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Sequential Logic

 Sequential circuits are a function of both the
current state and the previous state.

\
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* In other words,
they have memory.

 The majority of sequential
circuits are Synchronous,
using a clock to synchronize
the logic paths.
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Why use Sequential Logic?
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Explanation through example

* We will look at two examples:
« An accumulator circuit, where sequential
methods are essential to eliminate races.

* A pipelined system, where sequential
methods improve throughput.




What would happen if there were no traffic lights?




Accumulator Example

* An accumulator is a register that sums a list of numbers.
Therefore, it feeds back the output back to the input.

 Without a register, there would be the possibility that
races would occur, causing erroneous outputs.

» We need to delay the output until the original calculation is finished.

IN

ouT
IN 0 0 FB +

ouT 0

FB 0



Accumulator Example

* It is essential to use sequential logic when paths
have different delays but need to converge together.

» We always have to our fast paths down so they
arrive along with our

* If we could make all paths have equal delays, we wouldn’t need
sequential logic, but this is really hard (almost impossible) to do.



Laundry Example

« Small laundry has one washer, one dryer and one operator,
it takes 90 minutes to finish one load:

 \Washer takes 30 minutes

(=)

* Dryer takes 40 minutes
y -

» “Operator folding” takes 20 minutes q7—




Sequential Laundry

|t takes 90 minutes to finish one load.

* The process is sequential.
6PM 7 8 9 10 11 Midnight

30 40 20

A (ol
 Sequential laundry |

takes 6 h

for 4loads.
©

“ @  90mm___

x 0 O —

~ 0 Q ~ 0O
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Pipelined Laundry

* Every 40 minutes a new load starts and a new load ends.

6PM 7 8 9 10 11 Midnight

30 40 40 40 40 20
= ® | 40 | 40 | 40 |
ol 57 Q O

* Pipelined laundry
takes 3.5 hours
for 4 loads

>
n

~ 0 Q ~ 0O
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Pipelining Data

* If it takes 10 time units to process an instruction, we could perform

one instruction every 10 time units:
Instruction Output

< Delay >
 But if we divide the process into 5 tasks that take 2 time units each:

Instruction
Output

<—Delay—>

» We can start a new instruction every 2 time units.
 And after filling the pipe, we finish an instruction every 2 units.
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Pipelining Data

 But some stages may be faster than others, so we need to hold the input to
each stage constant until the previous stage is done.

» We achieve this by adding a register in between the stages.

- 4P

 So by using a pipeline, we can make our path shorter
and therefore reduce the delay between actions.

* All data paths are built using a pipeline of some sort,
either to eliminate races or to increase throughput.



14

Classic 5-Stage RISC Pipeline

Instruction Fetch

Instruction Decode

Reqgister Fetch

Execute

Address Calc,

Memory Access

|F ID EX MEM
Mext PC
- o
E_ Mext SEQ PC Mext SEQ PC
o
» RS1
Branch
RS2
Register| Faro: taken
File
e o . l
5 {3 > :
3 = =
e [P = > =
f 1 rmm I-..,E
[
5

source: wikipedia

am /W3

Write Bacle

WB

|>:_l

WB Data



Sequential Logic Elements
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Naming Conventions

* In our course we relate to registers as follows:
e alatch is level sensitive

transparent

opaque

opaque

transparent

 a flip-flop Is edge-triggered

locked

sample

|

locked

sample

|

 There are many different naming conventions
* For instance, many books call
any bi-stable element a flip-flop (such as an SR Latch)

« However, this leads to confusion,
so we will use the convention above (as used in industry).



Latch Vs. Register

* During high clock phases, a latch is transparent,
latching the input on the falling edge.

* However, a Flip Flop only samples the input on the rising edge.

Input (D)

Latch —{o af— ‘ ! | i i
- ! l \ ! | ‘

I al— | : ] : |
Flip ‘ ! ‘ ! ‘
Flop ' '




Latch Vs. Register

T?
. . e | |
* 3 main options for sequential timing: 2 = \ /
= clk| clk

° USIﬂg Fllp_FlopS —» :§4>< Combinational Logic ]_>

e |
o
o ¥ /
@ |
-
. % #, !..r

« Using Transparent Latches = :
2 Ly, b
— | |
1 S Combinational S Combinational S
§ —* w Logic J_b m Logic ]_b w —

Half-Cycle 1 b Half-Cycle 1

« Using Pulsed Latches

sayale] pasing

= =
—» = 4>{ Combinational Logic 2
— —
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Static Vs. Dynamic Laich

* A static latch stores its output in a static state
A dynamic latch uses temporary capacitance to store its state.
* As with logic, this provides a trade-off between area, speed and reliability.

CLK
h p——% e Q

Lk Dynamic Latch
Static Latch



Static Vs. Dynamic Laich

« Some bhasic implementations of static and dynamic latches.

Static Dynamic
_[L_ CLK
>0 g 4
Tcx D %6
b —> 1T L
LK

T CLK

20



Ratioed vs. Non-Ratioed Latch

« A static latch can be made by using a feedback inverter.

 The TG (with the driver before it) C_Lé,li
must overcome the feedback l II> S
inverter to write into the latch. D - P
CLK <
CLK
 But it is usually more robust to create e
a mux-based non-ratioed latch. > >
« At the expense of size. oK
o —P>

21
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Making a Flip Flop input

aj— out

 Conceptually, we can create an edge triggered flip-flop
by combining two opposite polarity latches:




Master-Slave (Edge-Triggered) Register

» Two opposite latches trigger on edge
* Also called master-slave latch pair

Slave

Master CLK ‘




24

Master-Slave Register

 Multiplexer-based latch pair

e

D |> T,

CLK | |>

* How many transistors make up this flip-flop?
* What is its clock load?
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Resettable Flip Flops

Asynchronous Set/Reset Flip-Flop

b __ —
b DO O
¢ $ |4 ¢

Synchronous Reset Flip-Flop

RESET

i~
I
-&—ﬁp—ﬂ.

s

AR

>
T
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Timing Definitions

Register

—> D Q —

AN

1 TCLK

L \

A 1:setup thold

: 2 X “t, —propagation delay

STABLE -
\ : , tewp — SEtUp time

<—Cq>

Q X X o t,g —hold time

STABLE t

27



Clk-Q Delay -t

* 1., Is the time from the clock edge until the data
appears at the output.

» The 1, for rising and falling outputs is different.

cik [T

thLH tCC]HL

28

thLH



Mux based FF -t , Calculation

* During low clock edge, data traverses slave
and “waits” for the clock at pass gate input.

* When clock rises, data has to go through pass gate and inverter.

CLK

29
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Timing Definitions

Register

—> D Q —

AN

1 TCLK

L \

A tsetup thold
. — >< ty, —Ppropagation delay
STABLE t ]

Q X X o t,g —hold time

STABLE t

30



Setup Time - t

setup

« Setup time is the time the data has to arrive before the clock to ensure correct

sampling.
__tg L Lt

> <>
t

setup tsetup setup

BAD!

31



Mux based FF -t Calculation

« Before clock edge, data should have propagated to the latching pass gate,
or else data will be restored to the previous state.

setup

CLK

Lo =l +T,+1,+1,=T+3l

setup

32
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Volts

Timing Analysis - Setup Time

* To obtain the setup time of the register while using SPICE, we progressively
skew the input with respect to the clock edge until the circuit fails.

3.0

2.5
2.0
1.5

1.0

0.0

20.5—

0.5

0.2 0.4 0.6 0.8

time (nsec)

(@) Tgeryg= 0.21 nsec

Volts

3.0

20.5—

0.2 0.4 0.6 0.8 1

time (nsec)
(b) Tgeyp=0.20 nsec

Clk /

t
(a)
1.0%5 o / \ r
A g c2a
tSu tD’2 c
ty
(b)



Timing Definitions

Register

—> D Q —

AN

1 TCLK

L \

A tsetup thold
. — >< ty, —Ppropagation delay
STABLE t ]
\ . , tewpy — SEtUp time

0 Y “twg —holdtime
STABLE f

34



* Hold time is the time the data has to be stable after the clock to ensure correct

sampling.
« LT

thold thold 1:hold

BAD!

Q

« Often (optimally), Hold Time is negative!

35



Mux based FF -t ,, Calculation

* When the clock rises, T, closes, latching the data at the output of |..
» Therefore, any changes made t,,(1,) before the clock will not traverse.
* The hold time is —t,(1,)

o QM

Y
%
/Y

ERER
¥

i
L
5
\

_ |>C T | 3 —
CLK thOId - Il

36
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Characterizing Timing

Register

— CIk

Latch



Other Flip Flop
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Problem - Clock Overlap

CLK

CLKb

CLK | |:>

Y

Nlica[ el

L

!I\o—o 90 Ty
I/ —
Qu -0

A I\c T,
7=

¥



C2MOS - clocked CMOS

* Insensitive to clock overlap.

Low Phase Overlap High Phase Overlap
503 ﬁﬂ %IQQ %IQQ Vbp Vop
ET A:T —q (M, —q Mg —dq |M; ——q E‘/’;
CLK - |M, ; CLK - | M, C?K __‘j %4 CLKST_%, %I/’S CLK CLKb=T1
Son MM oo e SRS o e B o B i P o SR o,
Ik —| M, Lo ok —| (M, €12 CLK=0 1 (M5 T 1M T
:I :_E :I I CLKb=0 ; ; :I —;— CLK=1 :I —
’_' M, ’_, M ’—I M, Xkﬁ-’lg/li "" %41_ “'I iji
1— _—_I..— = — = =
Mast YSt g Slave Stag CLK ‘ ‘ ‘ ‘ ‘
i CLKb | | | | ‘
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In
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CLEO‘

Vop

Em
i

i
CL§_|

L

Vop

CLEC‘

Vpp

ul

‘ Out
1

-
L

L

Positive latch
(transparent when CLK= 1)

Out

L

Negative latch
(transparent when CLK= 0)

TSPC enables including
logic inside the latch!

In

VDD

—e

—

CLK_‘

—

|VDB‘

TSPC - True Single-Phase Clocked Register

Example:

AND latch

N

—

CLK_|

—




TSPC Flip Flop




P U Ise - Trig g ered |_C|‘|'C h es Master-Slave Latches

L1 L2
Data
* Instead of a full set of master-slave latches b Q D Q
 We can emulate an edge with a short clock pulse: —q Clk Clk
Clk
Pulse-Triggered Latch /Design a clock pulse with a “clock chopper”\
L
Data ¢
D Q b— | D: >Hﬁ
tpw ¢P
<€ >
Clk ¢
— ] Clk _/ \ /
2
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Basic Timing Constraints
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Synchronous Timing

CLK I 1

In
—_—

R

46
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Timing Constraints

 There are two main problems that can arise in synchronous logic:
- Max Delay: The data doesn’t have enough time to pass
from one register to the next before the next clock edge.

- Min Delay: The data path is so short that it passes through
several registers during the same clock cycle.

« Max delay violations are a result of a slow data path,
including the registers’ i, ., therefore it is often called the “Setup” path.

 Min delay violations are a result of a short data path, causing the data to
change bhefore the t, ,, has passed, therefore it is often called the “Hold” path.
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Setup (Max) Constraint

* Let’s see what makes up our clock cycle:

* After the clock rises, it takes t, for the data to propagate to point A.
* Then the data goes through the delay of the logic to get to point B.
* The data has to arrive at point B, t before the next clock.

* In general, our timing path is a race:

« Between the Data Arrival, starting with the launching clock edge.
« And the Data Capture, one clock period later.

setup

clk 1\ I

cq
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Setup (Max) Constraint

R1
A\

n

\ Logic /

(Cﬂmbiﬂﬂ!fﬂrza! ]

R2
D 0O

_F-.

A\
CLK 1 ek, ZT terks

T>t +1

Ioglc

+1

setup



Hold (Min) Constraint

* Hold problems occur due to the logic changing before t, ,, has passed.
* This is not a function of cycle time - it is relative to a single clock edge!

* Let’s see how this can happen:
* The clock rises and the data at A changes after .
 The data at B changes t ,(logic) later.

 Since the data at B had to stay stable for t, 4 after the clock (for the second
register), the change at B has to be at least t,,, after the clock edge.

clk 1\ I

50



Hold (Min) Constraint

R1 R2
In ~D © Combinational D ol

A C LOZIC / h—

CLK ‘ 'CLK, T ICLKs

.+t

o) logic

> thold



Summary

 For Setup constraints, the clock period has to be
longer than the data path delay:

« This sets our maximum frequency. T >t +t|og|c tsetup
 |f we have setup failures, we can always just
slow down the clock.
 For Hold constrains, the data path delay has to be
longer than the hold time: th + tlogic > thol ;

* This is independent of clock period.
* |If there is a hold failure, you can throw your chip away!



Clock Nonidealities

* Clock skew

. Spatial variation in temporally equivalent ‘orvci
clock edges; deterministic + random, t

skew

» Clock jitter L % , \
« Temporal variations in consecutive "= /

edges of the clock signal, — ktskew — ktskew
modulation + random noise t

* Cycle-to-cycle (short-term) ty; L L

* Long term ty; \ \
» Variation of the pulse width Received Clock

« Important for level sensitive clocking

-
-t -

tRCVCLK



Positive and Negative Skew

I R Combi I Re b I 3
n ombinationa Combinationa
— cee
R Logic D Q Logic D Q>
JAN JAN JAN

CLK 1 tCLKl 1 tCLKZ, f toiks

delay o delay
Positive skew

I R Combinati I & b I RS
n ombinationa Combinationa -
D Q Logic D Q Logic AL,
JAN JAN /\

f teika - < 1 teik2 - - 1 tciks
delay _ delay CLK
Negative skew
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Setup (Max) Constraint

 The Launch path (still) consists of:
o t -+t .+t

cq 1:Iogic setup t

« But If jitter makes the launch clock later, =l +1

+t .+t

launch Ioglc setup jitter

we need to add it to the data path delay.
 The Capture path consists of:

 The clock period (T) capture =T+ 5skew B Jltter

» Positive skew means the capture clock path is longer.
* |f jitter makes the capture clock earlier, we need to subtract it.

* Our max constraint is:

* So we get: tcapture > tlaunch

T>t +t .+t +2t. —0O

Ioglc setup jitter skew

95




Setup (Max) Constraint

» Data has to arrive before next clock edge.

] R1 Ve N R?
1 S
=D © Combinational D 0

A \ Logic /

JAN
CLK jf{'f.ﬂ:. E ﬂf{;f.ﬁz

T +0 >t +t .+t 4+ 2t

skew Ioglc setup Jitter




Hold (Min) Constraint

 The Launch path (still) consists of:
A th+tlogic
« But If jitter makes the launch clock later,
we need to subtract it from the data path delay.

 The Capture path consists of:

- Skew that makes the clock edge arrive at the
capture register later than at the launch register.

 Actually, since it is a single clock edge, jitter should effect

the capture clock the same as the launch clock.
« But as a worst case, we will add it as spatial jitter.

 Our min constraint is:

* So we get: t 4+t

. cg logic — “~skew

1:Iaunch — th +t|ogic _tjitter
1:capture — 5skew + tjitter + 1:hold
tIaunch 2 tcapture
T thold T 21:jitter




Hold (Min) Constraint

- Data has to arrive after the same clock edge has arrived at capture reg.

] R1 \ R?2
" . ]
~D 0 C mn{:rmﬂmmm' D O

N | \, LOZIC / h—

+ 2t

kew jltter

T+t

cg Iogic

hold T 5




Adding in Variation

* As previously discussed, variations in both fabrication and operating
conditions occur and are taken into account through “corner” simulation.

* For global variation we have defined three primary simulation corners:

« Typical Corner: our gates operate under nominal conditions and variation.
« Slow Corner: our gates slower (i.e., high VT, high temperature, low voltage).
« Fast Corner: our gates faster (i.e., low VT, low temperature, high voltage).

* To assume worst-case conditions:

e Calculate max-delay with the slowest possible transitions = Slow Corner.
« Calculate min -delay with the fastest possible transitions = Fast Corner.

59



The Computer Hall of Fame

* The machine that made IBM dominate the computer
industry for 20 years

IBM System/360

« Announced April 7" 1964, the first “upgradable”
and fully “compatible” computer.

« Thomas Watson “bet the business” on this machine
with a $5B investment that was to cannibalize all of
IBM’s existing computers.

« Ranked as one of the all-time top 3 business accomplishments
alongside Ford’s Model T and the Boeing 707.

« The machine that pioneered the 8-bit byte and the peripheral
components made by third parties.

Source:computerhistory.org
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STA Example

» We are given a synchronous network with:
oo =190ps,t,,, =90ps, t,,; =100ps, t;,. =0

t

* In addition: s = —100pS, t..., =50ps

CL
tomax = Ezl}ﬂps DQ
fpnin = 190PS &
clk3

clk

_ Emﬂ —
62




STA Example e

» We'll find the setup pQ o

i min = 5 ,min = 5
constraints for each path: A = 2500 o

DG

N toewt clk2

Path 1: T, +t g >ty + pmax(CL1)+t k=

setup2

tekewz

clk3

T, >150p+1.2n +50p +100p =1500p =1.5ns — 666 MHz

Path 2: T2 + (tskewz _tskewl) > th2 p,max (CL ) setup3
T, >150p +800p +50p —150p =850p —1.1/GHz

Path 3: T3 + (O o 1:skew2 ) > th3 p,max (CL3 ) + tsetupl
T, >150p + 700p +50p +50p = 950p — 1.05GHz
* So the critical path is Path 1 and the maximum frequency is 666MHz.

63
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STA Example

* Now, we'll find the hold

D Q

Fa'

constraints for t ., and f, ..

Path 1 1:skewl 1:hold2 < thl +tp min (CLl) T

tor <150p +250p —100p =300p

Path 2: (tskewz _tskewl) + thold3 < th2 p,min (CL )

(tskeWZ skewl) < 150p + 150p 100p

200p

Path 3: (O o tskewz ) + tholdl < th3 + tp min (CL3)

~t e, <150p+200p—100p =250p —> t

skew?2

to,max = 700ps
tomin = 200ps
o man EL11 2ns DQ glﬁzﬂ‘ﬂpﬂ ba
t;.min = 250p5 tp,min = 150ps A
e clk2 clk3
tekewz

> —250p



STA Example o2 To0s

* If we could set t,, .., and tg.,», D Q r?ﬂéj,ﬁzuﬁ D Q _ C?ggg: b Q
could we use them to maximize 3 — — it
M tanewt
our frequency? -
lekanz

* If we could equally divide the delay of each path:
=3ty T max (CLL+CL, + CLy) + 31, =

=450p+2./n+150p =3.3ns
* So to get the max frequency, set all delays to 1.1ns:

total p,max

1.Ins+t,.,, =150p+1.2n+50p —> t ., = 300ps
1.1nS + (tyems — toens ) =150p +800p +50p —> t,,, = 200ps

1.1ns + (0 —ty,, ) =150p + 700p +50p —> t,, = 200ps
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Further Reading

« J. Rabaey, “Digital Integrated Circuits” 2003, Chapter 7
» Weste, Harris “CMOS VLSI Design” Chapter 7

 E. Alon, Berkeley EE-141, Lectures 23,24 (Fall 2010)
 Berkeley CS-150, Lecture 4

* Oklobdzija, Stojanovic, Markovic, Nedovic, “Digital System Clocking”


http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f10/
http://inst.eecs.berkeley.edu/~cs150/

