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A First Glance at 
Interconnect
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The Wire
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Impact of Interconnect Parasitics

• Interconnect parasitics affect all the metrics we care about
• Reliability

• Performance

• Power Consumption

• Cost

• Classes of parasitics
• Capacitive

• Resistive

• Inductive
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Modern Interconnect
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Capacitance
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Capacitance of Wire Interconnect
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Capacitance: The Parallel Plate Model

• How can we reduce this capacitance?
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Typical numbers:
• Wire cap ~0.2 fF/um

• Gate cap ~2 fF/um

• Diffusion cap ~2 fF/um



Permittivity
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Fringing Capacitance
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Fringing versus Parallel Plate
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(from [Bakoglu89])
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A simple model for deriving wire cap

• Wiring capacitances in 0.25μm
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Impact of Interwire Capacitance
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Coupling Capacitance and Delay

15

CC1

CC2
CL

tot LC C



Coupling Capacitance and Delay
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Coupling Capacitance and Delay
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Example – Coupling Cap

• A pair of wires, each with a capacitance to ground of 5pF, have a 1pF

coupling capacitance between them. 

• A square pulse of 1.8V (relative to ground) 

is connected to one of the wires.

• How high will the noise pulse be 

on the other wire? 
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Example – Coupling Cap
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• Draw an Equivalent Circuit:

2

2

1.8 1
0.3

1 5

in coupled

C

coupled

V C p
V V

C C p p

 
  

 



• Simulated coupling for Cagg=Cvictim

Coupling Waveforms
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Shielding
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Feedthrough Cap
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Measuring Capacitance
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Resistance
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Wire Resistance 
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Sheet Resistance

• Typical sheet resistances for 180nm process
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Layer Sheet Resistance (W/)

N-Well/P-Well 1000-1500

Diffusion (silicided) 3-10

Diffusion (no silicide) 50-200

Polysilicon (silicided) 3-10

Polysilicon (no silicide) 50-400

Metal1 0.08

Metal2 0.05

Metal3 0.05

Metal4 0.03

Metal5 0.02

Metal6 0.02

100
m

R
square

W


Silicides: WSi 2, TiSi 2, PtSi 2 and TaSi

Conductivity: 8-10 times better than Poly



Contact Resistance

• Contact/Vias add extra resistance

• Similar to changing between roads on the way to a destination…

• Contact resistance is generally 2-20 Ω

• Make contacts bigger

• BUT… current “crowds” around the perimeter of a contact.

• There are also problems in deposition…

• Contacts/Vias have a maximum practical size.

• Use multiple contacts
• But does this add overlap capacitance?
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Dealing with Resistance

• Selective Technology Scaling

• Don’t scale the H

• Use Better Interconnect Materials

• reduce average wire-length

• e.g. copper, silicides

• More Interconnect Layers

• reduce average wire-length

• Minimize Contact Resistance

• Use single layer routing

• When changing layers, use lots of contacts.

28

90nm Process



Interconnect Modeling
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The Ideal Model

• In schematics, a wire has no parasitics:

• The wire is a single equipotential region.

• No effect on circuit behavior.

• Effective in first stages of design and for very short wires.
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The Lumped Model
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The Distributed RC-line

• But actually, our wire is a distributed entity.
• We can find its behavior by breaking it up into small RC segments.
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• Step-response of RC wire as a function of time and space

Step-response of RC wire
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• Solving the diffusion equation for a given network is complex.

• Elmore proposed a reasonably accurate method to achieve an 

approximation of the dominate pole.

Elmore Delay Approximation
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For a complex network use the following method:

• Find all the resistors on the path from in to out.

• For every capacitor:
• Find all the resistors on the path from the input to the capacitor.

• Multiply the capacitance by the resistors that are also on the path to out.

• The dominant pole is approximately the sum of all these time 

constants.

Elmore Delay Approximation
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Simple Elmore Delay Example
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General Elmore Delay Example
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Generalized Ladder Chain

• Lets apply the Elmore approximation for our original distributed wire.
• Divide the wire into N equal segments of dx=L/N length with capacitance cdx

and resistance rdx.
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RC-Models
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Wire Delay Example
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• Inverter driving a wire and a load cap.
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• Again we’ll look at our driver with a distributed wire.

• For the driver resistance, 

we can lump the output load as a capacitor.

• For the wire resistance, we will use 

the distributed time constant.

• For the load capacitance, we can 

lump the wire and driver resistance.

A different look…
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Dealing with long wires

• Repeater Insertion
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Dealing with long wires

• Buffer Tree Insertion
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Wire Scaling
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Wire Scaling

• We could try to scale interconnect 

at the same rate (S) as device dimensions.

• This makes sense for local wires 

that connect smaller devices/gates.

• But global interconnections, such as clock 

signals, buses, etc., won’t scale in length.

• Length of global interconnect is proportional 

to die size or system complexity.

• Die Size has increased by 6% per year (X2 @10 years)

• Devices have scaled, but complexity has grown!
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Nature of Interconnect
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• Looking at local interconnect:

• W, H, t, L all scale at 1/S

• C=LW/t1/S

• R=L/WHS

• RC=1

• Reminder – Full Scaling of Transistors

• Ron=VDD/Ion α 1

• tpd=RonCg α 1/S

Local Wire Scaling
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So the delay of local 

interconnect stays 

constant.

But the delay of local 

interconnect increases 

relative to transistors!



Local Wire Scaling – Full Scaling

• What about fringe cap?
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Local Wire Scaling - Constant Thickness

• Wire thickness (height) wasn’t scaled!
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Local Wire Scaling – Interwire Capacitance

• Without scaling height, coupling gets much worse.

• Aspect ratio is limited and we eventually have to scale the height.

• Therefore, different metal layers have different heights.
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Global Wire Scaling

• Looking at global interconnect:

• W, H, t scale at 1/S

• L doesn’t scale!
• C=LW/t1

• R=L/WH  S2

• RC=S2 !!!

• And if chip size grows, L actually increases!
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Global Wire Scaling – Constant Thickness
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• Leave thickness constant for global wires

• But wire delay still gets quadratically worse than gate delay…
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Wire Scaling

• So whereas device speed increases with scaling:
• Local interconnect speed stays constant.

• Global interconnect delays increase quadratically.

• Therefore:
• Interconnect delay is often the limiting factor for speed.

• What can we do?
• Keep the wire thickness (H) fixed.

• This would provide 1/S for local wire delays 
and S for constant length global wires.

• But fringing capacitance increases, so this is optimistic.
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Wire Scaling

• What is done today?

• Low resistance metals.

• Low-K insulation.

• Low metals (M1, M2) are used for local interconnect, so they are 

thin and dense.

• Higher metals are used for global routing, 

so they are thicker, wider and spaced farther apart.

54



Modern Interconnect
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Intel 45 nm Stack
[Moon08]



Further Reading
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