
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 7: Placement
Semester A, 2016-17

Lecturer: Dr. Adam Teman

29 December

2016

mailto:adam.teman@biu.ac.il

Where are we in the design flow?

• We have successfully synthesized our design into a

technology mapped gatelevel netlist.

• We have designed a floorplan with

pre-placed blocks.

• Now we will move into detailed

placement of the standard cells.

2

Definition and Planning

Design and Verification

Logic Synthesis

Physical Design

Signoff and Tapeout

Silicon Validation

Design Import

Floorplan

Placement

CTS

Route

Finish Design

Chip Size…?

• Before we start discussing how to place the standard cells, we would like to

make sure we understand how big a problem it is.
• How big is a “100 Million gate ASIC”?

• In real designs, small cells dominate.
• Therefore, numbers are usually given

as “equivalent small gates”

• May also consider a hard macro to be

many, many small gates.

• Conclusion:
• Gates==Equivalent NAND2 gates

• Instances: # of things placed!

• Rule of thumb: Inst=Gates/4..5
3

Source: Rutenbar/Vygen

206K gate

IBM ASIC (1998)

Introduction

1

Introduction

2

Random

Placement

3

Analytic

Placement

4

Placement in

Practice

Placement

• Placement is the stage of the design flow, during which

each instance (standard cell) is given an exact location.

• Inputs:
• Netlist of gates and wires.

• Floorplan and Technology constraints

• Output:
• All cells located in the floorplan.

• Goal
• Provide legal location of entire netlist

• Enable detailed route of all nets

• Meet timing, area, and power targets

Design Import

Floorplan

Placement

CTS

Route

Finish Design

Placement Flow
• In general, most tools partition the placement task

into two stages:
• Global placement:

• Quickly divide each cell into “bins” to try and minimize

the number of connections between groups.

• Detailed placement:
• Provide a legal placement for each instance

• Try and minimize wirelength (or other cost metrics)

• Try to finish with uncongested design.

6

Bad Placement

Good Placement

Design Import

Floorplan

Placement

CTS

Route

Finish Design

Coarse
Placement

Legalized
Placement

• In the Encounter flow, placement was achieved in two steps:
• Placement:

• Post Placement Optimization

• In Innovus, this has been replaced by gigaPlace, which runs

timing driven concurrent placement and optimization

• If you manually move something and need to legalize placement:

Placement in Encounter/Innovus

7

setPlaceMode –congEffort high –clkGateAware true
placeDesign -prePlaceOpt

setOptMode –effort high
optDesign -preCTS

setPlaceMode –congEffort high –clkGateAware true
place_opt_design

Design Import

Floorplan

Placement

CTS

Route

Finish Design

refinePlace

Random Placement

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”,

Lecture 9 from 2013. For a better  and more detailed explanation, do

yourself a favor and go see the original!

1

Introduction

2

Random

Placement

3

Analytic

Placement

4

Placement in

Practice

Problem Formulation

• Given a netlist, and fixed-shape cells (small, standard cell),

find the exact location of the cells to minimize area and wire-length
• Consistent with the standard-cell design methodology

• Row-based, no hard-macros

• Modules
• Usually fixed, equal height

(exception: double height cells)

• Some fixed (I/O pads)

• Connected by edges or hyperedges

• Objectives
• Cost components: area, wire length

• Additional cost components:

timing, congestion

9

Add up the estimated
length of all nets and try
to minimize

Wirelength
Minimization

Congestion
Minimization

Take any cut through the
placement and try to
minimize the number of
nets that cross it.

Simple Placer

• Assume a very simple chip model:
• Simple grid – cells go in squares

• Pins fixed at edges

• Assume simple gate model:
• All gates same size

• Each grid slot can hold one gate.

• Simple bounding box wirelength estimator:
• “Half-Perimeter Wirelength” (HPWL)

• Put the smallest box around all gates on net.

• Measure Width (ΔX) and Height (ΔY) of box.

• HPWL= ΔX+ΔY

10

Simplistic Model More realistic Model

Simple Placer

Let’s define a simple algorithm:

• Start with a random placement:
• Randomly assign each gate to a grid location.

• Apply random iterative improvement:
• Pick a random pair of gates.

• Swap their locations and evaluate the

change in total wirelength.

• If wirelength got smaller – accept the swap.

If wirelength got bigger – undo the swap.

• Repeat until wirelength stops improving.

11

// Random initial placement
foreach (gate Gi in netlist)
place Gi in random (x,y) not occupied.

// calculate initial HPWL
L=0
foreach (net Ni in netlist)
L = L + HPWL(Ni)

// random iterative improvement
while (overall HPWL is improving)
pick two random gates Gi, Gj
swap Gi and Gj
evaluate ΔL = new HPWL – old HPWL
if (ΔL < 0) then keep the swap
if (ΔL > 0) undo the swap

Simple Placer

• Was this any good?
• Well, we quickly get stuck in a local minimum.

12

Source: Rutenbar

How can we
get over here?

Why not
try hill

climbing?

Simulated Annealing
• When we learned about semiconductors, we discussed “annealing”:

• The lowest energy state of a crystal

lattice is when all atoms are lined up.

• So if we have a messy crystal:
• Heat it up – give atoms energy to move around.

• Cool it slowly –

• At first, atoms will move a lot.

• But as the crystal cools, the movement will be restricted.

• What if we apply this idea to random hill climbing?
• At first (“hot temperature”) we’ll “climb a lot of hills”.

• As we progress (“cool down”)

we will make fewer big jumps.

• This very famous idea is called “Simulated Annealing”

13

Probability
of a move:

E

kTP e

 
 
 

Simulated Annealing Algorithm
• Start with the same basic algorithm:

• Random initial placement

• Swap two Random gates

• Evaluate change in HPWL (ΔL)

• If wirelength improves, accept the change.

• But what if wirelength increases (ΔL>0)?
• Evaluate annealing probability function

• Choose a uniform random number (R)
between 0 and 1

• If R<P then keep the swap.

• What is T?
• T is the simulated temperature.

• Start hot. Cool down.

14

exp
L

P
T

 
  

 

T=HOT; frozen = false
while (!frozen)
swap two random gates Gi, Gj
evaluate ΔL
if (ΔL < 0) then
keep the swap

else
if (random() < exp(-ΔL/T))
accept swap

else
undo swap

if (HPWL still decreasing)
T = 0.9*T

else
frozen=true

Simulated Annealing

• How well does this work?
• Really well!

• Many EDA algorithms

use Simulated Annealing.

• Does it find an optimal solution?
• No. But it’s good at

avoiding local minima.

• What happens if I run it again?
• I will get a different

answer each time!

• NOT how placers work today!

15

10x10 lattice
1K moves per Temp

Source: Rutenbar

100x100 lattice
250K moves per Temp

Analytic Placement

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”,

Lecture 9 from 2013. For a better  and more detailed explanation, do

yourself a favor and go see the original!

1

Introduction

2

Random

Placement

3

Analytic

Placement

4

Placement in

Practice

Analytical Placement Approach

• Question:
• Can we write an equation whose minimum is the placement?

• If we have a cost function (such as wirelength) that is a function of the gate

coordinates (xi, yi), i.e.:

• Then we could find the minimum of f and this would be our optimal placement!

• Sounds crazy, but the answer is YES!
• All modern placers are based on analytical placement.

• We need to write the cost function in a mathematically friendly way.

• Then, we can just differentiate and equate to 0!

17

 wire 1 2 1 2, ,..., , , ,...,N NL f x x x y y y

0, 0
f f

x y

 
 

 

Analytical Placement Cost Function

• Instead of HPWL, let’s define

a new wirelength model
• Quadratic wirelength:

• What about a k-point net (k>2)?
• Instead of one “real” net, replace with a fully connected clique model.

• So each gate on the net has a one-to-one connection with the other.

• Altogether k(k-1)/2 nets

• Compensate by weighting

each new net by 1/(k-1)

• One last point:
• Assume that gates are

dimensionless points.
18

   
2 2

1 2 1 2L x x y y   

Analytical Placement Calculation

• Example of quadratic wirelength calculation:
• Each point has an (x,y) coordinate.

• Each net has a weight.

• Pads are fixed pins on the edge.

• Important:
• There are no terms with xi*yi

• Therefore, we can separate

x and y terms in the sum!

19

Analytical Placement Calculation

• Now that we have an analytic expression for the cost

function, we can use basic calculus to minimize it!

20

       
2 2 2

2 2 1 14 1 2 1 0Q x x x x x             
2 2 2

2 2 1 14 0.5 2 1 0Q y y y y y     

 
    2 1 1 1 2

1

0 4 1 2 6 4 0
Q x

x x x x x
x


       



 
   2 2 1 1 2

2

8 1 4 0 4 12 8 0
Q x

x x x x x
x


         



 
    2 1 1 1 2

1

0 4 1 2 4 4 0
Q y

y y y y y
y


       



 
   2 2 1 1 2

2

8 0.5 4 0 4 12 4 0
Q y

y y y y y
y


         



1

2

6 4 0

4 12 8

x

x

     
    

    

1

2

6 4 0

4 12 4

y

y

     
    

    

1

2

0.571

0.857

x

x





1

2

0.286

0.429

y

y





• Algebraically:
• For N gates, we get two equivalent

NxN matrices (A) for two linear systems:

• b vectors represent Pad coordinates!

Analytical Placement Example Result

Observations:

• Placement makes visual sense:
• All points are on a straight line.

• The placement minimizes spring
weights.

• Bigger weight  Shorter wire

21

A , Ax yx b y b 

6 4
A

4 12

 
  

 

0 0
,

8 4
x yb b

   
    
   

1

2

6 4 0

4 12 8

x

x

     
    

    

1

2

6 4 0

4 12 4

y

y

     
    

    

 

 

1

2

: 0.571,0.286

: 0.857,0.429

G

G

Building Analytical Network

Recipe for success

• Build connectivity matrix (C) as follows.
• C(i,j)=C(j,i)=w for a net with weight w

connected between gates i and j.

• If no net connects gates i and j, C(i,j)=0.

• Build A matrix:
• Off diagonal, A(i,j)=-C(i,j)

• A(i,i) is sum of row i + weight of net from i to pad.

• Build b vectors:
• If gate i connects to a pad at (xi,yi) with

weight wi then bx(i)=wi*xi, by(i)=wi*yi

22

,

,

, ,pads1

C
A

C

i j

Ni j

i j jj

i j

w i j


 
 

 

, , ,

, ,

0

C C 0 no net

net

i j j i i j

i j i j

i j

w

 


  



 

 

,

,

0 no pad

pad , ,

0 no pad

pad , ,

x i

i i i i i

y i

i i i i i

b
w x x y w

b
w y x y w


 




 



Five Gate Example

23

(0,1) (1,1)

(1,0)

1

2

3

4

5

(0.5,0)

1 1

1

1

1

1

1
1

10 10

0 1 10 0 0

1 0 1 1 1

C 10 1 0 1 0

0 1 1 0 1

0 1 0 1 0

 
 
 
 
 
 
 
 

21 1 10 0 0

1 4 1 1 1

A 10 1 13 1 0

0 1 1 4 1

0 1 0 1 3

  
 
   

 
    
 

   
   

0 10

0 0

1 0

1 1

0.5 0

x yb b

   
   
   
    
   
   
   
   

Problem – Gate Clustering

• What does a real quadratic placement look like?
• All the gates want to be in the same place!

• How can we solve this?
• Recursive Partitioning!

24

Source: Rutenbar, IBM

Source: Rutenbar, IBM

211K Gates, 500+ IPs

Recursive Partitioning

• Partition
• Divide the chip into new, smaller placement tasks.

• Divide it in half!

• Assignment
• Assign gates into new, smaller region.

• Sort the gates and distribute to each half.

• Containment
• Formulate new QP matrix that

keeps gates in new regions.

• Create “pseudo pads” –
• Every gate and pad NOT inside the partition R

is modeled as a pad on the boundary of R.

• Propagate the pseudo pads to the their nearest point on R.
25

Recursive Partitioning Example

26

Recursive Partitioning Example

27

Recursive Partitioning Example

28

Placement Legalization

• Keep recursively partitioning…
• Usually, continue until you have a

“small” number of gates in each region (i.e., 10-100 gates)

• In these regions we will still have overlaps

• Still need to force gates in precise rows for final result
• This is known as “legalization”

• One easy way to do this is simulated annealing!

• Just use a low temperature to start with,

so you don’t make drastic moves.

29

Placement in Practice

30

1

Introduction

2

Random

Placement

3

Analytic

Placement

4

Placement in

Practice

Placement Targets

• In addition to wire-length minimization, placement can be driven by two

additional primary targets:
• Timing Optimization

(Timing-driven placement)

• Congestion Minimization

(Congestion-driven placement)

• Further targets include clock tree

and power optimizations
• We may discuss these later or in

advanced courses.
Clock

Power

Clock Gating

Multivoltage and

Multisupply Placement

Congestion Congestion-driven

Placement

Area

Wire length

Overlap

Traditional methods of

Placement

Timing
Timing-driven

Placement

Timing-Driven Placement

• Timing-driven placement tries to place critical path cells

close together to reduce net RCs and to meet setup

timing

• RCs are based on Virtual Route (VR)
• Layers are not taken into consideration

• Timing-driven placement based on Virtual Route
• Tries to place cells along timing-critical paths close

together to reduce net RCs and meet setup timing

• Net RCs are based on Virtual Routing (VR) estimates

32

Virtual

Route

Timing-Driven Placement

33

Net

Fanout

Resistance

KW

Capacitance

pF

1 0.0498 0.045

2 0.1295 0.0812

3 0.2092 0.1312

4 0.2888 0.1811

Statistically Based

Wire Load Model (WLM)

Placement
Synthesis Netlist

• Congestion occurs when the number of required

routing tracks exceeds the number of available tracks.

• Congestion can be estimated from the results of a

quick global route, global bins with routing overflow

can be identified.

Congestion

34

Routing demand = 3

Assume routing supply is 1,

overflow = 3 - 1 = 2 .

Overflow on each edge =

Routing Demand - Routing Supply

0 (otherwise)

Total Overflow = overflow

all edges
S

Global Bin

Edge

Global Bin

29/28

28/28

39/35 40/35

Nets crossing the

global routing cell

(GRC) edge per

available routing

tracks

Global

routing grid

Routing tracks

Congestion

• Issues with Congestion
• If congestion is not too severe, the actual route

can be detoured around the congested area

• The detoured nets will have worse RC delay

compared to the VR estimates

• In highly congested areas, delay estimates during

placement will be optimistic.

• Not routable or severely congested design
• It is important to minimize or eliminate

congestion before continuing

• Severe congestion can cause a

design to be un-routable

Congestion

hot spot

Congestion Map

≥2 ≥3 ≥4 ≥5 ≥6 ≥7

Detour

Congestion Maps

• Congestion maps are displayed by the backend tool to help us evaluate the

total congestion, identify and fix congestion hot spots.

36

Congestion-driven Placement

• Congestion Reduction
• The tool tries to evaluate congestion hotspots

and spread the cells (lower utilization) in the

area to reduce congestion.

• The tool can also Choose cell location based

on congestion, rather than wire-length.

37

(channel capacities:2)

Unroutable Layout

Longer Wire length

Channel Density: 2

(track: 2)

Shorter Wire length

Channel Density: 3

(track: 3)

D

E F G H

ACB

A

E F G H

DCB

Strategies to Fix Congestion

Modify the floorplan:

• Mark areas for low utilization.

• Top-level ports
• Changing to a different metal layer

• Spreading them out, re-ordering or moving to other sides

• Macro location or orientation
• Alignment of bus signal pins

• Increase of spacing between macros

• Add blockages and halos

• Core aspect ratio and size
• Making block taller to add more horizontal routing resources

• Increase of the block size to reduce overall congestion

• Power grid: Fixing any routed or non-preferred layers
38

x1 y1

x2 y2

Main References

• Ron Rutenbar “From Logic to Layout”

• Synopsys University Courseware

• IDESA

• Cadence Documentation

39

