
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital Integrated Circuits
(83-313)

Lecture 5:

Designing Sequential
Logic Circuits

Semester B, 2016-17

Lecturer: Dr. Adam Teman

TAs: Itamar Levi,
Robert Giterman

26 April 2017

mailto:adam.teman@biu.ac.il

Sequential Logic

• Sequential circuits are a function of both the

current state and the previous state.

• In other words,

they have memory.

• The majority of sequential

circuits are Synchronous,

using a clock to synchronize

the logic paths.

2

www.tutorialspoint.com

Lecture Content

3

Why use Sequential Logic?

4

Explanation through example

• We will look at two examples:

• An accumulator circuit, where sequential

methods are essential to eliminate races.

• A pipelined system, where sequential

methods improve throughput.

5

What would happen if there were no traffic lights?

6

Accumulator Example

• An accumulator is a register that sums a list of numbers.

Therefore, it feeds back the output back to the input.

• Without a register, there would be the possibility that

the input would change before the calculation was finished.

• We need to delay the output

until the original calculation

is finished.

7

+
IN

OUT
001

001

01

1+1=0 c1

XX0 c10

X00 c10

011

01+10=11

Accumulator Example

• It is essential to use sequential logic when paths

have different delays, but need to converge together.

• We always have to slow our fast paths down so they

arrive along with our slowest path.

• If we could make all paths have equal delays, we wouldn’t need

sequential logic, but this is really hard (almost impossible) to do.

8

Laundry Example

• Small laundry has one washer, one dryer and one operator,

it takes 90 minutes to finish one load:

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “operator folding” takes 20 minutes

9

Sequential Laundry

• It takes 90 minutes to finish one load.

• The process is sequential.

• Sequential laundry
takes 6 hours
for 4 loads.

10

Pipelined Laundry

• Every 40 minutes a new load starts and a new load ends.

• Pipelined laundry

takes 3.5 hours

for 4 loads

11

Pipelining Data

• If it takes 10 time units to process an instruction, we could perform one
instruction every 10 time units:

• But if we divide the process into 5 tasks that take 2 time units each:

• We can start a new instruction every 2 time units.

• And after filling the pipe, we finish an instruction every 2 units.
12

Instruction

Delay

Output

In
s
tr

u
c
ti

o
n

Delay

O
u

tp
u
t

Pipelining Data

• But some stages may be faster than others, so we need to hold the input to
each stage constant until the previous stage is done.

• We achieve this by adding a register in between the stages.

• So by using a pipeline, we can make our slowest path shorter
and therefore reduce the delay between actions.

• All data paths are built using a pipeline of some sort,
either to eliminate races or to increase throughput.

13

MIPS Pipeline

14

source: wikipedia

Sequential Logic Elements

15

Naming Conventions

• In our course we relate to registers as follows:
• a latch is level sensitive

• a flip-flop is edge-triggered

• There are many different naming conventions
• For instance, many books call

any bi-stable element a flip-flop (such as an SR Latch)

• However, this leads to confusion,
so we will use the convention above (as used in industry).

16

transparent

opaque

transparent

opaque

s
a

m
p

le

s
a

m
p

le

locked locked

Latch Vs. Register

• During high clock phases, a latch is transparent, latching the input on the

falling edge.

• However, a Flip Flop only samples the input on the rising edge.

17

D QLatch

D Q

Flip

Flop

Clock

Input (D)

Latch Vs. Register

• 3 main options for sequential timing:

• Using Flip-Flops

• Using Transparent Latches

• Using Pulsed Latches

18

Static Vs. Dynamic Latch

• A static latch stores its output in a static state

• A dynamic latch uses temporary capacitance to store its state.

• As with logic, this provides a trade-off between area, speed and reliability.

19

D

CLK

Q

Dynamic Latch

MUX

2:1

S0

S1

S

CLK

D

Q

Static Latch

Static Vs. Dynamic Latch

• Some basic implementations of static and dynamic latches.

20

D

CLK

CLK

Q

Dynamic

CLK

CLK

CLK

D

Q

Static

Ratioed vs. Non-Ratioed Latch

• A static latch can be made by using a feedback inverter.

• The TG (with the driver before it)

must overcome the feedback

inverter to write into the latch.

• But it is usually more robust to create

a mux-based non-ratioed latch.

• At the expense of size.

21

CLK

CLK

CLK

D

Q

D

CLK

CLK

D

Making a Flip Flop

• Conceptually, we can create an edge triggered flip-flop

by combining two opposite polarity latches:

22

D Q

D Q

D Q D QInput

clk clk

out

mid

Input

mid

out

Master-Slave (Edge-Triggered) Register

• Two opposite latches trigger on edge

• Also called master-slave latch pair

23

Master-Slave Register

• Multiplexer-based latch pair

• How many transistors make up this flip-flop?

• What is its clock load?
24

Q M

Q

D

CLK

T 2I 2

T 1I 1

I 3 T 4I 5

T 3I 4

I 6

Resettable Flip Flops

25

Asynchronous Set/Reset Flip-Flop Synchronous Reset Flip-Flop

Timing Parameters of
Sequential Elements

26

tcq – propagation delay

tsetup – setup time

thold – hold time

Timing Definitions

27

Register

CLK

D Q

t

CLK

t

D

t

Q
DATA

STABLE

DATA

STABLE

tsetup thold

tcq

Clk-Q Delay - tcq

• tcq is the time from the clock edge until the data

appears at the output.

• The tcq for rising and falling outputs is different.

28

D

Q

clk

tcqLH
tcqLHtcqHL

Mux based FF – tcq Calculation

• During low clock edge, data traverses slave

and “waits” for the clock at pass gate input.

• When clock rises, data has to go through pass gate and inverter.

29

QM

Q

D

CLK

T 2I2

T 1I1

I3 T 4I5

T 3I4

I6

3 6cqt T I 

tcq – propagation delay

tsetup – setup time

thold – hold time

Timing Definitions

30

Register

CLK

D Q

t

CLK

t

D

t

Q
DATA

STABLE

DATA

STABLE

tsetup thold

tcq

BAD!Good!

Setup Time - tsu

• Setup time is the time the data has to arrive before the clock to ensure correct

sampling.

31

D

clk

tsu tsu tsu

Q

Good!

Mux based FF – tsu Calculation

• Before clock edge, data should have propagated to the latching pass gate,

or else data will be restored to the previous state.

32

QM

Q

D

CLK

T 2I2

T 1I1

I3 T 4I5

T 3I4

I6

1 1 3 2 3sut I T I I T I     

Timing Analysis - Setup Time

• To obtain the setup time of the register while using SPICE, we

progressively skew the input with respect to the clock edge until the

circuit fails.

33

tcq – propagation delay

tsetup – setup time

thold – hold time

Timing Definitions

34

Register

CLK

D Q

t

CLK

t

D

t

Q
DATA

STABLE

DATA

STABLE

tsetup thold

tcq

Hold Time - thold

• Hold time is the time the data has to be stable after the clock to ensure correct

sampling.

• Often (optimally), Hold Time is negative!

35

BAD!Good!

D

clk

thold

Q

Good!

thold thold

Mux based FF – thold Calculation

• When the clock rises, T1 closes, latching the data at the output of I1.

• Therefore, any changes made tpd(I1) before the clock will not traverse.

• The hold time is –tpd(I1)

36

QM

Q

D

CLK

T 2I2

T 1I1

I3 T 4I5

T 3I4

I6

1holdt I

Characterizing Timing

37

Register Latch

Clk

D Q

tC - Q

Clk

D Q

tC - Q

tD - Q

Other Flip Flop
Implementations

38

Problem – Clock Overlap

39

QM

Q

D

CLK

T 2I2

T 1I1

I3 T 4I5

T 3I4

I6

CLK

CLKb

C2MOS – clocked CMOS

• Insensitive to clock overlap.

40

CLK

CLKb

Low Phase Overlap High Phase Overlap

TSPC – True Single-Phase Clocked Register

41

Positive latch
(transparent when CLK= 1)

Negative latch
(transparent when CLK= 0)

Example:

AND latch

TSPC enables including

logic inside the latch!

TSPC Flip Flop

42

CLK

CLK

D

VDD

M3

M2

M1

CLK

Y

VDD

Q

Q

M9

M8

M7

CLK

X

VDD

M6

M5

M4

Pulse-Triggered Latches

• Instead of a full set of master-slave latches

• We can emulate an edge with a short clock pulse:

43

Master-Slave Latches

D

Clk

Q D

Clk

Q

Clk

Data

L1 L2

Pulse-Triggered Latch

D

Clk

Q

Clk

Data
L

Design a clock pulse with a “clock chopper”

Basic Timing Constraints

44

Synchronous Timing

45

Timing Constraints

• There are two main problems that can arise in synchronous logic:
• Max Delay: The data doesn’t have enough time to pass

from one register to the next before the next clock edge.

• Min Delay: The data path is so short that it passes through

several registers during the same clock cycle.

• Max delay violations are a result of a slow data path,

including the registers’ tsetup, therefore it is often called the “Setup” path.

• Min delay violations are a result of a short data path, causing the data to

change before the thold has passed, therefore it is often called the “Hold” path.

46

Setup (Max) Constraint
• Let’s see what makes up our clock cycle:

• After the clock rises, it takes tcq for the data to propagate to point A.

• Then the data goes through the delay of the logic to get to point B.

• The data has to arrive at point B, tsetup before the next clock.

• In general, our timing path is a race:

• Between the Data Arrival, starting with the launching clock edge.

• And the Data Capture, one clock period later.

47

D

clk

A

tcq

D Q D QLogic

clk

A B

tsu
B

Setup (Max) Constraint

48

cq logic setupT t t t  

Hold (Min) Constraint
• Hold problems occur due to the logic changing before thold has passed.

• This is not a function of cycle time – it is relative to a single clock edge!

• Let’s see how this can happen:
• The clock rises and the data at A changes after tcq.

• The data at B changes tpd(logic) later.

• Since the data at B had to stay stable for thold after the clock (for the second

register), the change at B has to be at least thold after the clock edge.

49

D

clk

A

tcq

D Q D QLogic

clk

A B

thold

B

Hold (Min) Constraint

50

cq logic holdt t t 

Summary

• For Setup constraints, the clock period has to be

longer than the data path delay:

• This sets our maximum frequency.

• If we have setup failures, we can always just

slow down the clock.

• For Hold constrains, the data path delay has to be

longer than the hold time:

• This is independent of clock period.

• If there is a hold failure, you can throw your chip away!

51

cq logic setupT t t t  

cq logic holdt t t 

Clock Nonidealities

• Clock skew
• Spatial variation in temporally equivalent

clock edges; deterministic + random, tskew

• Clock jitter
• Temporal variations in consecutive

edges of the clock signal;

modulation + random noise

• Cycle-to-cycle (short-term) tJit,S
• Long term tJit,L

• Variation of the pulse width
• Important for level sensitive clocking

52

Ref_Clock

DRVCLKt

Received Clock

skewt

RCVCLKt

T

jitt
jitt

skewt

Ref_Clock

Received Clock

T

skewt
skewt

jitt jitt

RCV_CLKt

DRV_CLKt

Clock

uncertainty:

jitter+skew

Positive and Negative Skew

53

Positive skew

R1
In Combinational

Logic
D Q

tCLK1CLK

delay

tCLK2

R2

D Q
Combinational

Logic

tCLK3

R3

• • •D Q

delay

R1
In

Negative skew

Combinational
Logic

D Q

tCLK1

delay

tCLK2

R2

D Q
Combinational

Logic

tCLK3

R3

• • •D Q

delay CLK

Setup (Max) Constraint

• The Launch path (still) consists of:

• tcq+tlogic+tsetup

• But if jitter makes the launch clock later,

we need to add it to the data path delay.

• The Capture path consists of:

• The clock period (T)

• Positive skew means the capture clock path is longer.

• If jitter makes the capture clock earlier, we need to subtract it.

• Our max constraint is:

• So we get:

54

launch cq logic setup jittert t t t t   

capture skew jittert T t  

capture launcht t

cq logic setup jitter skew2T t t t t     

Setup (Max) Constraint

• Data has to arrive before next clock edge.

55

skew cq logic setup jitter2T t t t t    

δ

Hold (Min) Constraint

• The Launch path (still) consists of:

• tcq+tlogic

• But if jitter makes the launch clock later,

we need to subtract it from the data path delay.

• The Capture path consists of:

• Skew that makes the clock edge arrive at the

capture register later than at the launch register.

• Actually, since it is a single clock edge, jitter should effect the capture clock the

same as the launch clock.

• But as a worst case, we will add it as spatial jitter.

• Our min constraint is:

• So we get:
56

launch cq logic jittert t t t  

capture skew jitter holdt t t  

launch capturet t

cq logic skew hold jitter2t t t t   

Hold (Min) Constraint

• Data has to arrive before after same clock edge has arrived at capture reg.

57

cq logic hold skew jitter2t t t t   

δ

Adding in Variation

• Later in the course, we will discuss how variations in both fabrication

and operating conditions occur and are taken into account.

• For now, we should assume that certain fabrication characteristics

and operating conditions:
• Can make our gates slower (i.e., high VT, high temperature, low voltage).

• Can make our gates faster (i.e., low VT, low temperature, high voltage).

• To assume worst-case conditions:
• Calculate max-delay with the slowest possible transitions.

• Calculate min -delay with the fastest possible transitions.

58

Static Timing Analysis
Example

59

STA Example

• We are given a synchronous network with:

• In addition:

60

150 , 50 , 100 , 0CQ SU hold jittert ps t ps t ps t   

1 2100 , 50skew skewt ps t ps 

STA Example

• We’ll find the setup

constraints for each path:

• So the critical path is Path 1 and the maximum frequency is 666MHz.
61

 1 1 1 ,max 1 2

1

Path 1:

150 1.2 50 100 1500 1.5 666

skew CQ p SUT t t t CL t

T p n p p p ns MHz

   

      

   2 2 1 2 ,max 2 3

2

Path 2:

150 800 50 150 850 1.17

skew skew CQ p SUT t t t t CL t

T p p p p p GHz

    

     

   3 2 3 ,max 3 1

3

Path 3: 0

150 700 50 50 950 1.05

skew CQ p SUT t t t CL t

T p p p p p GHz

    

     

STA Example

• Now, we’ll find the hold

constraints for tskew1 and tskew2:

62

 1 2 1 ,min 1

1

Path 1:

150 250 100 300

skew hold CQ p

skew

t t t t CL

t p p p p

  

   

   

 

2 1 3 2 ,min 2

2 1

Path 2:

150 150 100 200

skew skew hold CQ p

skew skew

t t t t t CL

t t p p p p

   

    

   2 1 3 ,min 3

2 2

Path 3: 0

150 200 100 250 250

skew hold CQ p

skew skew

t t t t CL

t p p p p t p

   

       

STA Example

• If we could set tskew1 and tskew2,

could we use them to maximize

our frequency?

• If we could equally divide the delay of each path:

• So to get the max frequency, set all delays to 1.1nsec:

63

,max 1 2 33 () 3

450 2.7 150 3.3 sec

total CQ p SUt t t CL CL CL t

p n p n

       

   

 

 

1 1

2 1 2

2 2

1.1 150 1.2 50 300 sec

1.1 150 800 50 200 sec

1.1 0 150 700 50 200 sec

skew skew

skew skew skew

skew skew

ns t p n p t p

ns t t p p p t p

ns t p p p t p

     

      

      

Further Reading

• J. Rabaey, “Digital Integrated Circuits” 2003, Chapter 7

• Weste, Harris “CMOS VLSI Design” Chapter 7

• E. Alon, Berkeley EE-141, Lectures 23,24 (Fall 2010) http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f10/

• Berkeley CS-150, Lecture 4 http://inst.eecs.berkeley.edu/~cs150/

• Oklobdzija, Stojanovic, Markovic, Nedovic, “Digital System Clocking”

64

http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f10/
http://inst.eecs.berkeley.edu/~cs150/

