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Sequential Logic

 Sequential circuits are a function of both the

current state and the previous state.

* In other words,
they have memory.

inputs ——

* The majority of sequential
circuits are Synchronous,
using a clock to synchronize
the logic paths.
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Explanation through example

* We will look at two examples:
« An accumulator circuit, where sequential

met
* ApI
met

nods are essential to eliminate races.
pelined system, where sequential

nods improve throughput.
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What would happen if there were no traffic lights?
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Accumulator Example

* An accumulator is a register that sums a list of numbers.
Therefore, it feeds back the output back to the input.

« Without a register, there would be the possibility that
the input would change before the calculation was finished.

* We need to delay the output OO T
until the original calculation 01

is finished. IN HBI0 C 10
OouT

X00clio
001
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Accumulator Example

* It is essential to use sequential logic when paths
have different delays, but need to converge together.

» We always have to slow our fast paths down so they
arrive along with our slowest path.

* If we could make all paths have equal delays, we wouldn’t need
sequential logic, but this is really hard (almost impossible) to do.

ZnlCS



Laundry Example

« Small laundry has one washer, one dryer and one operator,
it takes 90 minutes to finish one load:

 \Washer takes 30 minutes

(=)

« Dryer takes 40 minutes -

 “operator folding” takes 20 minutes qT

ZnlCS
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Sequential Laundry

« |t takes 90 minutes to finish one load.
* The process is sequential.

10

11 Midnight

3051020
B 15,
B

x 0 O —

 Sequential laundry
takes 6 hours
for 4 loads.

~ 0 Q ~ 0O

| 90 min ,
A J
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Pipelined Laundry

 Every 40 minutes a new load starts and a new load ends.

6PM 7 8 9 10 11 Midnight
I Time "
30 40 |70 |70 |70 |%|
= ) | 40 | 40 | 40 |
O O

Sl

>
n

* Pipelined laundry
takes 3.5 hours
for 4 loads

~ 0 Q ~ 0O




Pipelining Data

* If it takes 10 time units to process an instruction, we could perform one

instruction every 10 time units:

< Delay >
 But if we divide the process into 5 tasks that take 2 time units each:

Instruction
Output

<—Delay—>
» We can start a new instruction every 2 time units.

* And after filling the pipe, we finish an instruction every 2 units.

12 &nlCS
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Pipelining Data
 But some stages may be faster than others, so we need to hold the input to

each stage constant until the previous stage is done.
» We achieve this by adding a register in between the stages.

- -

 So by using a pipeline, we can make our slowest path shorter
and therefore reduce the delay between actions.

« All data paths are built using a pipeline of some sort,
either to eliminate races or to increase throughput.

ZnlCS



MIPS Pipeline

. Instruction Decode Execute -
Instruction Fetch Register Fetch Address Calc. Memory Access Write Bacle
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Sequential Logic Elements
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Naming Conventions

* In our course we relate to registers as follows:
« alatch is level sensitive

transparent transparent

opaque opaque

|

 There are many different naming conventions
* For instance, many books call
any bi-stable element a flip-flop (such as an SR Latch)

* However, this leads to confusion, o
so we will use the convention above (as used in industry). o—n“CS

 a flip-flop Is edge-triggered

locked locked

sample

sample
—>

16



Latch Vs. Register

* During high clock phases, a latch is transparent, latching the input on the

falling edge.

* However, a Flip Flop only samples the input on the rising edge.

Input (D)

Clock

i

Latch —{o

Flip
Flop
17
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Latch Vs. Register

* 3 main options for sequential timing:

» Using Flip-Flops
« Using Transparent Latches

« Using Pulsed Latches

18
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Static Vs. Dynamic Latch

* A static latch stores its output in a static state

A dynamic latch uses temporary capacitance to store its state.

* As with logic, this provides a trade-off between area, speed and reliability.

CLK
h p——% e Q

Lk Dynamic Latch

Static Latch
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Static Vs. Dynamic Latch

« Some bhasic implementations of static and dynamic latches.

Static Dynamic
_[L_ CLK
>0 g 4
T-cx D %6
D — >0 I T
_|_ CLK

2 &nlCS



Ratioed vs. Non-Ratioed Latch

« A static latch can be made by using a feedback inverter.

 The TG (with the driver before it) C_ili
must overcome the feedback - II> _
inverter to write into the latch. D — P
CLK <
CLK
 But it is usually more robust to create b
a mux-hased non-ratioed latch. > [>o—o
. At the expense of size. Gk
o >0

) e ZnlCS



Making a Flip Flop S e s T

cil)k cllk

 Conceptually, we can create an edge triggered flip-flop
by combining two opposite polarity latches:

| o
2 &=nlCS



Master-Slave (Edge-Triggered) Register

* Two opposite latches trigger on edge
* Also called master-slave latch pair

Slave

Master CLK ‘

2 &=nlCS



Master-Slave Register

 Multiplexer-based latch pair

D Lot o T

D |> T
CLK | | >:

* How many transistors make up this flip-flop?
* What is its clock load?

y &nlCS




Resettable Flip Flops

Asynchronous Set/Reset Flip-Flop
$ ¢

) 1 SET } _IJjRESEl}_DO_ 0

T
¢

¢ ¢
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Synchronous Reset Flip-Flop
>HQ
et >0
¢
¢

RESET

S
I
‘&—ﬁp—‘%—

s

>
T
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Timing Parameters of
Sequential Elements
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Timing Definitions

CLK

27

\

A

Register

—> D Q F—>

AN

TCLK

/ \

A

1:setup thold

STABLE t

- >< @propagatio@

t

t ] setup

<—Cq>

— setup time

X X DATA t,g —hold time

STABLE t
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Clk-Q Delay - t.,

— D Q F—
* 1.4 IS the time from the clock edge until the data
appears at the output. J
» The 1, for rising and falling outputs is different. —

clk 7\ \ T \ T \

thLH tchL thLH
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Mux based FF - t_, Calculation

* During low clock edge, data traverses slave
and “waits” for the clock at pass gate input.

* When clock rises, data has to go through pass gate and inverter.

- TF el
el | B
CLK {>° - th :T3+I6
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Timing Definitions

Register

—— D Q —

AN

1 TCLK

L \

A tsetup thold
> >

. — >< — propagation delay
STABLE t
STABLE t
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Setup Time - t,

« Setup time is the time the data has to arrive before the clock to ensure correct

sampling.
__g L Lt

— <>
t t

Su Su

BAD!

. &nlCS



Mux based FF - t,, Calculation

« Before clock edge, data should have propagated to the latching pass gate,
or else data will be restored to the previous state.

e T e

CLK

t, = L+T+1,+1,=T+31_
. = =nlCS




Volts

33

Timing Analysis - Setup Time

* To obtain the setup time of the register while using SPICE, we
progressively skew the input with respect to the clock edge until the

circuit fails.

30 1 I 1 | 1 | 1

2.5
2.0 !
1.5 !
1.0 !

0.5

0.0

20.5 1 I 1 | 1 | 1 | 1

0 0.2 0.4 0.6 0.8
time (nsec)

(@) Tgeryg= 0.21 nsec

Volts

30 1 I I I 1 I 1 I 1

2.5

Clk /

2.0-
1.5_
1.0-
0.5_

0.0

2 0.5 1 I L I 1 I 1 I 1

0 0.2 0.4 0.6 0.8
time (nsec)

(b) Tgeyp=0.20 nsec




Timing Definitions

Register

—— D Q —

AN

1 TCLK

L \

A tsetup thold
. — >< ty, —Ppropagation delay
STABLE t ]
| t . letyp — S€LUp time

<—Cq>

0 ' “twg —holdtime
STABLE f
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* Hold time is the time the data has to be stable after the clock to ensure correct

sampling.
o« LT

thold 1:hold 1:hold

BAD!

Q

« Often (optimally), Hold Time is negative!

5 &nlCS



Mux based FF - t, 4 Calculation

» When the clock rises, T, closes, latching the data at the output of I..
» Therefore, any changes made t,,(1,) before the clock will not traverse.
* The hold time is —t,4(1,)

-0 QM

v
Y
VAR

_ T | 3 —
CLK ‘Dc thOId — _Il
% &nlCS
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Characterizing Timing

Register

— CIk

Latch
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Other Flip Flop
Implementations
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Problem - Clock Overlap

oLK I N

CLKb ‘ ‘ ‘ ‘ ‘

b e
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C2MOS - clocked CMOS

* Insensitive to clock overlap.
Low Phase Overlap High Phase Overlap

VDD

T i) % i i} 1
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Positive latch
(transparent when CLK= 1)

Out

L

Negative latch
(transparent when CLK= 0)

TSPC enables including
logic inside the latch!
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TSPC Flip Flop
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Pulse-Triggered Latches

L1

Master-Slave Latches

L2

Data
* Instead of a full set of master-slave latches b Q D Q
» We can emulate an edge with a short clock pulse: - o
Clk
Pulse-Triggered Latch /Design a clock pulse with a “clock chopper”\
L
Data @
D Q |— T
tpw ¢P
<< >
¢
ok 1 Clk _/ \ /

43



Basic Timing Constraints
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Synchronous Timing

CLK I 1

In > R. a Combinational ~ R, a

C. Logic C,.s Out

n
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Timing Constraints

 There are two main problems that can arise in synchronous logic:
« Max Delay: The data doesn’t have enough time to pass
from one register to the next before the next clock edge.

« Min Delay: The data path is so short that it passes through
several registers during the same clock cycle.

» Max delay violations are a result of a slow data path,
including the registers’ .., ., therefore it is often called the “Setup” path.

 Min delay violations are a result of a short data path, causing the data to
change bhefore the t, ,, has passed, therefore it is often called the “Hold” path.

ZnlCS



Setup (Max) Constraint

* Let’s see what makes up our clock cycle:

* After the clock rises, it takes t , for the data to propagate to point A.
* Then the data goes through the delay of the logic to get to point B.

* The data has to arrive at point B, t.,, before the next clock.

* In general, our timing path is a race:

« Between the Data Arrival, starting with the launching clock edge.
« And the Data Capture, one clock period later.

ok ) | i

47
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Setup (Max) Constraint

R1
A\

n

\ Logic /

{Cﬂmhiﬂﬂrfﬂrza! ]

R2
D 0O

I_F-

JAN
CLK 1 IeLk, ﬂ terks

T>t +1

Ioglc

+1

setup
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Hold (Min) Constraint

* Hold problems occur due to the logic changing before t, ,, has passed.
* This is not a function of cycle time - it is relative to a single clock edge!

* Let’s see how this can happen:
* The clock rises and the data at A changes after .
 The data at B changes t ,(logic) later.

 Since the data at B had to stay stable for t, 4 after the clock (for the second
register), the change at B has to be at least t, ,, after the clock edge.

B
40 e &nlCS



Hold (Min) Constraint

In R1 N R2
—D 0 Combinational D O

A C LOZIC / A =

CLK ‘ 'CLK; T ICLKs

L+

o) logic

> thold

EnlCS



Summary

 For Setup constraints, the clock period has to be
longer than the data path delay:

« This sets our maximum frequency. T >t +t|og|c tsetup
 |f we have setup failures, we can always just
slow down the clock.
 For Hold constrains, the data path delay has to be
longer than the hold time: Ly T Uogic > Lol

* This is independent of clock period.
* |If there is a hold failure, you can throw your chip away!

5 &nlCS



Clock Nonidealities

* Clock skew

« Spatial variation in temporally equivalent

clock edges; deterministic + random

* Clock jitter

« Temporal variations in consecutive
edges of the clock signal;
modulation + random noise

* Cycle-to-cycle (short-term) ty;
* Long term ty;

» Variation of the pulse width

« Important for level sensitive clocking
52

Ref_Clock

tDRVCLK

,

skew

— Ftskew

H%W

Ref Clock

Received Clock

—>

tRCVCLK




Positive and Negative Skew

CLK 1 tCLKl 1 tCLKZ, f toiks

delay o delay
Positive skew

A tei 1 leike 1 lciks
Ay — <
delay delay CLK

Negative skew

53

| R1 Comb | R2 R3
n ombinationa Combinational
— cee
D Q L0g|C D Q Logic D Q >
A JAN JAN

| R1 Combinat | R2 R3
n ombinationa Combinational >
D Q Logic D Q Logic D Q
JAN JAN /\
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Setup (Max) Constraint

 The Launch path (still) consists of:

* th+tlogic+t

setup _
« But if jitter makes the launch clock later, Ciauncn = Leq * Biogie Lo F e
we need to add it to the data path delay.
 The Capture path consists of:
e The clock period (T) capture =T+ 5skew - Jltter

« Positive skew means the capture clock path is longer.
* |If jitter makes the capture clock earlier, we need to subtract it.

 Our max constraint is:

t

capture = tlaunch

* So we get:

N T >t +tlog|c tsetup T 2tjitter - 5skew E"“CS




Setup (Max) Constraint

» Data has to arrive before next clock edge.

; R1 K2
1 Irf ST H!
~D 0 Combinational D ol

Logic
AN \ / _:""l"u
CLK 1:,.;-,,,“ _I; ZTIL'!.EE

T 4+0 +t .+ 2t

>t +1

skew Ioglc setup Jitter
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Hold (Min) Constraint

 The Launch path (still) consists of: bauncn = Leq + togic = Liter
* th+tlogic
« But If jitter makes the launch clock later,
we need to subtract it from the data path delay.
« The Capture path consists of: Leapture = Oskew T Liitier + Lol

« Skew that makes the clock edge arrive at the
capture register later than at the launch register.

 Actually, since it is a single clock edge, jitter should effect the capture clock the
same as the launch clock.
« But as a worst case, we will add it as spatial jitter. Uy 2 Yot

 Our min constraint is:

e So we get: th T 1:Iogic = skew T thold T 2tjitterEn“Cs




Hold (Min) Constraint

« Data has to arrive before after same clock edge has arrived at capture reg.

] R1 Ay R2
. L
~D 0 Cmﬂ{:rmammm' D ol

A “ \, LOZIC / h—

+ 2t

kew jltter

T+t

cg Iogic

hold T 5
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Adding in Variation

o Later in the course, we will discuss how variations in both fabrication
and operating conditions occur and are taken into account.

* For now, we should assume that certain fabrication characteristics
and operating conditions:

« Can make our gates slower (i.e., high VT, high temperature, low voltage).
« Can make our gates faster (i.e., low VT, low temperature, high voltage).

* To assume worst-case conditions:

« Calculate max-delay with the slowest possible transitions.
« Calculate min -delay with the fastest possible transitions.

58 &nlCS



Static Timing Analysis
Example
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STA Example

» We are given a synchronous network with:

teo =190ps,ty, =50ps, t,,, =100ps, t;, =0
* In addition: lyens =—100pS, 1., =50pS
D Q
L A |
clk3d

ZnlCS



tp.mu!EI:"rza:pE

STA Equ I Iple tomin = 200ps
» We'll find the setup D@ o ELl:szu“s DQ ‘f'ggups DQ

. min = 5 in = 5
constraints for each path: A o Z o N

N toewt clk2

Path 1: T, + e > teor + 1 max (CL1)+tSU2'="‘_

tekawz

clk3

T, >150p+1.2n+50p +100p =1500p =1.5ns — 666 MHz

Path 2: T2 + (tskewz _tskewl) > tCQZ p,max (CL )+tSU3

T,>150p+800p+50p—-150p=850p—1.17GHz

Path 3: T, + (0 —tyes ) > teos + 1o max (CLs ) +tsus
T,>150p+/700p+50p+50p =950p —1.05GH:z

* So the critical path is Path 1 and the maximum frequency is 666MHz
61
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STA Example

* Now, we'll find the hold

constraints for t ., and f ..

Path 1: tskewl +tho|d2 < tCQl +tp min (CLl) T

D Q

Fa'

s <190p+250p—-100p =300p

Path 2 (tskeWZ o tskewl) + th0|d 3 < tCQZ

p.min (CL2)

(tskevv2 Skevvl) <150p +150p—100p =200p

Path 3: (O o tskewz ) T thOIdl < tCQ3 +

tp,min (CLS)
e, <190p+200p-100p=250p —> t

to,max = 700ps
tomin = 200ps
o o DQ ?'@Emps D Q
t;.min = 250p5 tp,min = 150ps A
e clk2 clk3
tekewz

skew2 = —250 P
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STA Example pow = 00

* If we could set t, ., and t,,..,, D Q ‘#@giﬁuﬁ D Q _ ”:agggg b Q
could we use them to maximize $ T -
M fanewt
our frequency? -
tekewz

* If we could equally divide the delay of each path:
=3-teo +1, max (CLL +CL, +CL;) +3-ty, =

=450p+2./n+150p =3.3nsec

total

* So to get the max frequency, set all delays to 1.1nsec:
1.Ins+t,,,, =150p+1.2n+350p —> t ., =300psec
1.1nS + (tyews — tgens ) =150p+800p +50p —> tg,,, = 200 psec

B B O
. 1.1ns +(0—t,, ) =150p+700p+50p —> tg,, = 200 psec 3=n“CS



64

Further Reading

* J. Rabaey, “Digital Integrated Circuits” 2003, Chapter 7
» Weste, Harris “CMOS VLSI Design” Chapter 7

 E. Alon, Berkeley EE-141, Lectures 23,24 (Fall 2010)
 Berkeley CS-150, Lecture 4

* Oklobdzija, Stojanovic, Markovic, Nedovic, “Digital System Clocking”
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