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Sequential Logic

• Sequential circuits are a function of both the 

current state and the previous state.

• In other words, 

they have memory.

• The majority of sequential

circuits are Synchronous,

using a clock to synchronize

the logic paths.
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Lecture Content
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Why use Sequential Logic?
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Explanation through example

• We will look at two examples:

• An accumulator circuit, where sequential 

methods are essential to eliminate races.

• A pipelined system, where sequential 

methods improve throughput.
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What would happen if there were no traffic lights?
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Accumulator Example

• An accumulator is a register that sums a list of numbers. 

Therefore, it feeds back the output back to the input.

• Without a register, there would be the possibility that 

the input would change before the calculation was finished.

• We need to delay the output 

until the original calculation 

is finished.
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Accumulator Example

• It is essential to use sequential logic when paths 

have different delays, but need to converge together. 

• We always have to slow our fast paths down so they 

arrive along with our slowest path.

• If we could make all paths have equal delays, we wouldn’t need 

sequential logic, but this is really hard (almost impossible) to do.
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Laundry Example

• Small laundry has one washer, one dryer and one operator, 

it takes 90 minutes to finish one load:

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “operator folding” takes 20 minutes
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Sequential Laundry

• It takes 90 minutes to finish one load.

• The process is sequential. 

• Sequential laundry 
takes 6 hours 
for 4 loads.
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Pipelined Laundry

• Every 40 minutes a new load starts and a new load ends.

• Pipelined laundry 

takes 3.5 hours 

for 4 loads 
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Pipelining Data

• If it takes 10 time units to process an instruction, we could perform one 
instruction every 10 time units:

• But if we divide the process into 5 tasks that take 2 time units each:

• We can start a new instruction every 2 time units.

• And after filling the pipe, we finish an instruction every 2 units.
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Pipelining Data

• But some stages may be faster than others, so we need to hold the input to 
each stage constant until the previous stage is done.

• We achieve this by adding a register in between the stages.

• So by using a pipeline, we can make our slowest path shorter 
and therefore reduce the delay between actions.

• All data paths are built using a pipeline of some sort, 
either to eliminate races or to increase throughput.
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MIPS Pipeline
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Sequential Logic Elements
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Naming Conventions

• In our course we relate to registers as follows:
• a latch is level sensitive

• a flip-flop is edge-triggered

• There are many different naming conventions
• For instance, many books call 

any bi-stable element a flip-flop (such as an SR Latch)

• However, this leads to confusion, 
so we will use the convention above (as used in industry).
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Latch Vs. Register

• During high clock phases, a latch is transparent, latching the input on the 

falling edge.

• However, a Flip Flop only samples the input on the rising edge.
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Latch Vs. Register

• 3 main options for sequential timing:

• Using Flip-Flops

• Using Transparent Latches

• Using Pulsed Latches
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Static Vs. Dynamic Latch

• A static latch stores its output in a static state

• A dynamic latch uses temporary capacitance to store its state.

• As with logic, this provides a trade-off between area, speed and reliability.
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Static Vs. Dynamic Latch

• Some basic implementations of static and dynamic latches.
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Ratioed vs. Non-Ratioed Latch

• A static latch can be made by using a feedback inverter.

• The TG (with the driver before it)

must overcome the feedback

inverter to write into the latch.

• But it is usually more robust to create

a mux-based non-ratioed latch.

• At the expense of size.

21

CLK

CLK

CLK

D

Q

D

CLK

CLK

D



Making a Flip Flop

• Conceptually, we can create an edge triggered flip-flop 

by combining two opposite polarity latches:
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Master-Slave (Edge-Triggered) Register

• Two opposite latches trigger on edge

• Also called master-slave latch pair 
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Master-Slave Register

• Multiplexer-based latch pair

• How many transistors make up this flip-flop?

• What is its clock load?
24

Q M

Q

D

CLK

T 2I 2

T 1I 1

I 3 T 4I 5

T 3I 4

I 6



Resettable Flip Flops
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Timing Parameters of 
Sequential Elements

26



tcq – propagation delay

tsetup – setup time

thold – hold time

Timing Definitions
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Clk-Q Delay - tcq

• tcq is the time from the clock edge until the data

appears at the output. 

• The tcq for rising and falling outputs is different.
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Mux based FF – tcq Calculation

• During low clock edge, data traverses slave 

and “waits” for the clock at pass gate input.

• When clock rises, data has to go through pass gate and inverter.
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tcq – propagation delay

tsetup – setup time

thold – hold time

Timing Definitions
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BAD!Good!

Setup Time - tsu

• Setup time is the time the data has to arrive before the clock to ensure correct 

sampling.
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Mux based FF – tsu Calculation

• Before clock edge, data should have propagated to the latching pass gate, 

or else data will be restored to the previous state.
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Timing Analysis - Setup Time

• To obtain the setup time of the register while using SPICE, we 

progressively skew the input with respect to the clock edge until the 

circuit fails.
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tcq – propagation delay

tsetup – setup time

thold – hold time

Timing Definitions
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Hold Time - thold

• Hold time is the time the data has to be stable after the clock to ensure correct 

sampling.

• Often (optimally), Hold Time is negative!
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Mux based FF – thold Calculation

• When the clock rises, T1 closes, latching the data at the output of I1.

• Therefore, any changes made tpd(I1) before the clock will not traverse.

• The hold time is –tpd(I1)
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Characterizing Timing
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Other Flip Flop 
Implementations
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Problem – Clock Overlap
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C2MOS – clocked CMOS 

• Insensitive to clock overlap.
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TSPC – True Single-Phase Clocked Register
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TSPC Flip Flop
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Pulse-Triggered Latches

• Instead of a full set of master-slave latches

• We can emulate an edge with a short clock pulse:
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Basic Timing Constraints
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Synchronous Timing
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Timing Constraints

• There are two main problems that can arise in synchronous logic:
• Max Delay: The data doesn’t have enough time to pass 

from one register to the next before the next clock edge.

• Min Delay: The data path is so short that it passes through 

several registers during the same clock cycle.

• Max delay violations are a result of a slow data path, 

including the registers’ tsetup, therefore it is often called the “Setup” path.

• Min delay violations are a result of a short data path, causing the data to 

change before the thold has passed, therefore it is often called the “Hold” path.
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Setup (Max) Constraint
• Let’s see what makes up our clock cycle:

• After the clock rises, it takes tcq for the data to propagate to point A.

• Then the data goes through the delay of the logic to get to point B.

• The data has to arrive at point B, tsetup before the next clock.

• In general, our timing path is a race:

• Between the Data Arrival, starting with the launching clock edge.

• And the Data Capture, one clock period later.
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Setup (Max) Constraint
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Hold (Min) Constraint
• Hold problems occur due to the logic changing before thold has passed.

• This is not a function of cycle time – it is relative to a single clock edge!

• Let’s see how this can happen:
• The clock rises and the data at A changes after tcq.

• The data at B changes tpd(logic) later.

• Since the data at B had to stay stable for thold after the clock (for the second 

register), the change at B has to be at least thold after the clock edge.
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Hold (Min) Constraint
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Summary

• For Setup constraints, the clock period has to be 

longer than the data path delay:

• This sets our maximum frequency.

• If we have setup failures, we can always just 

slow down the clock.

• For Hold constrains, the data path delay has to be 

longer than the hold time:

• This is independent of clock period.

• If there is a hold failure, you can throw your chip away!
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Clock Nonidealities

• Clock skew
• Spatial variation in temporally equivalent 

clock edges; deterministic + random, tskew

• Clock jitter
• Temporal variations in consecutive 

edges of the clock signal; 

modulation + random noise

• Cycle-to-cycle (short-term) tJit,S
• Long term tJit,L

• Variation of the pulse width 
• Important for level sensitive clocking
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Positive and Negative Skew
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Setup (Max) Constraint

• The Launch path (still) consists of:

• tcq+tlogic+tsetup

• But if jitter makes the launch clock later, 

we need to add it to the data path delay.

• The Capture path consists of:

• The clock period (T)

• Positive skew means the capture clock path is longer.

• If jitter makes the capture clock earlier, we need to subtract it.

• Our max constraint is: 

• So we get:
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Setup (Max) Constraint

• Data has to arrive before next clock edge.
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Hold (Min) Constraint

• The Launch path (still) consists of:

• tcq+tlogic

• But if jitter makes the launch clock later, 

we need to subtract it from the data path delay.

• The Capture path consists of:

• Skew that makes the clock edge arrive at the

capture register later than at the launch register.

• Actually, since it is a single clock edge, jitter should effect the capture clock the 

same as the launch clock.

• But as a worst case, we will add it as spatial jitter.

• Our min constraint is: 

• So we get:
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Hold (Min) Constraint

• Data has to arrive before after same clock edge has arrived at capture reg.

57

cq logic hold skew jitter2t t t t   

δ



Adding in Variation

• Later in the course, we will discuss how variations in both fabrication 

and operating conditions occur and are taken into account.

• For now, we should assume that certain fabrication characteristics 

and operating conditions:
• Can make our gates slower (i.e., high VT, high temperature, low voltage).

• Can make our gates faster (i.e., low VT, low temperature, high voltage).

• To assume worst-case conditions:
• Calculate max-delay with the slowest possible transitions.

• Calculate min -delay with the fastest possible transitions.
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Static Timing Analysis 
Example
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STA Example

• We are given a synchronous network with:

• In addition: 
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STA Example

• We’ll find the setup 

constraints for each path:

• So the critical path is Path 1 and the maximum frequency is 666MHz.
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STA Example

• Now, we’ll find the hold 

constraints for tskew1 and tskew2:
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STA Example

• If we could set tskew1 and tskew2, 

could we use them to maximize 

our frequency?

• If we could equally divide the delay of each path:

• So to get the max frequency, set all delays to 1.1nsec:
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Further Reading

• J. Rabaey, “Digital Integrated Circuits” 2003, Chapter 7

• Weste, Harris “CMOS VLSI Design” Chapter 7

• E. Alon, Berkeley EE-141, Lectures 23,24 (Fall 2010) http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f10/

• Berkeley CS-150, Lecture 4 http://inst.eecs.berkeley.edu/~cs150/

• Oklobdzija, Stojanovic, Markovic, Nedovic, “Digital System Clocking”
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