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Where are we in the design flow?

• We have successfully synthesized our design into a

technology mapped gatelevel netlist.

• We have designed a floorplan with 

pre-placed blocks.

• Now we will move into detailed 

placement of the standard cells.
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Chip Size…?

• Before we start discussing how to place the standard cells, we would like to 

make sure we understand how big a problem it is.
• How big is a “100 Million gate ASIC”?

• In real designs, small cells dominate.
• Therefore, numbers are usually given

as “equivalent small gates”

• May also consider a hard macro to be

many, many small gates.

• Conclusion:
• Gates==Equivalent NAND2 gates

• Instances: # of things placed!

• Rule of thumb: Inst=Gates/4..5
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Source: Rutenbar/Vygen
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Placement

• Placement is the stage of the design flow, during which 

each instance (standard cell) is given an exact location.

• Inputs:
• Netlist of gates and wires.

• Floorplan and Technology constraints

• Output:
• All cells located in the floorplan.

• Goal
• Provide legal location of entire netlist

• Enable detailed route of all nets

• Meet timing, area, and power targets
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Placement Flow
• In general, most tools partition the placement task 

into two stages:
• Global placement:

• Quickly divide each cell into “bins” to try and minimize 

the number of connections between groups.

• Detailed placement:
• Provide a legal placement for each instance

• Try and minimize wirelength (or other cost metrics)

• Try to finish with uncongested design.
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• In the Encounter flow, placement was achieved in two steps:
• Placement:

• Post Placement Optimization

• In Innovus, this has been replaced by gigaPlace, which runs 

timing driven concurrent placement and optimization

• If you manually move something and need to legalize placement:

Placement in Encounter/Innovus
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setPlaceMode –congEffort high –clkGateAware true
placeDesign -prePlaceOpt

setOptMode –effort high
optDesign -preCTS

setPlaceMode –congEffort high –clkGateAware true
place_opt_design
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Random Placement

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”, 

Lecture 9 from 2013. For a better  and more detailed explanation, do 

yourself a favor and go see the original!
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Problem Formulation

• Given a netlist, and fixed-shape cells (small, standard cell), 

find the exact location of the cells to minimize area and wire-length
• Consistent with the standard-cell design methodology

• Row-based, no hard-macros

• Modules
• Usually fixed, equal height 

(exception: double height cells)

• Some fixed (I/O pads)

• Connected by edges or hyperedges

• Objectives
• Cost components: area, wire length

• Additional cost components: 

timing, congestion
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Simple Placer

• Assume a very simple chip model:
• Simple grid – cells go in squares

• Pins fixed at edges

• Assume simple gate model:
• All gates same size

• Each grid slot can hold one gate.

• Simple bounding box wirelength estimator:
• “Half-Perimeter Wirelength” (HPWL)

• Put the smallest box around all gates on net.

• Measure Width (ΔX) and Height (ΔY) of box.

• HPWL= ΔX+ΔY
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Simplistic Model More realistic Model



Simple Placer

Let’s define a simple algorithm:

• Start with a random placement:
• Randomly assign each gate to a grid location.

• Apply random iterative improvement:
• Pick a random pair of gates.

• Swap their locations and evaluate the 

change in total wirelength.

• If wirelength got smaller – accept the swap.

If wirelength got bigger – undo the swap.

• Repeat until wirelength stops improving.
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// Random initial placement
foreach (gate Gi in netlist)
place Gi in random (x,y) not occupied.

// calculate initial HPWL
L=0
foreach (net Ni in netlist)
L = L + HPWL(Ni)

// random iterative improvement
while (overall HPWL is improving)
pick two random gates Gi, Gj
swap Gi and Gj
evaluate ΔL = new HPWL – old HPWL
if (ΔL < 0) then keep the swap
if (ΔL > 0) undo the swap



Simple Placer

• Was this any good?
• Well, we quickly get stuck in a local minimum.
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Source: Rutenbar
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Simulated Annealing
• When we learned about semiconductors, we discussed “annealing”:

• The lowest energy state of a crystal 

lattice is when all atoms are lined up.

• So if we have a messy crystal:
• Heat it up – give atoms energy to move around.

• Cool it slowly –

• At first, atoms will move a lot.

• But as the crystal cools, the movement will be restricted.

• What if we apply this idea to random hill climbing?
• At first (“hot temperature”) we’ll “climb a lot of hills”.

• As we progress (“cool down”) 

we will make fewer big jumps.

• This very famous idea is called “Simulated Annealing”
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Simulated Annealing Algorithm
• Start with the same basic algorithm:

• Random initial placement

• Swap two Random gates

• Evaluate change in HPWL (ΔL)

• If wirelength improves, accept the change.

• But what if wirelength increases (ΔL>0)?
• Evaluate annealing probability function

• Choose a uniform random number (R) 
between 0 and 1

• If R<P then keep the swap.

• What is T?
• T is the simulated temperature. 

• Start hot. Cool down.
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T=HOT; frozen = false
while (!frozen)
swap two random gates Gi, Gj
evaluate ΔL
if (ΔL < 0) then 
keep the swap

else
if (random() < exp(-ΔL/T))
accept swap

else 
undo swap

if (HPWL still decreasing)
T = 0.9*T

else 
frozen=true



Simulated Annealing

• How well does this work?
• Really well!

• Many EDA algorithms

use Simulated Annealing.

• Does it find an optimal solution?
• No. But it’s good at 

avoiding local minima.

• What happens if I run it again?
• I will get a different 

answer each time!

• NOT how placers work today!
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10x10 lattice
1K moves per Temp

Source: Rutenbar

100x100 lattice
250K moves per Temp



Analytic Placement

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”, 

Lecture 9 from 2013. For a better  and more detailed explanation, do 

yourself a favor and go see the original!
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Analytical Placement Approach

• Question:
• Can we write an equation whose minimum is the placement?

• If we have a cost function (such as wirelength) that is a function of the gate 

coordinates (xi, yi), i.e.:  

• Then we could find the minimum of f and this would be our optimal placement!

• Sounds crazy, but the answer is YES!
• All modern placers are based on analytical placement.

• We need to write the cost function in a mathematically friendly way.

• Then, we can just differentiate and equate to 0!
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Analytical Placement Cost Function

• Instead of HPWL, let’s define 

a new wirelength model
• Quadratic wirelength: 

• What about a k-point net (k>2)?
• Instead of one “real” net, replace with a fully connected clique model.

• So each gate on the net has a  one-to-one connection with the other.

• Altogether k(k-1)/2 nets

• Compensate by weighting 

each new net by 1/(k-1)

• One last point:
• Assume that gates are

dimensionless points.
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Analytical Placement Calculation

• Example of quadratic wirelength calculation:
• Each point has an (x,y) coordinate.

• Each net has a weight.

• Pads are fixed pins on the edge.

• Important: 
• There are no terms with xi*yi

• Therefore, we can separate

x and y terms in the sum!
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Analytical Placement Calculation

• Now that we have an analytic expression for the cost 

function, we can use basic calculus to minimize it!
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• Algebraically:
• For N gates, we get two equivalent 

NxN matrices (A) for two linear systems:

• b vectors represent Pad coordinates!

Analytical Placement Example Result

Observations:

• Placement makes visual sense:
• All points are on a straight line.

• The placement minimizes spring 
weights. 

• Bigger weight  Shorter wire
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Building Analytical Network

Recipe for success

• Build connectivity matrix (C) as follows.
• C(i,j)=C(j,i)=w for a net with weight w

connected between gates i and j.

• If no net connects gates i and j, C(i,j)=0.

• Build A matrix:
• Off diagonal, A(i,j)=-C(i,j)

• A(i,i) is sum of row i + weight of net from i to pad.

• Build b vectors:
• If gate i connects to a pad at (xi,yi) with 

weight wi then bx(i)=wi*xi, by(i)=wi*yi
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Five Gate Example
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Problem – Gate Clustering

• What does a real quadratic placement look like?
• All the gates want to be in the same place!

• How can we solve this?
• Recursive Partitioning!
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Source: Rutenbar, IBM

Source: Rutenbar, IBM

211K Gates, 500+ IPs



Recursive Partitioning

• Partition
• Divide the chip into new, smaller placement tasks.

• Divide it in half!

• Assignment
• Assign gates into new, smaller region.

• Sort the gates and distribute to each half.

• Containment
• Formulate new QP matrix that 

keeps gates in new regions.

• Create “pseudo pads” –
• Every gate and pad NOT inside the partition R 

is modeled as a pad on the boundary of R.

• Propagate the pseudo pads to the their nearest point on R.
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Recursive Partitioning Example
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Recursive Partitioning Example
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Recursive Partitioning Example
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Placement Legalization

• Keep recursively partitioning…
• Usually, continue until you have a 

“small” number of gates in each region (i.e., 10-100 gates)

• In these regions we will still have overlaps

• Still need to force gates in precise rows for final result
• This is known as “legalization”

• One easy way to do this is simulated annealing!

• Just use a low temperature to start with, 

so you don’t make drastic moves.
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Placement in Practice
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Placement Targets

• In addition to wire-length minimization, placement can be driven by two 

additional primary targets:
• Timing Optimization 

(Timing-driven placement)

• Congestion Minimization 

(Congestion-driven placement)

• Further targets include clock tree

and power optimizations
• We may discuss these later or in

advanced courses.
Clock

Power

Clock Gating

Multivoltage and 

Multisupply Placement

Congestion Congestion-driven 

Placement

Area

Wire length

Overlap

Traditional methods of 

Placement

Timing
Timing-driven 

Placement



Timing-Driven Placement 

• Timing-driven placement tries to place critical path cells 

close together to reduce net RCs and to meet setup 

timing

• RCs are based on Virtual Route (VR)
• Layers are not taken into consideration

• Timing-driven placement based on Virtual Route
• Tries to place cells along timing-critical paths close 

together to reduce net RCs and meet setup timing

• Net RCs are based on Virtual Routing (VR) estimates
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Timing-Driven Placement 
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Net 

Fanout

Resistance 

KW

Capacitance 

pF

1 0.0498 0.045

2 0.1295 0.0812

3 0.2092 0.1312

4 0.2888 0.1811

Statistically Based

Wire Load Model (WLM)

Placement
Synthesis Netlist



• Congestion occurs when the number of required 

routing tracks exceeds the number of available tracks.

• Congestion can be estimated from the results of a 

quick global route, global bins with routing overflow 

can be identified.

Congestion
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Routing demand = 3

Assume routing supply is 1,

overflow = 3 - 1 = 2 .

Overflow on each edge = 
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0  (otherwise)
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Congestion

• Issues with Congestion
• If congestion is not too severe, the actual route 

can be detoured around the congested area

• The detoured nets will have worse RC delay 

compared to the VR estimates

• In highly congested areas, delay estimates during 

placement will be optimistic.

• Not routable or severely congested design
• It is important to minimize or eliminate 

congestion before continuing

• Severe congestion can cause a 

design to be un-routable

Congestion 

hot spot

Congestion Map

≥2 ≥3 ≥4 ≥5 ≥6 ≥7

Detour



Congestion Maps

• Congestion maps are displayed by the backend tool to help us evaluate the 

total congestion, identify and fix congestion hot spots.
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Congestion-driven Placement

• Congestion Reduction
• The tool tries to evaluate congestion hotspots 

and spread the cells (lower utilization) in the 

area to reduce congestion.

• The tool can also Choose cell location based 

on congestion, rather than wire-length.
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Strategies to Fix Congestion

Modify the floorplan:

• Mark areas for low utilization.

• Top-level ports
• Changing to a different metal layer

• Spreading them out, re-ordering or moving to other sides

• Macro location or orientation
• Alignment of bus signal pins

• Increase of spacing between macros

• Add blockages and halos

• Core aspect ratio and size
• Making block taller to add more horizontal routing resources

• Increase of the block size to reduce overall congestion

• Power grid: Fixing any routed or non-preferred layers
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