
14 June 2023

Lecture 6:
The Memory Hierarchy

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

SoC 101:
a.k.a., “Everything you wanted to know about a computer but were afraid to ask”

June 14, 2023© Adam Teman,

Lecture Overview

2

Introduction to the
Memory Hierarchy

3

Memory
Hierarchy

Cache
Organization

Design
Tradeoffs

Virtual
Memory

Practical
Paging

TLB

June 14, 2023© Adam Teman,

Reminder: The Memory Hierarchy

Source: Teman, et al., Wiley 2022

June 14, 2023© Adam Teman,

Processor-DRAM Gap (Latency)

• 1980 microprocessor executes ~one instruction in same time as DRAM access

• 2017 microprocessor executes ~1000 instructions in same time as DRAM access

• Slow DRAM access

has disastrous impact

on CPU performance!
Source: Hennessy & Patterson, 6th Edition

CPU performance: 55% per year

slowing down after 2004

DRAM: 7% per year

P
e
rf

o
rm

a
n
c
e
 G

a
p

June 14, 2023© Adam Teman,

Typical Memory Access Patterns

• Instruction Fetches

• Sequential – consecutive locations

• Code loops – repetitive locations

• Branches and subroutine calls

• Stack Frame

• Local to small region of memory

• Data Access

• Object or struct components

• Elements of an array

• Movement between data structures

• Limited working set size

6 Source: MIT 6.004

consecutive
access

loops

branch

local stack
frames

data structures

copying/moving data

June 14, 2023© Adam Teman,

The Principle of Locality

• Programs access a small proportion of their address space at any time

• Temporal locality (locality in time)
• Items accessed recently are likely to be accessed again soon

• e.g., instructions in a loop, stack variables, accessed data structures

• Spatial locality (locality in space)
• Items near those accessed recently are likely to be accessed soon

• E.g., sequential instruction access, array/struct data

• Taking advantage of locality
• Store everything on disk

• Copy recently accessed (and nearby) items

from disk to smaller DRAM memory

• Copy more recently accessed (and nearby) items

from DRAM to smaller SRAM memory

CPU
(regs)

Storage

(Flash,

SSD,

HDD)

Cache
(SRAM)

Main

Memory

(DRAM)

June 14, 2023© Adam Teman,

• Mismatch between processor and memory speeds leads us to add a new level:
a memory cache

• Implemented with same IC processing technology
as the CPU (usually integrated on same chip)
• Faster but more expensive than DRAM memory.

• Cache is a copy of a subset of main memory.

Memory Caching

8

Source: Patterson & Hennessy

June 14, 2023© Adam Teman,

Adding Cache to Computer

9

Registers

Level 1 Cache

Level 2 Cache

Level 3 Cache

Main Memory

Flash Drive

Hard Disk

1 cycle
1 KB

2-4 cycles
32 KB

10 cycles
256 KB

40 cycles
10 MB

200 cycles
10 GB

10-100 μs
100 GB

10 ms
1 TB

on the
datapath

on chip

other
chips

mechanical
devices

The memory hierarchy is Inclusive:
what is in L1$ is a subset what is in
Main Memory that is a subset of is
in Secondary Memory

CPU

Memory

(DRAM)

Program

Data

Input Devices

Output Devices

O
n
-c

h
ip

 I
n
te

rc
o
n
n
e
c
t

D
R

A
M

 C
o
n
tr

o
lle

r
I/

O

C
o
n

tr
o

lle
rs

DDR
Interface

Control
(load/store)

Address

Write Data

Read Data

L
e
v
e
l
1
 C

a
c
h
e

L
e
v
e
l
2
 C

a
c
h
e

L
e
v
e
l
3
 C

a
c
h
e

Cache Organization

10

Memory
Hierarchy

Cache
Organization

Design
Tradeoffs

Virtual
Memory

Practical
Paging

TLB

June 14, 2023© Adam Teman,

Reminder: Adding Cache to Computer

• A cache exploits data locality to reduce the number of external memory accesses.

• The idea: Copy commonly accessed data to an on-chip memory (SRAM)

• Inner level cache (L1)

holds a copy of outer

levels (L2, DRAM).

• L1 is often divided into

instruction and data

cache, while outer

levels are shared.

11

CPU

Memory

(DRAM)
(GBs)

Program

Data

Input Devices

Output Devices

O
n
-c

h
ip

 I
n
te

rc
o
n
n
e
c
t

D
R

A
M

 C
o
n
tr

o
lle

r
I/

O

C
o

n
tr

o
lle

rs

D
D

R

In
te

rf
a
c
e

Fetch

Write
Data

Inst.

In
s
tr

u
c
ti
o
n

C
a
c
h
e

L
e
v
e
l
2
 C

a
c
h
e
 (

1
0

0
s
 k

B
)

L
e
v
e
l
3
 C

a
c
h
e
 (

1
0

s
 M

B
)

D
a
ta

 C
a
c
h
e

load/
store

Read
Data

Inner Level Outer Level

June 14, 2023© Adam Teman,

A basic cache

• A cache is a subset (copy) of an outer level of memory

• When accessing data, we need to check if it is in the cache.

• Therefore, every byte of data needs to be tagged with an ID.

12

ID 1 Data 1

ID 2 Data 2

ID 3 Data 3

ID 4 Data 4

... ...

ID N-1 Data N-1

ID N Data N

ID N, Data N

ID 1, Data 1

...

ID X, Data X

ID 4, Data 4

DRAMCached DataIDs
lw t0, ID 3

t0

t1

Data 3

lw t1, ID X

Not
Found!
Miss!!

Evict and
Replace!

Data X

Data X

Time elapsed = HitTime

Time elapsed = MissPenalty

Hit Ratio: 𝐻𝑅 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠
= 1 −𝑀𝑅

Miss Ratio: 𝑀𝑅 =
𝑚𝑖𝑠𝑠𝑒𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠
= 1 − 𝐻𝑅

AMAT: 𝐴𝑀𝐴𝑇 = 𝐻𝑖𝑡𝑇𝑖𝑚𝑒 +𝑀𝑅 ×𝑀𝑖𝑠𝑠𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Hit!!!!

Goal: To reduce Average Memory Access Time (AMAT)

ID X

June 14, 2023© Adam Teman,

What are the IDs?

• We need to provide an ID to tag each unit of data

• Why not just use the address?

• So, in an RV32 machine:

• Address is 32-bits

• Byte addressable

• We need 32-bits to tag a byte

• Example:

• Let’s cache 1kB (210) of data.

• We need 1kB to store the data and 32kB to store the tags.

• We also need to compare our 32-bit address with all 1024 tags.

• Seems a bit costly, doesn’t it?

13

0x00000003 0x3E

0x00000002 0x55

0xFFFFFFFC 0x25

0xFFFFFFFF 0xCC

... ...

0x00000000 0x12

0xFFFFFFFE 0xE7

0x00000000 0x12

0x00000001 0xFC

0x00000002 0x55

0x00000003 0x3E

...

0xFFFFFFFC 0x25

0xFFFFFFFD 0x98

0xFFFFFFFE 0xE7

0xFFFFFFFF 0xCC

DRAM
Cached

DataIDs

1kB32kB

===
==

June 14, 2023© Adam Teman,

Caching blocks of data

• Instead, why don’t we store chunks of data together
• For example, we can bring in several bytes starting at a given address.

• We call such a chunk of data a cache block or cache line.

• Let’s revisit our example:
• We want to cache 1kB (210) of data.

• We will use 64B (26) cache lines.

• We have a total of 24=16 cache lines.

• What about the IDs?
• If we keep our cache lines aligned,

the first 26-bits in the addresses of all bytes in a cache line are the same.

• So, we’ll use only 26-bits to identify the cache line. This is called a tag.

• The remaining 6-bits are used to find the byte in the line. This is the offset.

14

0x00000000 64 bytes

0x00000040 64 bytes

0x00000080 64 bytes

0x000000C0 64 bytes

...

0xFFFFFF80 64 bytes

0xFFFFFFC0 64 bytes

DRAM

64 bytes

64 bytes

...

64 bytes

64 bytes

Cache Lines

0x0000004

0xFFFFFFC

...

0x0000008

0xFFFFFF8

Tags
1
6
 c

a
c
h
e
 lin

e
s

Tag Offset

31 6 5 0

Address

June 14, 2023© Adam Teman,

Fully Associative Cache Lookup

• When accessing memory, we have to check

if the requested address is in the cache.

• We need to compare the tag of the address

with all of the tags stored in the cache.

• This is known as “fully associative” cache lookup,

since any cache line can be stored anywhere in the cache.

• Fully associative caches are very expensive

• Basic implementation: Comparator for each cache line.

• Circuit optimization: Content-Addressable Memory (CAM)

• Can we reduce the hardware cost?

15

64 bytes

64 bytes

64 bytes

...

64 bytes

0x0000004

0xFFFFFF0

0xFFFFFFC

...

0x0000008

Tag Offset

Cache LinesTags

=
=

=

=

hit

hit

hit

hit

Tag 1

Tag 2

Tag 3

...

Tag N

Search Tag

hit

hit

hit

hit

CAM Array

June 14, 2023© Adam Teman,

Set-Associative Caches

• What if we reduce the level of associativity?

• For example, divide the cache into two “sets”

• A certain cache line can be stored in only one of the two sets.

• Now we need only half the number of comparators.

• Let’s take our previous example:

• 1kB of cache, 64B cache lines

• Divide the 16 lines into two sets of 8. We need 8 comparators instead of 16.

• The tag can be in 8 places in the set. We call this “8-way set associative”

• How do we know which set our cache line is in?

• Use bit 6 of the address to select the set.

• This bit is called the index bit.

• If we have more sets (e.g., 4, 8, 16), use more index bits.
16

Tag Index Offset

31 7 6 5 0

June 14, 2023© Adam Teman,

Set-Associative Cache Lookup

• Given a cache with L lines

• Divide it into S sets (log2S index bits)

• Each set includes L/S lines

• So, there are N=L/S ways for each cache line.

• The index bits are used to select a set

• Drive the index bits into a decoder.

→ #Sets = #Rows

• Accordingly, #Ways = #Columns

Each column has a comparator.

• Select a set and compare address with all tags in the set.

• This example: a 3-Way Set Associative Cache

• L=12 cache blocks, S=4 sets, N=3 ways.

17

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Index Offset

31 8 7 6 5 0

set 0

set 1

set 2

set 3

= = =

data to
CPU

data from
DRAM

Hit

June 14, 2023© Adam Teman,

Direct-Mapped Caches

• What is the maximum number of sets we can have?
• That is when a set has only one cache line in it.

• In this case, a given cache line can be stored in
only one place, i.e., “1-way set associative”.
Only one comparator is needed.

• This type of cache is called a “direct-mapped” cache.

• Back to our example:
• 1kB cache, 64B lines, 16 cache lines.

• A direct mapped cache will have 16 sets
→ 4 index bits.

• The index bits are used to read out one tag and one cache line.

• The tag is compared to the address to identify hit or miss.

• The offset is used to choose the byte/word from the cache line.

18

64 bytes

64 bytes

64 bytes

...

64 bytes

64 bytes

Cache Lines

0x0000004

0xFFFFFF0

0xFFFFFFC

...

0x0000008

0xFFFFFF8

Tags

=
Hit

Data

Tag Index Offset

31 10 9 6 5 0

June 14, 2023© Adam Teman,

Summary: Alternatives in an 8 Block Cache

• Given a cache with 8 blocks, what are the associativity options?

• Direct Mapped: 8 blocks, 1 way, 1 tag comparator, 8 sets

• 2-Way Set Associative: 8 blocks, 2 ways, 2 comparators, 4 sets

• 4-Way Set Associative: 8 blocks, 4 ways, 4 comparators, 2 sets

• Fully Associative: 8 blocks, 8 ways, 8 comparators, 1 set

19

00

11

22

33

DM:

8 sets

1 way

44

55

66

77

00

11

22

33

FA:

1 set

8 ways

44

55

66

77

00

11

22

33

2 Way SA:

4 sets Set 0

Set 1

Set 2

Set 3

44

55

66

77

00

11

22

33

4 Way SA:

2 sets

Set 0

Set 1

44

55

66

77

Tag 3 Index bits Offset

Tag 2 Index bits Offset

Tag 1 Index bit Offset

Tag Offset

June 14, 2023© Adam Teman,

Summary: Cache Addressing Terminology

• To summarize, we divide our address into three parts:

• Offset

• Specifies which byte within the block (line) we want

• Set Index

• Select which set to search in.

• Size of Index = log2(number of sets)

• Tag

• The remaining bits.

• Used to distinguish between all the memory

addresses that map to the same location

• Size of Tag = Address size – Size of Index
– log2(number of bytes/block)

20

Tag to check if have
correct block

Index to
select block

Byte offset
within block

Address

31 10 9 6 5 0

iiiittttttttttttttt oooooo

Tradeoffs in Cache Design

21

Memory
Hierarchy

Cache
Organization

Design
Tradeoffs

Virtual
Memory

Practical
Paging

TLB

June 14, 2023© Adam Teman,

The “3-C’s” of Caching

• Remember, the goal of caching is to minimize AMAT

• To achieve this, we will need to make tradeoffs in cache organizations.

• The primary factor affected by different cache organizations is Miss Rate.

• To analyze miss rate, we will define three types of cache misses:

• Compulsory Misses: These are cold start or first reference misses.

The first (number of) times you access the cache, you will always get a miss.

• Capacity Misses: These are misses due to cache size.

A cache often cannot contain all the data that the program needs.

• Conflict Misses: These are misses due to the

mapping of several addresses to the same cache set.

22

𝐴𝑀𝐴𝑇 = 𝐻𝑖𝑡𝑇𝑖𝑚𝑒 +𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 × 𝑀𝑖𝑠𝑠𝑃𝑒𝑛𝑎𝑙𝑡𝑦

June 14, 2023© Adam Teman,

The “3-C’s” of Caching

• Compulsory Misses

• Compulsory misses always occur

after reset or a cache invalidation.

• Compulsory misses cannot be avoided.

• However, if running billions of instructions,

compulsory misses are insignificant.

• Increasing block size will reduce compulsory misses.

• Capacity Misses

• Capacity misses are directly related to cache size.

• Capacity misses would not occur with an infinite cache.

• Larger caches usually increase access time.

23

How to simulate?

Set cache size to infinity

and fully associative, and

count number of misses

How to simulate?

Change cache size from

infinity and count misses

for each reduction in size

June 14, 2023© Adam Teman,

The “3-C’s” of Caching

• Conflict Misses

• Fully-associative caches allow a memory address to be stored

within any cache line. Therefore, there are no conflict misses.

• However, N-Way set associative caches only allow an address to

be stored within a specific set. If the set is full, a conflict miss occurs.

• The worst example is direct-mapped caches,

where each set has only one way.

• Example:

• 1kB direct-mapped cache with 64B blocks

• Program increments a variable at address 0xF500

• Instruction loop at addresses 0x0100-0x010C

• Every memory access misses in cache!

24

Word

Address

In Binary

(index)

Hit/Miss

0x100 0000 0001 0000 0000 Miss

0xF500 1111 0101 0000 0000 Miss

0x104 0000 0001 0000 0100 Miss

0xF500 1111 0101 0000 0000 Miss

0x108 0000 0001 0000 1000 Miss

0xF500 1111 0101 0000 0000 Miss

0x10C 0000 0001 0001 0000 Miss

0xF500 1111 0101 0000 0000 Miss

0x100 0000 0001 0000 0000 Miss

How to simulate?

Change from FA to n-way

set associative while

counting misses

June 14, 2023© Adam Teman,

Cache Performance Example

• Given

• Base CPI (ideal cache) = 2

• Instruction Cache miss rate = 2%

• Miss penalty = 100 cycles

• Data Cache miss rate = 4%

• Load & stores are 36% of instructions

• Actual CPI: 2 + 2 + 1.44 = 5.44

• Ideal CPU is 5.44/2 = 2.72 times faster

PC D E M W
Data

Cache
Decode

Inst.

Cache
+

I-Cache Miss Cycles

Per Instruction:

100 cycles × 2%

→ 2 CPI

D-Cache Miss Cycles

Per Instruction:

100 cycles × 4%

× 36% of instructions

→ 1.44 CPI

June 14, 2023© Adam Teman,

Multilevel Caches

• To improve cache performance, use a hierarchy of caches

• Local Miss Rate

• Fraction of misses at a given level of a cache

• Local Miss rate L2$ = L2$ Misses / L1$ Misses = L2$ Misses / total_L2_accesses

• Global Miss Rate

• Fraction of misses that go all the way to memory

• Global Miss Rate = LN Misses / Total Accesses

• LN$ local miss rate >> than the global miss rate

• Design Considerations

• L1$: Fast access→min hit time→small cache

• L2$, L3$: Low miss rate (reduce DRAM access)

→ large cache, block size, associativity
26

Level
1

Level
2

Level
n

Level
3

. . .

June 14, 2023© Adam Teman,

Multilevel Cache Example

• Given

• Base CPI = 1, clock rate = 4GHz

• Miss rate/instruction = 2%

• Main memory access time = 100ns

• Miss penalty = 100ns/0.25ns = 400 cycles

• Now add L2 cache

• L2 Access time = 5ns
• Miss penalty = 5ns/0.25ns = 20 cycles.

• Global miss rate = 0.5%

• Performance improvement: 9/3.4 = 2.6×

With one level of Cache:

CPI = 1 + 400 cycles × 2%

→ 9 CPI

CPU

L1
2% MR

DRAM

400 cycles

Adding Level-2 Cache:

CPI = 1 + 20 cycles × 2% + 400 cycles × 0.5%

→ 3.4 CPI

L2

20 cycles

0.5% MR

June 14, 2023© Adam Teman,

Cache Line Replacement Policy

• When we have a capacity/conflict miss, which block to we evict?

• For direct-mapped cache, there is no choice to be made.

• For N-way associativity, a replacement policy must be implemented.

• Tradeoff miss-rate reduction vs. complexity of implementation.

• Common replacement policies:

• Random Replacement: Randomly select a cache line to evict
• Not bad performance. Simple to implement.

• Least-Recently Used (LRU): Replace the temporally least accessed entry.
• Great performance. Hard to keep track of access order.

• For 2-ways, a single bit is needed to implement true LRU.

• Pseudo-LRU: Approximate LRU, e.g., “not most recently used”
• Good performance. Much easier to implement than true LRU.

• Many different implementations proposed

28

June 14, 2023© Adam Teman,

Write Policy

• How do we make sure cache and memory have same values on writes?

• Write-Through Policy:

• Write cache and write through the cache to memory

• Too slow, so include Write Buffer to allow processor to continue

• Write buffer may have multiple entries to absorb bursts of writes

• Write-Back Policy:

• Write only to cache. Write block back to memory when evicted.

• Only single write to memory per block

• Need to specify if block was changed → include “Dirty Bit”

• What do you do on a write miss?

• Usually Write Allocate

→ First fetch the block, then write and set dirty bit.
29

L1 cache

L2 cache

write
data

L1 cache

L2 cache

write
data

d
ir
ty

evict

buffer

June 14, 2023© Adam Teman,

One More Detail: Valid Bit

• When a new program starts, cache data is garbage.

• Need an indicator whether this tag entry is valid for this program

• Add a “valid bit” to the cache tag entry

• 0 => cache miss, even if by chance, address = tag

• 1 => cache hit, if processor address = tag

• Cache invalidation, means that all valid bits are reset.

• Cache invalidation is done upon reset.

• But it is also done for cache coherency, when a different

process writes to their local copy of the same physical address.

• An additional concept is a “Cache Flush”

• This incurs writing back dirty data and (sometimes) invalidating the cache.

• Caches may be flushed upon context switch, but ASID helps avoid this.
30

Tag Index Offset

Valid
Bit

ASID

June 14, 2023© Adam Teman,

Summary: Cache Design Trade-Offs

• We’ve now seen many design choices in cache design.

• Let’s think about how these choices affect our cache.

• Cache Size

• The larger the cache, the fewer capacity misses (lower miss rate)

• However, larger caches lead to increased hit time.

• Cache Block Size

• Large cache lines lead to increased spatial locality (reduced

miss rate) as well as shorter tags and fewer compulsory misses (negligible).

• But there are fewer blocks in the cache, leading to reduced temporal locality

(increased miss rate), and bringing in larger blocks increases the miss penalty.

• A good sweet spot has been found to be 64B – now commonly used.

31

Cache Size

Cache Line Size

64 bytes

June 14, 2023© Adam Teman,

Summary: Cache Design Trade-Offs

• Associativity
• Fully-Associative caches eliminate conflict misses

(reduced miss rate), but they are expensive to
implement (comparators/CAMs)

• Direct-Mapped caches are much cheaper but
suffer from frequent conflict misses (increased miss rate)

• Going from DM to 2-way provides 20%+ reduction in miss rate.

• Little miss-rate benefit going beyond 4-8 ways and hit time increases.

• Write Policy
• Write Through: simple, predictable, reliable, but many writes to memory

• Write Back: lower bandwidth, but complex, less predictable, less reliable

• Replacement Policies
• More “intelligent” (e.g., LRU) → Lower miss rate, but complex implementation

32

Virtual Memory

33

Memory
Hierarchy

Cache
Organization

Design
Tradeoffs

Virtual
Memory

Practical
Paging

TLB

June 14, 2023© Adam Teman,

“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address is a physical address

• This leads to three

fundamental questions:

• What if we don’t have enough memory?

• How do we allocate memory between multiple processes?

• How do we isolate processes from each other (and/or share data)?

34

PC D E M W
Data

Cache
Decode

Inst.

Cache
+

Physical
Address

Physical
Address

Memory

Controller
Main Memory (DRAM)

Physical
Address

June 14, 2023© Adam Teman,

Problem #1: Memory Size

• RV32 has a 32-bit address space → 232=4GB

• A program can access any of these 232 bytes.

• What if you don’t have 4GB of memory?

• What if you want to run multiple programs simultaneously?

35

Address: 0x00000000

Program Address Space Physical RAM (1GB)

Program
Crashes!!!!

June 14, 2023© Adam Teman,

Problem #2: Process Isolation

• When we discussed the build process,

we introduced the concept of a Memory Map.

• A program has a 232 byte address space.

• Different parts of the address space were reserved for

different usages (e.g., program code, stack, global variables, I/O…)

• But what if we want to run multiple programs simultaneously?

• Each “process” runs a program that

was built according to the memory map.

• Data from different processes maps to the same address.

• Processes will overwrite data at the same addresses.

• How can we protect data from one process

being read or written by another process?

36

0xbffffff0 Stack

Heap

0x10000000 Static Data

Text

0x00010000

0x00000000 Reserved

June 14, 2023© Adam Teman,

Possible Solution: Base and Bounds

• To address the size problem,

we can limit the address space during compilation.

• We will allocate fewer than 232 bytes to each program.

• Then, when loading the program:

• We will define base and bound addresses,

where the program’s address space will start and end.

• When running a program, we will load these into

a base register and a bound register.

• When accessing memory, the base register will be

added to the logical address to create the physical address.

• The physical address will be compared to the bound register.

If the bound is crossed, a segmentation fault exception will occur.

37

Base Register

Bound Register

≤

Segmentation
Fault

P
h
y
s
ic

a
l

a
d
d
re

s
s

CPU Memory
Access

L
o
g
ic

a
l

a
d
d
re

s
s

+

Physical

Memory

June 14, 2023© Adam Teman,

Segmentation

• The base and bounds approach is commonly known as “Segmentation”.

• The Operating System (OS) allocates memory

and sets the base and bound addresses.

• Only the OS can update base and bound registers

by running in a “privileged mode”

• However, segmentation suffers from several problems:

• The address space of each process

has to be predefined and limited.

• Processes cannot share data.

• Segmentation results in fragmentation.

• Some architectures still use segmentation today

• For example, x86 supports it, but it is rarely used.

38

Program 1:

1 GB
Program 2:

2 GB
Program 3:

1 GB

Program 4:

2 GB

Program 1 ended

4
G

B
 o

f
m

e
m

o
ry

June 14, 2023© Adam Teman,

Library book analogy

• An author writes a book and sells it to a library.

• The library puts the book on a shelf.

• Does the author print the location

of the book on the book cover?

• No. Then we would need to set the

location in every library in the world.

• Instead, we provide the book

with an identifier (i.e., ISBN)

• The library has a catalog that says

where the specific book is placed.

• This indirection is the concept

used to overcome our problems.
39

June 14, 2023© Adam Teman,

Solution: Virtual Addressing

• The fundamental theorem of software engineering (FTSE):

“All problems in computer science can be solved by another level of indirection.”

• Virtual addressing is an indirection that, indeed, solves many problems.

• All programs own a virtual address (VA) space (of 232 bytes)

• The Operating System maps every VA to a physical address (PA).

• The memory management unit (MMU) translates the VAs to PAs.

40

0

1

2

3

4

5

0

1

2

32-bit Program
Address Space <4GB RAM

Without Virtual Memory

Program Address = RAM Address

Program crashes if we
try to access more
RAM than we have

0

1

2

3

4

5

0

1

2

32-bit Program
Address Space <4GB RAM

With Virtual Memory

Program Address Maps to RAM Address

MMU

June 14, 2023© Adam Teman,

How does Virtual Addressing work?

• Divide the memory into “pages”
• A page is a unit of reference in the physical memory.

• Typical page size is 4kB (12 bits)

• The processor accesses the memory
with a “Virtual Address”

• The VA is divided into a “page number”,
which an identifier of the virtual page
and an “offset”, which is the number of the byte on the page.

• The MMU translates the virtual address into a physical address
• The page number is replaced with the base address

where the virtual page is stored in memory.

• The offset is used to select the byte out of the physical page.

• The mapping between virtual and physical pages is called a “page table”

41

0x00000000 4kB

0x00001000 4kB

0x00002000 4kB

0x00003000 4kB

0x00004000 4kB

0x00005000 4kB

0x00006000 4kB

0x00007000 4kB

Physical Memory
(DRAM)

Mapping

(MMU)

Page Number Offset

31 12 11 0

June 14, 2023© Adam Teman,

Page Tables

• A page table entry (PTE) is a mapping between:

• Virtual page number (VPN)

and Physical page number (PPN)

• Each process receives its own page table

• The page tables are stored in main memory (DRAM)

• The base address of the current page table

is stored in the Page Table Base Register (PTBR).

• When accessing memory (e.g., lb t0,VPN+offset):

• First DRAM access: PTEVPN(PTBR)

• Second DRAM access: t0offset(PTE)

• So (at least) two DRAM accesses required for every load/store operation!

42

Process 1: VPN 0 PPN 3

Process 1: VPN 1 PPN 0

Process 1: VPN 2 PPN 7

Process 1: VPN 3 PPN 5

...

Process 2: VPN 0 PPN 6

Process 2: VPN 1 PPN 4

Process 2: VPN 2 PPN 1

Process 2: VPN 3 PPN 2

Page Tables

Process 2:
lb t0, 0x00020001

PTBR

0x00000000 4kB

0x00001000 4kB

0x00002000 4kB

0x00003000 4kB

0x00004000 4kB

0x00005000 4kB

0x00006000 4kB

0x00007000 4kB

Main Memory

+

PTE=Process2,VPN 2

=PPN 1

t0(0x00010000+0x1)

June 14, 2023© Adam Teman,

Demand Paging

• What happens when we don’t have enough RAM?

• For example, 1GB DRAM on an RV32 machine.

• …or running 100 processes on such a machine…

• Let’s just use the DRAM as a cache

• Store “everything” on disk.

• Only bring accessed pages to DRAM.

• This is called “demand paging”

• Add a “valid bit” to our PTE

• If a PTE with valid=0 is accessed, the page is on disk.

• A “page fault” occurs. Bring the page into DRAM.

• If DRAM is full, evict a page, “swapping” it out to disk.

• Accessing disk takes millions of cycles → Use Software (OS)
43

VPN 0 PPN 3 1

VPN 1 DPN 225 0

VPN 2 PPN 7 1

VPN 3 PPN 5 1

Page Tables

0x00000000 4kB

0x00001000 4kB

0x00002000 4kB

0x00003000 4kB

0x00004000 4kB

0x00005000 4kB

0x00006000 4kB

0x00007000 4kB

Main Memory

VPN 0 PPN 3 1

VPN 1 PPN 7 1

VPN 2 DPN 344 0

VPN 3 PPN 5 1

June 14, 2023© Adam Teman,

Page Fault Handling

• What happens when you get a page fault?
• This is a hardware exception → like an interrupt.

• A page fault handler is called → the OS is invoked.

• If DRAM is full, the OS chooses a page to evict.

• Swap page: write back old page,

read new page from disk to DRAM.

• Update page table.

• Jump back to rerun instruction that caused page fault.

• To reduce cost of page faults:
• Use fully associative page placement (handled by OS)

• Add “access bit” (a.k.a., “use bit”) to PTE to enable pseudo-LRU

• Add “dirty bit” to PTE and only write-back swapped page when modified (=dirty)

• Never swap out pages of the Operating System

• Or just buy more memory!!!!
44

PPN Valid Access

Page Table Entry

Page Fault valid=0

Page Fault

Handler
System Call

Exception (trap)

Swap

Write to
Disk

Read from
Disk

Update

Page Table
Evicted page → DPN

New page → PPN

Return Re-run instruction

Dirty

June 14, 2023© Adam Teman,

Did Virtual Memory Solve our Problems?

• Problem #1: Not enough memory

• Example #1: RV32 machine with 1GB DRAM.

• Just use smaller PPNs than VPNs

• Assume 4kB pages: VPN: 32-12=20bits, PPN: 30-12=18bits

• Example #2: 100 processes running on this machine

• Each process can use 10MB of memory*.

• So we can allocate close to 2,500 pages per process.

• And what if that’s not enough

• Just go to disk

(at the cost of a lot of wasted cycles…)

45

* Not really, but a few MB, anyway

0x00000000 4kB

0x00001000 4kB

0x00002000 4kB

0x00003000 4kB

Physical Memory
(DRAM)

Page Number Offset

31 12 11 0

18 bits

20 bits

June 14, 2023© Adam Teman,

Did Virtual Memory Solve our Problems?

• Problem #2: Program Isolation

• Example #1: Location Independence

• Compile a program, assuming it has the entire 232 byte address space.

• Each process has a separate page table,

mapping the same addresses to different physical locations.

• Example #2: Protection

• Page table mapping ensures one process

doesn’t access the data of another process.

• Example #3: Data Sharing

• Map VPNs of several processes to the same PPN to enable data sharing.

• Add read (R), write (W), execute (X) bits to PPN for access restriction.

46

Process 1: VPN 0 PPN 3

Process 1: VPN 1 PPN 0

Process 1: VPN 2 PPN 7

Process 1: VPN 3 PPN 5

...

Process 2: VPN 0 PPN 6

Process 2: VPN 1 PPN 4

Process 2: VPN 2 PPN 1

Process 2: VPN 3 PPN 2

Page Tables

June 14, 2023© Adam Teman,

Did Virtual Memory Solve our Problems?

• Problem #3: Fragmentation

• Example: Multiple Processes Running

• Each process gets allocated 4kB pages upon access.

• The Operating System keeps account of free pages.

• Once a process exits, its allocated memory is freed.

• Indirection completely

solves fragmentation.

47

Process 1: VPN 0 PPN 0

Process 1: VPN 1 PPN 1

Process 1: VPN 2 PPN 6

Process 1: VPN 3 PPN 7

...

Process 2: VPN 0 PPN 2

Process 2: VPN 1 PPN 3

Process 2: VPN 2 PPN 4

Process 2: VPN 3 PPN 5

4kB 0x00000000

4kB 0x00001000

4kB 0x00002000

4kB 0x00003000

4kB 0x00004000

4kB 0x00005000

4kB 0x00006000

4kB 0x00007000

Practical Paging

48

Memory
Hierarchy

Cache
Organization

Design
Tradeoffs

Virtual
Memory

Practical
Paging

TLB

June 14, 2023© Adam Teman,

Are page tables even feasible?

• We know the following about page tables:

• We need to provide a VPN for every page in the memory.

• Each page table entry stores the PPN and metadata.

• Page tables cannot be swapped out (otherwise, how can we find them?)

• With that in mind, how much memory do we need to store a page table?

• Let’s assume a 32-bit address with 4kB pages.

• A 12-bit offset, so the PPN size is (up to) 20-bits.

• Adding metadata, we need about 4B per PTE.

• Therefore, a page table requires about 220x4B=4MB

• Is that reasonable/feasible?

• Yes. We probably have GBs of DRAM. We’ll also need 4GB of swap…

• But… what if we have 100 processes? 1000 processes?

VPN 0 PPN R W X ...

VPN 1 PPN R W X ...

VPN 2 PPN R W X ...

VPN 3 PPN R W X ...

...

VPN 220-2 PPN R W X ...

VPN 220-1 PPN R W X ...

PPN Metadata

Page Table Entry

~4B

~4MB

June 14, 2023© Adam Teman,

Possible Solution: Larger Pages

• Why do we keep assuming 4kB pages?

• Well… it’s hard to get rid of old habits…

• The Intel 80386 (1985) supported 4kB pages.

• But seriously… small pages are good

• The minimum OS allocation quanta is one page,

so large pages can lead to internal fragmentation.

• Page faults are cheaper – less data transfer, less time.

• That being said, larger pages are probably better…

• More spatial locality → Fewer page faults

• Disks benefit from burst operations, so penalty for larger transfers small.

• …and smaller page tables.

• But even huge page tables won’t work for 64-bits…
50

Page Number Offset

31 12 11 0

Small 4kB pages:

→4MB page table

Page Number Offset

31 22 21 0

Large 4MB pages:

→4kB page table

Page Number Offset

63 22 21 0

64-bit address, 4MB page, 8B PTE:

→ 32 TB page table

June 14, 2023© Adam Teman,

Better Solution: Multi-Level Page Tables

• Of course, the solution to all problems is… more indirection!

• Divide the virtual address into

a hierarchy of page tables

• First access the 1st level page table,

a.k.a. the base page table.

• The base page table contains the

physical address of the 2nd level page table.

• Now, access the 2nd level page table

to get the PPN of the page.

• Requires three DRAM accesses.

• Also known as a “Page Walk”

51

Base Page Page Offset

31 22 21 12 11 0

1024 x 4MB
page tables

1024 x 4kB
pages

SATP &PT Base Base Page
Table

2nd Level
Page Table

VPT 0 &PT 0

VPT 1 &PT 1

VPT 2 &PT 2

...

VPT 1022 &PT 1022

VPT 1024 &PT 1023

VPN 0 PPN 0

VPN 1 PPN 1

...

VPN 1022 PPN 1022

VPN 1024 PPN 1023

VPN 0 PPN 0

VPN 1 PPN 1

...

VPN 1022 PPN 1022

VPN 1024 PPN 1023

4kB 0x00000000

4kB 0x00001000

4kB 0x00002000

4kB 0x00003000

4kB 0x00004000

4kB 0x00005000

4kB 0x00006000

4kB 0x00007000

...

4kB 0xFFFFD0000

4kB 0xFFFFE0000

4kB 0xFFFFF0000

Physical Memory

2nd Level
Page Table

June 14, 2023© Adam Teman,

Virtual Addressing in RISC-V

• RISC-V defines various specifications

• For RV32: Sv32
• Two-levels, 32bit Virtual Add., 34bit Physical Add.

• For RV64: Sv39, Sv48, Sv57…
• More levels, longer Virtual and Physical Addresses

• SATP register (CSR) includes:

• Mode (e.g., Sv32, Sv39)

• PPN of Base (a.k.a., “root”) PT

• A RISC-V Page Table Entry (PTE) includes:

• Valid (V), Accessed (A) and Dirty (D) bits

• Access Permissions (RWX)

• RWX=000 → Pointer to next level PTE

• Other metadata (User Mode, Global Mapping, reserved)
52

VPN[1] VPN[0] Offset

31 22 21 12 11 0

Sv32 Virtual Address (4GB)

PPN Offset

33 12 11 0

Sv32 Physical Address (16GB)

PPN rsw D A G U X W R V

31 10 9 8 7 6 5 4 3 2 1 0

valid

access
permissions

user

global
dirty

accessed

reserved

Mode ASID PPN

31 30 29 22 21 0

SATP CSR

Page Table Entry

June 14, 2023© Adam Teman,

To Summarize: Cache vs. VM Terminology

• In caches, we dealt with individual blocks

• Usually ~64B on modern systems

• In VM, we deal with individual pages

• Usually ~4 KB on modern systems

• Common point of confusion:

• Bytes, Words, Blocks, Pages

• Are all just different ways of

looking at memory!

• Example for RV32:

• 1 GB DRAM

• 4 kB pages

• 64B cache blocks
53

Cache Virtual Memory

Unit Block or Line Page

Hit/Miss Miss Page Fault

Unit Size 32-64B 4K-8KB

Placement Direct Mapped,

Set Associative

Fully

Associative

Replacement LRU or Random LRU

Write Policy Write Through

or Write Back

Write Back

Page 0

Page 1

...

Page 218-2

Page 218-1

Block 0

Block 1

Block 2

...

Block 62

Block 63

Word 0

Word 1

...

Word 14

Word 15

B3 B2 B1 B0

1GB DRAM
(256K pages)

4kB page
(64 cache blocks) 64B cache block

(16 words)
32bit word
(4 Bytes)

The Translation
Lookaside Buffer (TLB)

54

Memory
Hierarchy

Cache
Organization

Design
Tradeoffs

Virtual
Memory

Practical
Paging

TLB

June 14, 2023© Adam Teman,

Page-Based Virtual-Memory Machine

• Every cycle:

55

PC D E M W
Data

Cache
Decode

Inst.

Cache
+

P
h

y
s
ic

a
l

A
d

d
re

s
s

V
ir

tu
a
l

A
d

d
re

s
s

Memory

Controller
Main Memory (DRAM)

Physical
Address

A
d
d
re

s
s

T
ra

n
s
la

ti
o
n

V
ir

tu
a
l

A
d

d
re

s
s

A
d
d
re

s
s

T
ra

n
s
la

ti
o

n

P
h

y
s
ic

a
l

A
d

d
re

s
s

Page Table Walker
Page Fault? Protection Violation?

Page Fault?
Protection Violation?

load

instruction

Protection

Violation?

Page

Fault?

Access

Instruction

Cache

Cache

Miss?

Cache

Hit?

Continue to

Decode

Repeat for
Data cache

on load/store

Invoke
Operating

System

Invoke
Operating

System

Page Table

Walk

DRAM Access

Fetch

Cache Block
DRAM Access

June 14, 2023© Adam Teman,

Virtual Memory Bottleneck

• Virtual Memory access is expensive

• In a single-level page table, each reference becomes two memory accesses

• In a two-level page table, each reference becomes three memory accesses

• We just totally killed our performance (CPI)…

• Any suggestions?

• Isn’t indirection supposed to solve any problem in computer architecture?

• Well, not this time… but wasn’t there a “second solution”?

• Caching, of course!

• Let’s just cache our address translation.

• If we store our recent VA-to-PA mappings on-chip, we’ll save DRAM accesses.

• This cache is called a Translation Lookaside Buffer (TLB)

56

June 14, 2023© Adam Teman,

Translation Lookaside Buffer

• A TLB is a cache of virtual-to-physical address translations

• TLBs need to be fast (→small…).

• Luckily, a small TLB is very effective!

• Typically, 16-512 entries.

• Minimizing TLB miss rate is critical (→0.01%-1%)

• Usually 4-way/8-way/fully-associative.

• Random or FIFO replacement policy, since LRU too expensive.

• A 2nd-level TLB can be bigger (and slower) to increase hit rate.

• Larger page sizes also reduce TLB miss rate.57

Memory

access

request

TLB

Virtual
Address

TLB Hit?

TLB Miss?

Physical
Address

Page Table
Walk…

2-entry TLB

tag PPN V A

0x12345 0x0987 0 0

0x67890 0x6543 1 0

0x1234 Page 0

0x5678 Page 1

0x9101 Page 2

0x2345 Page 3

...

0x6789

0x0123

0x00003204

Virtual Address
Access

Page Table

0x00003 0x2345 1 1

Tag 0x00003

not in TLB.

Need a page

table walk.

Now Tag is in

the TLB.

We can access

the cache!

PA=0x2345204

June 14, 2023© Adam Teman,

Processor Pipeline with TLB

• So, now we have added two TLBs in the pipeline:

• One for Instruction Memory Access

• One for Data Memory Access

58

PC D E M W
Data

Cache
Decode

Inst.

Cache
+

P
h

y
s
ic

a
l

A
d

d
re

s
s

V
ir

tu
a
l

A
d

d
re

s
s

Memory

Controller
Main Memory (DRAM)

Physical
Address

In
s
tr

u
c
ti
o
n

T
L
B

V
ir

tu
a
l

A
d

d
re

s
s

D
a
ta

 T
L
B

P
h

y
s
ic

a
l

A
d

d
re

s
s

Page Table Walker
TLB Miss? Page Fault?
Protection Violation?

TLB miss? Page Fault?
Protection Violation?

June 14, 2023© Adam Teman,

Physically-Indexed Physically-Tagged

• The pipeline from the previous slide is known as a

physically-indexed physically-tagged (PIPT) cache.

• CPU generates virtual address

• A TLB-lookup is performed to get the physical address

• A TLB miss initiates a page walk

• The physical address is used to access the cache

• A cache miss requires fetching the block from the next level

• This process is very slow

• Memory access happens several times every instruction

• The TLB significantly slows down memory access

• Can we make it better?

59

TAG INDEX OFFSET

Virtual Address

Physical Address

TLB

Lookup

TLB Hit

Cache

block

fetch

Cache
MissCache

Lookup

Cache
Hit

Data

Page

Table

Walk

TLB
Miss

June 14, 2023© Adam Teman,

Virtually-Addressed Caches

• Solution: Access the cache with a virtual address!

• Now we only have a TLB lookup

if we have a cache miss!

• This type of cache is called

Virtually-Indexed Virtually Tagged (VIVT)

• But does it work?

• Unfortunately, not really…
• Permissions are stored in the TLB → There’s no protection.

• Different processes, Same VA (Homonym)→Flush the cache on context switch.

• Two VAs for same physical address → Aliasing – stale data in cache.

• Any way to get “the best of both worlds”?

60

CPU

Inst.

Cache

Virtual Tag

TLB DRAMVirtual
Address

Cache
miss

Physical
Address

June 14, 2023© Adam Teman,

Virtually-Indexed Physically-Tagged Cache

• So, we understood that we almost have to use physical tags

• Physical tags enable process isolation of virtual addressing.

• But the TLB slows our processor down.

• Could we possibly “hide” the TLB lookup?

• Introducing the

Virtually-Indexed, Physically-Tagged (VIPT) Cache

• Always access the physically-tagged TLB.

• But use the index bits of the address to store data in the cache.

• This way, we can perform TLB and cache lookup in parallel.

• This is the way most L1 caches are built today

• However, note that the cache size is limited by the index size.

• Using a larger cache tag than the index will lead to aliasing.
61

Virtual Address

Physical Address

TLB

Lookup

TAG INDEX TAG

Cache

Lookup

EqualNot
Equal

==

Send Data
from Cache

to CPU

Fetch cache
block from
next level

TAG INDEX OFFSET

June 14, 2023© Adam Teman,

Overcoming Aliasing in VIPT Caches

• When using a VI T cache, what happens when two VAs point to the same PA?

• Two copies of same physical address can be brought into cache.

• Writing to one copy is not reflected in the other copy.

• Reading the second copy would result in stale data.

• VI T caches overcome this by storing

and comparing the physical tag

• DRAM pages are larger than cache lines.

• So, we can use the index bits to

address the cache independent

of the tag, which can be physical!

• Therefore, we can do a TLB lookup

in parallel to a cache access.

62

0xFFFFFFFF

...

0xFFFFFFFF

VIVT cache

0xFFFFFFFF

...

DRAM

0x00000000

sw 0x00000000

lw 0xFFFFFFFF

TAG INDEX OFFSET

6 bits 6 bits

Virtual Address
12 bits (page size)

...

4kB

4kB

4kB

...

4kB

4kB

2
^6

 e
n

tr
ie

s

(i
n

d
e

x
 s

iz
e

)

=

Tag points to
DRAM page

VIPT cache DRAM

June 14, 2023© Adam Teman,

Limitations of VIPT Caches

• What is the maximum size of a VIPT Cache?

• Assume 4kB DRAM pages and 64B cache lines.

• Page offset is 12 bits and cache block offset is 6 bits.

• If the index overlaps the page offset, part of the index

requires translation and therefore we get aliasing

• That leaves us 6 bits for the index (in a direct-mapped cache).

• →Cache size (without aliasing) is <=64 entries (4kB)

• Increasing associativity enables larger caches

• 2-way associativity means that for a given index,

the tag could be in two places.

• So, in the example, a 6-bit index enables 27=127 entries (8kB)

• That’s why we find high-associativity (~16-way) in inner-level caches!

63

TAG INDEX OFFSET

6 bits 6 bits

12 bits (page size)

select
cache

line

select
byte

virtual
tag

TLB

physical
tag

Cache

=

physical
tag

data

June 14, 2023© Adam Teman,

up to 96

cores

up to 96

cores

up to 96

cores

Example: AMD Ryzen 7000 (zen4)

• To give a recent example, let’s look at the zen4 architecture (Nov. 2022)

64

L1-Inst TLB

64 entries

Fully Ass.

L2-Inst TLB

512 entries

8-way

L1-Data TLB

72 entries

Fully Ass.

L2-Data TLB

3072 entries

24-way

L2 Cache

0.5-1MB/core

8-way

write-back

>14 cycles

Source: wikichip

L3 Cache

up to 384 MB

16-way

write-back

shared between

cores
~50 cycles

up to 96

cores

Core

L0-Op Cache

up to 6750 Ops

9-ops per line

8-way

L1-Inst Cache

32kB/core

8-way

L1-Data Cache

32kB/core

8-way

write-back

4-8 cycles

64B cache lines

DRAM

Up to 6TB

DDR5-5200

page sizes:

4kB, 16kB, 2MB,

4MB, 1GB

June 14, 2023© Adam Teman,

Virtual Memory Summary

• Virtual memory adds a level of indirection between the program and the memory
• Enables us to provide “unlimited memory” to each process

• Isolates programs (full address space, protection, data sharing)

• Eliminates fragmentation

• However, accessing memory using VM is expensive
• First, need to access the page table find the physical address.

• Then need to access again to retrieve data from DRAM.

• If page not resident in memory, page faults are really bad.

• Make it faster by caching VA to PA translations – use a TLB.
• PIPT Cache – requires translation first → slow

• VIVT Cache – no translation → fast, but really impractical

• VIPT Cache – parallelize TLB and Cache access → fast, but cache size limited

65

June 14, 2023© Adam Teman,

References

• Patterson, Hennessy “Computer Organization and Design – The RISC-V

Edition”

• Hennessy, Patterson “Computer Architecture – A Quantitative Approach”

• Krste Asanovich, Berkeley 61C

• MIT 6.175

• Chris Terman, MIT 6.004

• Georgia Tech CS6290 “High Performance Computer Architecture” – available

on Udacity

• David Black Schaffer “Virtual Memory” https://youtu.be/qcBIvnQt0Bw

66

	Default Section
	Slide 1: Lecture 6: The Memory Hierarchy

	Summary Section
	Slide 2: Lecture Overview

	Introduction
	Slide 3: Introduction to the Memory Hierarchy
	Slide 4: Reminder: The Memory Hierarchy
	Slide 5: Processor-DRAM Gap (Latency)
	Slide 6: Typical Memory Access Patterns
	Slide 7: The Principle of Locality
	Slide 8: Memory Caching
	Slide 9: Adding Cache to Computer

	Caches
	Slide 10: Cache Organization
	Slide 11: Reminder: Adding Cache to Computer
	Slide 12: A basic cache
	Slide 13: What are the IDs?
	Slide 14: Caching blocks of data
	Slide 15: Fully Associative Cache Lookup
	Slide 16: Set-Associative Caches
	Slide 17: Set-Associative Cache Lookup
	Slide 18: Direct-Mapped Caches
	Slide 19: Summary: Alternatives in an 8 Block Cache
	Slide 20: Summary: Cache Addressing Terminology

	Cache Tradeoffs
	Slide 21: Tradeoffs in Cache Design
	Slide 22: The “3-C’s” of Caching
	Slide 23: The “3-C’s” of Caching
	Slide 24: The “3-C’s” of Caching
	Slide 25: Cache Performance Example
	Slide 26: Multilevel Caches
	Slide 27: Multilevel Cache Example
	Slide 28: Cache Line Replacement Policy
	Slide 29: Write Policy
	Slide 30: One More Detail: Valid Bit
	Slide 31: Summary: Cache Design Trade-Offs
	Slide 32: Summary: Cache Design Trade-Offs

	Virtual Memory
	Slide 33: Virtual Memory
	Slide 34: “Bare” 5-Stage Pipeline
	Slide 35: Problem #1: Memory Size
	Slide 36: Problem #2: Process Isolation
	Slide 37: Possible Solution: Base and Bounds
	Slide 38: Segmentation
	Slide 39: Library book analogy
	Slide 40: Solution: Virtual Addressing
	Slide 41: How does Virtual Addressing work?
	Slide 42: Page Tables
	Slide 43: Demand Paging
	Slide 44: Page Fault Handling
	Slide 45: Did Virtual Memory Solve our Problems?
	Slide 46: Did Virtual Memory Solve our Problems?
	Slide 47: Did Virtual Memory Solve our Problems?

	Paging
	Slide 48: Practical Paging
	Slide 49: Are page tables even feasible?
	Slide 50: Possible Solution: Larger Pages
	Slide 51: Better Solution: Multi-Level Page Tables
	Slide 52: Virtual Addressing in RISC-V
	Slide 53: To Summarize: Cache vs. VM Terminology

	TLB
	Slide 54: The Translation Lookaside Buffer (TLB)
	Slide 55: Page-Based Virtual-Memory Machine
	Slide 56: Virtual Memory Bottleneck
	Slide 57: Translation Lookaside Buffer
	Slide 58: Processor Pipeline with TLB
	Slide 59: Physically-Indexed Physically-Tagged
	Slide 60: Virtually-Addressed Caches
	Slide 61: Virtually-Indexed Physically-Tagged Cache
	Slide 62: Overcoming Aliasing in VIPT Caches
	Slide 63: Limitations of VIPT Caches
	Slide 64: Example: AMD Ryzen 7000 (zen4)
	Slide 65: Virtual Memory Summary
	Slide 66: References

