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A First Glance at
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The Wire
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Impact of Interconnect Parasitics

* Interconnect parasitics affect all the metrics we care about
« Reliability
* Performance

* Power Consumption
* Cost

* Classes of parasitics

« Capacitive
* Resistive
* Inductive
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Modern Interconnect
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Capacitance
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Capacitance of Wire Interconnect

Simplified
Model
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Capacitance: The Parallel Plate Model

* How can we reduce this capacitance? Typical numbers:

* Wire cap ~0.2 fF/um

« Gate cap ~2 fF/um

« Diffusion cap ~2 fF/um

Current flow

Electrical-field lines
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Permittivity

Material e,

Free space 1
Aerogels ~1.5
Polyimides (organic) 3-4
Silicon dioxide 3.9

Glass-epoxy (PC board) 5
Silicon Nitride (S1;N,)) 7.5
Alumina (package) 9.5
Silicon 11.7
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Fringing Capacitance

C[F/mm] Cp+C
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Fringing versus Parallel Plate

Capacitance (pF/cm)
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A simple model for deriving wire cap

» Wiring capacitances in 0.25pm Cuire = Coaratiet plate "W - L
aF/pum? Bottom Plate
\ Field Active Poly All Al2 Al3 Ald
Poly 88
S e
All 30 41 57 fringin
R m e
_'(l_) A2 13 15 17 36 .
o LB 2 8 . 0
05_ Al3 8.0 9.4 10 15 41
. —
Al5 52 5.4 54 6.0 91 14 38
.
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Impact of Interwire Capacitance
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Coupling Capacitance and Delay
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Coupling Capacitance and Delay
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Coupling Capacitance and Delay
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Example - Coupling Cap

* A pair of wires, each with a capacitance to ground of 5pF, have a 1pF

coupling capacitance between them.

* A square pulse of 1.8V (relative to ground)
is connected to one of the wires.

 How high will the noise pulse be oL

on the other wire?

Line 1

(- coupled

1p

Line 2
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Example - Coupling Cap

* Draw an Equivalent Circuit:

5p

=
vin | Line 1 C C
@ J—Ccuuplt:!:pi Vin 55:: — 5;
EEJ_ Line 2 v v
P;
V. -C
VCZ _ in coupled 1 8 1p O 3\/
Ccoupled + C 1 p t 5 p
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Coupling Waveforms

* Simulated coupling for C

1.8 A
15 A
12 A

0.9 4
0.6 A

0.3 A

=C

agg victim

Aggressor

Victim (undriven): 50%

/ Victim (half size driver): 16%
/ Victim (equal size driver): 8%

Victjm (double size driver): 4%
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Shielding
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Feedthrough Cap

ZnlCS



23

Measuring Capacitance
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Resistance
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Wire Resistance
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Metal Bulk
resistivity
(u€2*cm)
Silver (Ag) 1.6
Copper (Cu) 1.7
Gold (Au) 2.2
Aluminum (Al) 2.8
Tungsten (W) 5.3
Molybdenum (Mo) 5.3
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Sheet Resistance

* Typical sheet resistances for 180nm process

Silicide

Layer Sheet Resistance (/)
N-Well/P-Well 1000-1500
Diffusion (silicided) 3-10
Diffusion (no silicide) 50-200
Polysilicon (silicided) 3-10
Polysilicon (no silicide) 50-400
Metall 0.08
Metal2 0.05
Metal3 0.05
Metal4 0.03
Metal5 0.02
Metal6 0.02

Silicides: WSi » TiSi, PtSi, and TaSi

Conductivity: 8-10 times better than Poly

m¢2
sguare En“cs

R, =100
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Contact Resistance

* Contact/Vias add extra resistance

« Similar to changing between roads on the way to a destination...
» Contact resistance is generally 2-20 Q

» Make contacts bhigger ﬂ ﬁ

 BUT... current “crowds” around the perimeter of a contact.
« There are also problems in deposition...
« Contacts/Vias have a maximum practical size.

« Use multiple contacts
« But does this add overlap capacitance?

&nlCS
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Dealing with Resistance

* Selective Technology Scaling
« Don’t scale the H

* Use Better Interconnect Materials

* reduce average wire-length
e e.g. copper, silicides

* More Interconnect Layers
* reduce average wire-length

* Minimize Contact Resistance

« Use single layer routing
* When changing layers, use lots of contacts.

EHT = 5.00kV
20nm Process

ZnlCS



Interconnect Modeling
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The Ideal Model

* |[n schematics, a wire has no parasitics:

* The wire Is a single equipotential region.
* No effect on circuit behavior.
 Effective In first stages of design and for very short wires.
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The Lumped Model
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The Distributed RC-line

* But actually, our wire is a distributed entity.
« We can find its behavior by breaking it up into small RC segments.

Driver 9X Receiver

> > v, & rdx v, rdxo v rdxv, o Tl
P = M MNT—— AT MWV A -

/ =c dx <c dx ~c dx <c dx dx
f-_r_d_x-__L__E :-J-r_d_x___&_ﬂ ,Ic Tc ‘l\t /l\c ,l\c
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Step-response of RC wire

« Step-response of RC wire as a function of time and space

25
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Elmore Delay Approximation

* Solving the diffusion equation for a given network is complex.

 EImore proposed a reasonably accurate method to achieve an
approximation of the dominate pole.

C _L %C
\I‘ T"

elmore Rlc (R1+R2)C2+(R1+R2+R3)C3 O
34 O=m
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Elmore Delay Approximation

For a complex network use the following method:
* Find all the resistors on the path from in to out.

* For every capacitor:

* Find all the resistors on the path from the input to the capacitor.
« Multiply the capacitance by the resistors that are also on the path to out.

* The dominant pole is approximately the sum of all these time
constants.

R, = ZRJ- = (R; € [path(s —> i) npath(s > k)])  "pi = Z Cili
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Simple Elmore Delay Example

elmore I:\)1(: (R1+R2)C2+(R1)C2

36
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General ElImore Delay Example

elmore Rlc +R1C (R1+R3)C3+(R1+R3)C4+(R1+R3+Ri)ci
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Generalized Ladder Chain

* Lets apply the EImore approximation for our original distributed wire.

 Divide the wire into N equal segments of dx=L/N length with capacitance cdx
and resistance rdx.

Ty :C(Lj(rLJrZrLJr..Jr NrLj

N N N N
(L ’ 2 N(N+1)
_(Nj (rc+2rc+..+Nrc)—rcL[ N j
. rcl> RC
lim 7, = = —
N —o0 2 2
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RC-Models

Voltage Range | Lumped RC- Distributed
network RC-network
0—30% (t) 0.69 RC 0.38 RC
0—63% (1) RC 0.5 RC
10%—90% (t,) 2.2 RC 0.9 RC

Step Response of Lumped and Distributed RC Netw orks:
Points of Interest.

T-Model
Pie Model R/ /2 /
””_ AT
YL 17 I
™ T T-2 Model
Pie-2 Model R2  RP2 R4 R2Z R4 /
\1 L Lc 4 Lop Lo
+ L4 L 1 T-3 Mode|
. 72 T2 -
Pie-3 Model e R{
W AR A A AN
T I IC T 1 L1
3 T3
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Wire Delay Example

* Inverter driving a wire and a load cap.

Tgriver = (Cd + CWA ) R, +( ot T CW/ j (R +Ry)

EnlCS



A different look... c ~021F

* Again we’ll look at our driver with a distributed wire. i

* For the driver resistance, R ~0.1—
we can lump the output load as a capacitor. =
 For the wire resistance, we will use
the distributed time constant.
 For the load capacitance, we can
lump the wire and driver resistance.

r, =0.69R,, (C, +C, )+0.38R,C,, +0.69(R,, +R,)C,

. &nlCS
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Dealing with long wires

* Repeater Insertion

&nlCS



43

Dealing with long wires

 Buffer Tree Insertion
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Wire Scaling
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Wire Scaling

» We could try to scale interconnect
at the same rate (S) as device dimensions,

* This makes sense for local wires
that connect smaller devices/gates.

« But global interconnections, such as clock
signals, buses, etc., won't scale in length.

* Length of global interconnect is proportional
to die size or system complexity.

* Die Size has increased by 6% per year (X2 @10 years)
* Devices have scaled, but complexity has grown!

45
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Nature of Interconnect

s [ e ey
Local Semlzlopal Global | |
IE6 | e o '
= ] . L — — S
: B4 | ~— | i.{_Lam__w |: ][] [
e ) 0 000 0C
= L T sﬂmigIEEaI T
- i — !
E IED Lol L | ] | |
= [ P !
IE-2 | L *. oooogooooo
i e
o I 1y I O
IE-4 b -
. el . ol R R T L |
| 10 100 1000

Interconnect Length, [ {eate pitches)

ZnlCS



Local Wire Scaling

* Looking at local interconnect:
- W, H, t, L all scale at 1/S

» C=LW/t->1/S H]
* R=L/WH =235 - - So the delay of local
« RC=1 W interconnect stays

constant.

* Reminder - Full Scaling of Transistors But the delay of local

* Ron=Vop/lon 00 1 interconnect increases
* 1,;=RonCq a0 1/5 relative to transistors!

47



Local Wire Scaling - Full Scaling

* What about fringe cap?
H H/S
X
i w /s || WIS
A S
WL
Cop / Coringe © L C,, o< S Clringe < S

R, o AVH wire ° RuireCuvie Ryire €St ire o€ CONSE E nICS



Local Wire Scaling - Constant Thickness

 Wire thickness (height) wasn’t scaled!

A L
H

X H
t W

o f/S

WL

W|re = XNH pW|re W|re ere wae oc const tpwwe _1 o_ “CS
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Local Wire Scaling - Interwire Capacitance

 Without scaling height, coupling gets much worse.
* Aspect ratio is limited and we eventually have to scale the height.

* Therefore, different metal layers have different heights.

>

D WIS
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Copsee * M5 Consiae € CONSE - S= )G
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Global Wire Scaling

* Looking at global interconnect:

« W, H, tscale at 1/S
* L doesn’t scale!
e C=LLW/It=21

* R=L/WH - &2 .
. RC=52 Il Long wire

delay
INcreases

* And if chip size grows, L actually increases!

EnlCS



Global Wire Scaling — Constant Thickness

* Leave thickness constant for global wires
 But wire delay still gets quadratically worse than gate delay...

t t/S
sl

W
C oC / Cfrlnge C oc CONst Cfringe

W|re OCKVH pwire & W|re ere wae oS tpwwe En“cs

oc const



Wire Scaling

* So whereas device speed increases with scaling:

 Local interconnect speed stays constant.
« Global interconnect delays increase quadratically.

* Therefore:

 Interconnect delay Is often the limiting factor for speed.

* What can we do?

» Keep the wire thickness (H) fixed.

 This would provide 1/S for local wire delays
and S for constant length global wires.

 But fringing capacitance increases, so this is optimistic.

53
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Wire Scaling

* What is done today?

oW resistance metals.
| ow-K Insulation.

thin and dense.

Higher metals are used for global routing,
so they are thicker, wider and spaced farther apart.

_ow metals (M1, M2) are used for local interconnect, so they are

ZnlCS



Modern Interconnect

1T um

M8

Global (up to 5) =<
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Cross Sectional View: Intel 45 nm Stack
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Further Reading

* J. Rabaey, “Digital Integrated Circuits” 2003, Chapter 4

* E. Alon, Berkeley EE-141, Lectures 15,16 (Fall 2009)

http:/Ibwrc.eecs.berkeley.edu/classes/icdesign/ee141 09/

* B. Nicolic, Berkeley EE-241, Lecture 3 (Spring 2011)

http://bwrc.eecs.berkeley.edu/classes/icdesign/ee241 s11

 Stanford EE311
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