sinks:

• Connect all sinks to the source by an 
interconnect network so as to minimize:
• Clock Skew = maxi,j |ti - tj|
• Delay = maxi ti
• Total wirelength
• Noise and coupling effect

The Challenge: 

• Synchronize millions (billions) of separate elements
• Within a time scale on order of ~10 ps

• At distances spanning 2-4 cm
• Ratio of synchronizing distance to 

element size on order of 105

• Reference: light travels <1 cm in 10 ps

Clock Tree goals:

1) Minimize Skew

2) Meet target insertion 

delay (min/max)

Clock Tree constraints:

1) Maximum Transition

2) Maximum load cap

3) Maximum Fanout

4) Maximum Buffer Levels



Technology Trends
• Timing

• Higher clock frequency  Lower skew

• Higher clock frequency  Faster transitions

• Jitter – PLL’s get better with CMOS scaling

• but other sources of noise increase
• Power supply noise more important

• Switching-dependent temperature gradients

• New Interconnect Materials
• Copper Interconnect:  Lower RC  Better slew and potential skew

• Low-k dielectrics  Lower clock power, better latency/skew/slew rates

• Power
• Heavily pipelined design  more registers  more capacitive load for clock

• Larger chips  more wire-length needed to cover the entire die

• Complexity  more functionality and devices  more clocked elements

• Dynamic logic  more clocked elements



Approaches to Clock Synthesis

• Broad Classification:
• Clock Tree

• Clock Mesh (Grid)

• Clock Spines

Clock 

Spines

spines

source



Clock Trees

• Naïve approach:
• Route an individual clock net to each sink 

and balance the RC-delay

• However, this would burn excessive power and the large 

RC of each net would cause signal integrity issues.

• Instead use a buffered tree
• Short nets mean lower RC values

• Buffers restore the signal for

better slew rates

• Lower total insertion delay

• Less total switching

capacitance FF FF FF FF FFFF FF FFFF FF

RC-Tree



Building an actual Clock Tree
• Perfectly balanced approach: H-Tree

• One large central driver

• Recursive H-style structure to match wire-lengths

• Halve wire width at branching points to reduce  reflections

• More realistic:
• Tapered H-Tree, but still hard to do.

• Standard CTS approach:
• Flip flops aren’t distributed evenly.

• Try to build a balanced tree

clock / PLL

chip / functional block 

/ IP

sequential 

elementsPLL

large skew 
and jitter

medium 
skew 

and jitter

small skew 
and jitter



Industrial H-Tree Examples

• Intel Itanium 2 (2005)

Primary Buffer

Repeaters

Typical SLCB

Locations

Source: CMOS VLSI Design, 4th Ed.

• IBM PowerPC (2002)

IBM, ISSCC 2000



Lower Skew – Clock Grids
• Advantages:

• Skew determined by grid density 

and not overly sensitive to load position

• Clock signals are available everywhere

• Tolerant to process variations

• Usually yields extremely low skew values

• Disadvantages
• Huge amounts of wiring & power

• Wire cap large

• Strong drivers needed – pre-driver cap large

• Routing area large

• To minimize all these penalties, make grid pitch coarser
• Skew gets worse

• Losing the main advantage

• Don’t overdesign – let the skew be as large as tolerable

• Still – grids seem non-feasible for SoC’s

Grid feeds flops directly, 
no local buffers

Clock driver tree spans height of chip
Internal levels shorted together



DEC Alpha – Generations of Clock Grids
• 21064 (EV4) – 1992

• 0.75um, 200MHz, 1.7M trans.
• Big central driver, clock grid

• 240ps skew

• 21164 (EV5) - 1995
• 0.5um, 300MHz, 9.3M trans.
• Central driver, two final drivers, 

clock grid
• Total driver size – 58 cm!
• 120ps skew

• 21264 (EV6) - 1998
• 0.35um, 600MHz, 15.2M trans.
• 4 skew areas for gating

• Total driver size: 40 cm
• 75ps skew

pre-driver

final drivers

Clock Drivers

PLL



Clock Spines

• Clock grids are too power (and routing) hungry.

• A different approach is to use spines
• Build an H-Tree to each spine

• Radiate local clock distribution from spines

• Pentium 4 (2001) used the clock spine approach.

Source: Bindal ISSCC 2003

delay 

in ps

Later Pentium 4’s used 

more spines



Summary of main clock dist. approaches
• Three basic routing structures for global clock

• H-tree
• low skew, smallest routing capacitance, 

low power

• Floorplan flexibility is poor: 

• Grid or mesh
• low skew, increases routing capacitance, 

worse power

• Alpha uses global clock grid 

and regional clock grids

• Spine
• Small RC delay because of large spine width

• Spine has to balance delays; difficult problem

• Routing cap lower than grid but may be higher than H-tree.

Structure Skew Cap/area/ 

power

Floorplan 

Flexibility

H-Tree Low/Med. Low Low

Grid Low High High

Spine High Medium Medium



Active Skew Management (Deskewing)

• Alpha EV7

GCLK

(CPU Core)L
2
L

_
C

L
K

(L
2

 C
a
ch

e
)

L
2
R

_
C

L
K

(L
2

 C
a
ch

e
)

NCLK

(Mem Ctrl)

DLL

P
L

L

SYSCLK

D
L

L

D
L

L
• Intel Itanium

Active Deskew
Circuits

Phase Locked 
Loop (PLL)

Regional 
Grid



Clock Concurrent Optimization

• What is the main goal of CTS?
• We are trying as hard as we can to minimize skew.

• And on the way, we are burning power, wasting area, 

suffering from high insertion delay, etc.

• But is minimal skew our actual goal?

• Why are we minimizing skew in the first place?

• Maybe we should forget about skew and focus on our real goals?
• We need to meet timing and DRV constraints.

• Minimizing skew was just to correlate post-CTS and pre-CTS timing.

• But maybe we should just consider timing, while building our clock tree.

• This new approach is known as Clock Concurrent Optimization (CCOpt)



Clock Concurrent Optimization

• CCOpt Methodology:
• First, build a clock tree, in order to fix DRVs.

• Then check timing (setup and hold) and fix any violations.

• Why is this a good approach?
• Most timing paths are local.

• Therefore, they probably come from the same clock branch 

and don’t need much skew balancing to start with.

• Less skew balancing leads to:
• Lower insertion delay (power, jitter)

• Fewer clock buffers (power, area)

• Distribution of peak current (less IR Drop)

• A heavy dose of useful skew (performance)

PLL

large skew 
and jitter

medium 
skew 

and jitter

small skew 
and jitter



Clock Tree Synthesis in EDA

1

Implications of Clocking

2

Clock Distribution

3

Clock Tree 

Synthesis

4

Additional 

Subjects



Starting Point Before CTS

• So remember:
• Our design is placed, and therefore, we know the location of all 

clock sinks (register and macro clock pins)

• All clock pins are driven by a single clock source, which we 

considered ideal until now.

• We may have several clocks and some logic on the clock network, 

such as clock gates, muxes, clock dividers, etc.

• We must now buffer the clock nets to:
• Meet DRV constraints:

• Max fanout, max capacitance, 

max transition, max length

• Meet clocking goals:

• Minimum skew, minimum insertion delay

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

FF FF FF

Clock  

Design Import

Floorplan

Placement

CTS

Route

Finish Design

DRV = Design 

Rule Violations



CTS Definitions – Sources and Sinks

• Clock Source
• The pin that a clock fans out from.

• This can be:
• A primary input (port) to our design

• An output pin of an IP (e.g., PLL)

• An output pin of a gate 

(e.g., clock mux, clock gate).

• Clock Sink
• All pins that receive the clock signal.

• This can be:
• Clock input of a register (FF, latch)

• Clock input of an IP (e.g., SRAM)

• Primary output (if the clock is

driven outside the block)

CLK

Clock Source –

Primary Input

CLK PLL

Clock Source –

Macro output

CLK1

CLKSEL

CLK2

Clock Source –

Gate output



• Clock Tree
• The root of a circuit graph for buffering.

• Skew Group
• A subset of clock sinks to consider for skew 

balancing/analysis. By default, all the sinks of 

a clock tree are in the same skew group.

• However, they can be divided into several skew groups, 

sinks of several clocks can belong to the same skew group 

(e.g., clock and generated clock), and a sink can even 

belong to more than one skew group.

• Basic CCOpt Commands:

Clock Tree

Skew 

Group 1

Skew 

Group 2

CTS Definitions – Trees and Skew Groups

create_ccopt_clock_tree –name clk –source [get_ports CLK] –no_skew_group
create_ccopt_skew_group –name clk –sources [get_ports CLK] –auto_sinks
modify_skew_group –skew_group clk –add_sinks [get_pins FF1/CK]



CTS Definitions – Stop/Ignore/Exclude Pins

• Stop Pins
• All clock sinks are stop pins, and therefore, 

will be considered for skew balancing/analysis.
• Additional pins can be defined as stop pins, as well.

• The clock net will be buffered up to the stop pin but not beyond it.

• To define a pin as a stop pin in CCOpt, use:

• Ignore Pins
• Ignore pins are pins on the timing net that will 

not be considered a sink in any skew group.

• The clock net will be buffered up to the ignore 

pin but not beyond it.

set_ccopt_property sink_type –pin INV1/A stop

set_ccopt_property sink_type –pin div_ff1/CK ignore

Implicit 

Stop Pins

Implicit 

Ignore Pin



CTS Definitions – Stop/Ignore/Exclude Pins

• Exclude Pins
• Exclude pins are similar to ignore pins, but the clock net will 

not be buffered up to an exclude pin.

• Through Pins
• Through pins are pins, which would otherwise be considered 

stop pins, but we want the clock to propagate through them 

(for buffering and adding pins to the skew group).

• Defining through pins is done, as follows:

set_ccopt_property sink_type –pin div_ff1/CK exclude

set_ccopt_property sink_type –pin clkgen/CK through

CLKGATE

Implicit 

Through Pin



CTS Definitions – Insertion Delay Pin

• In some cases, we would like to provide the clock to a certain stop 

pin earlier or later than the average insertion delay.
• For example, if a macro block has some internal insertion delay, we would like 

to provide the clock early for skew balancing.

• Such a pin is also known as a “float pin”

• For example, to provide the clock 150ps

early to an SRAM called “mem”:

set_ccopt_property insertion_delay 150ps \
–pin mem/CK 



CTS Definitions – Pin Type Summary

Part of the 

Clock Tree

Considered 

for DRV fixing

Considered for 

Delay Balancing

Clock propagates 

beyond it

Stop Pin Yes Yes Yes No

Ignore Pin Yes Yes No No

Exclude Pin No No No No

Through Pin Yes Yes No Yes

Float Pin 

(insertion_delay)

Yes Yes Yes – according 

to constraint

No



Clock Net Routing

• Clock nets are very important in terms of signal integrity
• A glitch on a clock net will cause an additional clock edge!

• Slow transitions will cause deteriorated setup/hold times of registers.

• Fast transitions are strong aggressors to neighboring nets.

• Therefore:
• We will usually pre-route the clock nets during CTS.

• First choice of routing tracks

• Use higher, thicker metals for clock routing 
• Lower resistance

• Less capacitance to the substrate

• Apply shielding to clock nets!

• Consider adding DeCaps next to clock buffers.

Vdd

GND

GND VddCLK



Shielding and Non-Default Routing Rules

• First, define non-default routing rules (NDR):
• Double width and double spacing

• Then, create a routing type for CTS

• Finally, apply property to trunk type clock nets

add_ndr –name CTS_2W2S –spacing {M1:M4 0.2 M5:M6 0.4 M7 0.6} \
–width {M1:M4 0.2 M5:M6 0.4 M7 0.6}

set_ccopt_property –net_type trunk route_type cts_trunk

create_route_type –name cts_trunk –non_default_rule CTS_2W2S \
-top_preferred_layer M7 –bottom_preferred_layer M6 \
-shield_net VSS –bottom_shield_layer M6



Analyzing Clock Trees
• Before running clock tree synthesis, 

analyze each clock tree in the design to determine:
• What the clock root is.

• What the desired clock sinks and clock tree exceptions are.

• Whether the clock tree contains preexisting cells, such as clock gating cells.

• Whether the clock tree converges, either with itself (a convergent clock 

path) or with another clock tree (an overlapping clock path).

• Whether the clock tree has timing relationships with other clock trees in the 

design, such as inter-clock skew requirements.

• What the DRV constraints are 

(maximum fanout, maximum transition time, and maximum capacitance).

• What are the library cells to use for implementing the clock tree.

• What the routing constraints (routing rules and metal layers) are.



Clock Tree Optimizations

Buffer 
sizingGate 

sizing
Delay 

insertion

Gate 
relocation

Buffer 
relocation

Useful Skew



Issue with Post CTS Interface Timing
• Before CTS, clock is ideal.

• We define I/O constraints without thinking about the clock influence

• But after CTS:
• We added positive skew to the in2reg paths.

• We added negative skew to the reg2out paths.

• Therefore:
• Add the average

insertion delay to

the clock paths to

the I/O ports.

set_input_delay -clock clk $IN_DLY [all_inputs]
set_input_delay -clock clk $OUT_DLY [all_outputs]



Reducing Clock Distribution Problems
• Use latch-based design

• Time borrowing helps reduce impact of clock uncertainty

• Timing analysis is more difficult

• Rarely used in fully synthesized ASICs, but sometimes in 

datapaths of otherwise synthesized ASICs

• Make logical partitioning match physical partitioning
• Limits global communication where skew is usually the worst

• Helps break distribution problem into smaller sub-problems

• Use globally asynchronous, locally synchronous design
• Divides design into synchronous regions which communicate through asynchronous channels

• Requires overhead for inter-domain communication

• Use asynchronous design
• Avoids clocks all together

• Incurs its own forms of control overhead



Main References

• Berkeley EE141

• Rabaey “Digital Integrated Circuits”

• Synopsys University Courseware

• IDESA

• Gil Rahav

• Dennis Sylvester, UMICH

• MIT 6.375 Complex Digital Systems

• Horowitz, Stanford


