
December 7, 2018

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 5:
Timing Analysis

Semester A, 2018-19

Lecturer: Dr. Adam Teman

mailto:adam.teman@biu.ac.il

2 © Adam Teman, 2018

Lecture Outline

Sequential Clocking

1

Sequential

Clocking

2

Static Timing

Analysis

3

Design

Constraints

4

Timing

Reports

5

Multi Mode

Multi Corner

4 © Adam Teman, 2018

Synchronous Design - Reminder
• The majority of digital designs are Synchronous

and constructed with Sequential Elements.
• Synchronous design eliminates races

(like a traffic light).

• Pipelining increases throughput.

• We will assume that all sequentials are

Edge-Triggered, using D-Flip Flops as registers.

• D-Flip Flops have three critical timing parameters:
• tcq – clock to output: essentially a propagation delay

• tsetup – setup time: the time the data needs to arrive before the clock

• thold – hold time: the time the data has to be stable after the clock

5 © Adam Teman, 2018

Timing Parameters - tcq

• tcq is the time from the clock edge until the data

appears at the output.

• The tcq for rising and falling outputs is different.

D

Q

clk

tcqLH
tcqLHtcqHL

6 © Adam Teman, 2018

Timing Parameters - tsetup

• tsetup - Setup time is the time the data has to arrive before the clock

to ensure correct sampling.

BAD!Good!

tsu tsu tsu

D

clk

Q

Good!

7 © Adam Teman, 2018

Timing Parameters - thold

• thold - Hold time is the time the data has to be stable after the clock

to ensure correct sampling.

BAD!Good!

thold

D

clk

Q

Good!

thold thold

8 © Adam Teman, 2018

• There are two main problems that can arise in synchronous logic:

• Max Delay: The data doesn’t have enough time to pass

from one register to the next before the next clock edge.

• Min Delay: The data path is so short that it passes through

several registers during the same clock cycle.

• Max delay violations are a result of a slow data

path, including the registers’ tsetup, therefore it

is often called the “Setup” path.

• Min delay violations are a result of a short data path,

causing the data to change before the thold has passed,

therefore it is often called the “Hold” path.

Timing Constraints

9 © Adam Teman, 2018

Setup (Max) Constraint
• Let’s see what makes up our clock cycle:

• After the clock rises, it takes tcq for the data to propagate to point A.

• Then the data goes through the delay of the logic to get to point B.

• The data has to arrive at point B, tsetup before the next clock.

• In general, our timing path is a race:

• Between the Data Arrival, starting with the launching clock edge.

• And the Data Capture, one clock period later.

D

clk

A

tcq

D Q D QLogic

clk

A B

tsetup
B

© Adam Teman, 2018

Setup (Max) Constraint

cq logic setupT t t t + +

skew cq logic setup marginT t t t +  + + +

Adding in clock skew and other guardbands:

positive clock skew

Launch Path

Capture Path

margin

11 © Adam Teman, 2018

Hold (Min) Constraint
• Hold problems occur due to the logic changing before thold has passed.

• This is not a function of cycle time – it is relative to a single clock edge!

• Let’s see how this can happen:

• The clock rises and the data at A changes after tcq.

• The data at B changes tpd(logic) later.

• Since the data at B had to stay stable for thold after the clock (for the second

register), the change at B has to be at least thold after the clock edge.

D

clk

A

tcq

D Q D QLogic

clk

A B

thold

B

© Adam Teman, 2018

Hold (Min) Constraint

cq logic holdt t t+ 
Adding in clock skew and other guardbands:

positive clock skew

margin

Launch Path

Capture Path
triggered on same clock edge!

cq logic margin hold skewt t t + −  +

13 © Adam Teman, 2018

Summary

• For Setup constraints, the data has to propagate fast

enough to be captured by the next clock edge:

• This sets our maximum frequency.

• If we have setup failures, we can

always just slow down the clock.

• For Hold constraints, the data path delay has to

be long enough so it isn’t accidentally captured

by the same clock edge:

• This is independent of clock period.

• If there is a hold failure,

you can throw your chip away!

skew cq logic setup marginT t t t +  + + +

cq logic margin hold skewt t t + −  +

launch capturet T t +

launch capturet t

Static Timing Analysis
Or why and how to calculate slack.

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”,

Lecture 12 from 2013. For a better ☺ and more detailed explanation, do

yourself a favor and go see the original!

1

Sequential

Clocking

2

Static Timing

Analysis

3

Design

Constraints

4

Timing

Reports

5

Multi Mode

Multi Corner

15 © Adam Teman, 2018

Static Timing Analysis (STA)
• STA checks the worst case propagation of all possible vectors for min/max delays.

• Advantages:
• Much faster than timing-driven, gate-level simulation

• Exhaustive, i.e., every (constrained) timing path is checked.

• Vector generation NOT required

• Disadvantages:
• Proper circuit functionality is NOT checked

• Must define timing requirements/exceptions

(garbage in → garbage out!)

• Limitations:
• Only useful for synchronous design

• Cannot analyze combinatorial feedback loops
• e.g., a flip-flop created out of basic logic gates

• Cannot analyze asynchronous timing issues
• Such as clock domain crossing

• Will not check for glitching effects on asynchronous pins
• Combinatorial logic driving asynch (set/reset) pins of sequential elements will not be checked for glitching

16 © Adam Teman, 2018

Timing Paths
• A path is a route from a Startpoint to an Endpoint.

• Startpoint (SP)
• Clock pins of the flip flops

• Input ports , a.k.a Primary Inputs (PI)

• Endpoints (EP)
• Input pins of the flip flops

(except the clock pins)

• Output ports, a.k.a Primary Outputs (PO)

• Memories / Hard macros

• There can be:
• Many paths going to any one endpoint

• Many paths for each start-point and end-point combination

Clk

D Q A

B

Ci

S

Co

Clk

D Q

Clk

D Q

Clk

D Q

Clk

D Q

17 © Adam Teman, 2018

Static Timing Analysis
• Four categories of timing paths

• Register to Register (reg2reg)

• Register to Output (reg2out)

• Input to Register (in2reg)

• Input to Output (in2out)

18 © Adam Teman, 2018

Goals of Static Timing Analysis

• Verify max delay and min delay constraints are met for all paths in a design.

• Start with a Gate-Level Netlist.

• Timing Models are provided for every gate in the library.

• Static Timing Analysis needs to report if any path violates

the max/min delay constraints.

• But is this enough?

• No!

• We want to know all the paths that violate the timing constraints.

• In fact, we want to know the timing of all paths reported in order of length.

• And we want to know where the problems are so we can go about fixing them.

• Let’s see the basic idea of how this can be done.

18

19 © Adam Teman, 2018

Some basic assumptions

• Our design is synchronous
• In addition, we will only be showing how to deal with

combinational elements and max delay constraints.

• We will assume a pin-to-pin delay model
• In other words, each gate has a single, constant delay from input to output.

• In the real world, gate delay is affected by many factors, such as gate type,
loading, waveform shape, transition direction, particular pin, and random
variation.

• As we saw earlier, a real design gets all this data from the .lib files.

• We will take a topological approach
• In other words, we disregard the logical functionality of the gates and

therefore, consider all paths, though some of them cannot logically happen.

• More on this later…

19

20 © Adam Teman, 2018

Simple path representation

• Let’s say we have the following circuit:

• And the timing model of our AND gate is:

• We will build a graph:
• Vertices: Wires, 1 per gate output

and 1 for each SP and EP.

• Edges: Gates, input pin to output pin,
1 edge per input with a delay for each edge.

• Finally, add Source/Sink Nodes:
• 0-weight edge to each SP and from each EP.

• That way all paths start and end at a single node.

20

a
b

d

c

e

2

2

a

b
d

c
e

2

2

2

2

a

b

d

c
e2

2
2

2
0

SNKSRC

0

0

0

21 © Adam Teman, 2018

Node oriented timing analysis

• If we would enumerate every path, we would quickly get

exponential explosion in the number of paths.

• Instead, we will use node-oriented timing analysis

• For each node, find the worst delay to the node along any path.

• For this, we need to define two important values:

• Arrival Time at a node (AT): the longest path from the source to the node.

• Required Arrival Time at node (RAT): the latest time the signal

is allowed to leave the node to make it to the sink in time.

21

Slack at node n is defined as:

Slack(n) = RAT(n) – AT(n)

22 © Adam Teman, 2018

How do we compute ATs and RATs?

• Recursively!

• The Arrival Time at a node is just the maximum of

the ATs at the predecessor nodes plus the delay from that node.

• The Required Arrival Time to a node is just the minimum of

the RATs at the successor nodes minus the delay to that node.

22

()
()

() ()
pred

0 SRC
AT

max AT , SRC
p n

n
n

p p n n


=
=  +    

()
()

() ()
succ

SNK
RAT

min RAT , SNK
s n

T n
n

s n s n


=
=  −   

© Adam Teman, 2018

So let’s try to understand AT, RAT, and Slack

23

Launch CaptureClock cycle time (T)

AT(n)

AT: longest

logic delay

after launch

of clock

RAT(n)

RAT: longest logic

delay to the capture

edge of the clock

(dependent on

cycle time)

Slack

Clock cycle time (T)

Slack

AT(n)

RAT(n)

If the signal arrives too late, we

get negative slack, which means

there is a timing violation.

24 © Adam Teman, 2018

Now let’s see an example

• Just look at this path and try to find the worst path.

• Does it meet a cycle time of T=12 ?

• Now let’s fill in the RAT, AT, and SLACK of each node and:

• Quickly find out if we meet timing

• Figure out what the worst path is

24

a 1 d

b
c

5
4

1

2

f

3 g

e

4
3

2
1

j

k

n

h
5

3
2

25 © Adam Teman, 2018

Now let’s see an example

• We’ll start by representing it as a

directed acyclic graph (DAG)

• Next, we’ll compute ATs from SRC to SNK

SRC SNK

a

b

c

d g j

f

e

h

k

n

0

0

0

0

0

0

2

1

4

1 3 2

15

3
4

3 5

2

0

0

0

0

1 4

6

2

7

12

15

15

10

26 © Adam Teman, 2018

Now let’s see an example

• And now RAT from SNK to SRC

SRC SNK

a

b

c

d g j

f

e

h

k

n

0

0

0

0

0

0

2

1

4

1 3 2

15

3
4

3 5

2

0 -3

0 -3

0 -1

0 2

1 -2 4 10

6 3

2 4

7 12

12 12

15 12

15 12

10 7

27 © Adam Teman, 2018

Now let’s see an example

• And finally, we can calculate the slack.

• And guess what – we found the critical path!

SRC SNK

a

b

c

d g j

f

e

h

k

n

0

0

0

0

0

0

2

1

4

1 3 2

15

3
4

3 5

2

0 -3 -3

0 -3 -3

0 -1 -1

0 2 2

1 -2 -3 4 10 6

6 3 -3

2 4 2

7 12 5

12 12 0

15 12 -3

15 12 -3

10 7 -3

28 © Adam Teman, 2018

False Paths
• We saw how to find the RAT, AT and Slack at every node.

• All of this can be done very efficiently and be adapted for min timing,

sequential elements, latch-based timing, etc.

• Even better, we can quickly report the order of the critical paths.

• However, this was all done topologically (i.e., without looking at logic).

• Let’s see why this is a problem

a

b

c

d

e

f

g

h

8

1

2

2

1
i

8

1 j

1

2

2

a

b

c

d

e

g

h

8

1

2

2

1

8

1

1

2

2

0

1

0

1

This is called a “False Path”

The Chip Hall of Fame

• Speaking about Timing, we shouldn’t forget the

• A simple timing chip that is still popular today.

• Release date: 1971

• 23 transistors, 16 resistors, 2 diodes

• BiPolar Process 8-pin DIP

• Can function as a timer, pulse generator or an oscillator.

• Designed by Hans Camenzind, who also introduced the

Phase Locked Loop to integrated circuits (ISSCC 1969)

• Approximately 1B units were manufactured per year in 2003.

2017 Inductee to the IEEE Chip Hall of Fame

Photo: Evil Mad Scientist Laboratories

Photo: Hans Camenzind

source: wikipedia

Design Constraints

1

Sequential

Clocking

2

Static Timing

Analysis

3

Design

Constraints

4

Timing

Reports

5

Multi Mode

Multi Corner

31 © Adam Teman, 2018

Timing Constraints

• “Stupid Question”:

• How does the STA tool know what the required clock period is?

• Obvious Answer…

• We have to tell it!

• We have to define constraints for the design.

• This is usually done using the

Synopsys Design Constraints (SDC) syntax,

which is a superset of TCL.

• Three main categories of timing constraints:

• Clock definitions

• Modeling the world external to the chip

• Timing exceptions

32 © Adam Teman, 2018

Collections

• So you think you know TCL, right?

• Well EDA tools sometimes use a different data

structure called a “collection”

• A collection is similar to a TCL list, but:

• The value of a collection is not a string, but rather a pointer, and we need to

use special functions to access its values.

• For example, if you were to run foreach on a collection, it would just have one

element (the pointer to the collection). Instead, use foreach_in_collection.

• I won’t go into the specifics here (see SynopsysCommandsReference), but

these are some of the collection accessing functions:

foreach_in_collection
index_collection
sizeof_collection
sort_collection

filter_collection
add_to_collection
compare_collections

copy_collection
get_object_name
remove_from_collection

33 © Adam Teman, 2018

Design Objects

• Design: A circuit description that performs one or more logical functions (i.e Verilog module).

• Cell: An instantiation of a design within another design (i.e Verilog instance).

• Called an inst in Stylus Common UI.

• Reference: The original design that a cell "points to" (i.e Verilog sub-module)

• Called a module in Stylus Common UI.

• Port: The input, output or inout port of a Design.

• Pin: The input, output or inout pin of a Cell in the Design.

• Net: The wire that connects Ports to Pins

and/or Pins to each other.

• Clock: Port of a Design or Pin of a Cell explicitly

defined as a clock source.

• Called a clock_tree in Stylus Common UI.

module foo (a,b,out);

input a, b;
output out;

wire n1;

INVx1 U1 (.in(a),.out(n1));

NANDX3 U2 (.in1(n1),.in2(b),.out(out));

endmodule

Design

Port

Net
Pin

Cell (inst)

Reference

(module)

34 © Adam Teman, 2018

SDC helper functions

• Before starting with constraints,
let’s look at some very useful built in commands:
• Note that all of these return collections

and not TCL lists!

• These will only work after design elaboration!

• “get” commands:

• [get_ports string] – returns all ports that match string.

• [get_pins string] – returns all cell/macro pins that match string.

• [get_nets string] – returns all nets that match string.

• Note that adding the –hier option will search hierarchically through the design.

• “all” commands:

• [all_inputs] – returns all the primary inputs (ports) of the block.

• [all_outputs] – returns all the primary outputs (ports) of the block.

• [all_registers] – returns all the registers in the block.

module foo (a,b,out);

input a, b;
output out;

wire n1;

INVx1 U1 (.in(a),.out(n1));

NANDX3 U2
(.in1(n1),.in2(b),.out(out));

endmodule

Design

Port

Net
Pin

Cell

Reference

35 © Adam Teman, 2018

Clock Definitions

• To start, we must define a clock:

• Where does the clock come from? (i.e., input port, output of PLL, etc.)

• What is the clock period? (=operating frequency)

• What is the duty-cycle of the clock?

• Can there be more than one clock in a design?

• Yes, but be careful about clock domain crossings! (…more later)

• If a clock is produced by a clock divider, define a “generated clock”:

create_clock –period 20 –name my_clock [get_ports clk]

create_generated_clock –name gen_clock \
-source [get_ports clk] –divide_by 2 [get_pins FF1/Q]

36 © Adam Teman, 2018

Clock Definitions (2)

• But during synthesis, we assume the clock is ideal, so:

• However, for realistic timing, it should have some transition:

• And we may want to add some jitter, so:

• Finally, after building a clock tree, we do not want

the clock to be ideal anymore, so:

set_ideal_network [get_ports clk]

set_clock_uncertainty 0.2 [get_clocks my_clock]

set_clock_transition 0.2 [get_clocks my_clock]

set_propagated_clock [get_clocks my_clock]

37 © Adam Teman, 2018

I/O Constraints

• Now that the clock is defined, reg2reg paths are sufficiently constrained.
However, what about in2reg, reg2out, and in2out paths?
• First, what clock toggles an I/O port?

• And what about the time needed outside the chip?

• Define I/O constraints:
• Input and output delays model the length of the path

outside the block:

• Note that a better methodology is to define a “virtual clock”,
but let’s not confuse you too much at this point…

set_input_delay 0.8 –clock clk \
[remove_from_collection [all_inputs] [get_ports clk]]

set_output_delay 2.5 –clock clk [all_outputs]

38 © Adam Teman, 2018

I/O Constraint (2)

• An alternative approach is to define max delays to/from I/Os:

• Additionally, we must model the transitions on the inputs:

• And capacitance of the outputs:

set_max_delay 5 \
–from [remove_from_collection [all_inputs] [get_ports clk]]

set_max_delay 5 –to [all_outputs]

set_driving_cell –cell [get_lib_cells MYLIB/INV4] –pin Z \
[remove_from_collection [all_inputs] [get_ports clk]]

set_load $CIN_OF_INV [all_outputs]

39 © Adam Teman, 2018

I/O Constraint (3)

• Graphically, we can summarize the I/O constraints, as follows:

Input and

Output Delays

Input drive and

output cap modeling

40 © Adam Teman, 2018

Timing Exceptions

• There are several cases when we need to define exceptions

that should be treated differently by STA.

• For example, looking into the topology

of the network we saw earlier:

• In this case, we would define a false path:

set_false_path –through [get_pins mux1/I0] –through [get_pins mux2/I0]
set_false_path –through [get_pins mux1/I1] –through [get_pins mux2/I1]

a

b

c

d

e

g

h

8

1

2

2

1

8

1

1

2

2

0

1

0

1

41 © Adam Teman, 2018

Timing Exceptions (2)

• Another common case of a false path is a clock

domain crossing through a synchronizer:

• Alternatively, this can be defined with:

• If an equal-phase (divided) slow clock is sending data

to a faster clock, a multi-cycle path may be appropriate:

set_false_path –from F1/CP –to F2/D

set_clock_groups –logically_exclusive \
–group [get_clocks C1] –group [get_clocks C2]

set_multicycle_path –setup –from F1/CP –to F2/D 2
set_multicycle_path –hold –from F1/CP –to F2/D 1

42 © Adam Teman, 2018

Case Analysis

• A common case for designs is that some value should be assumed constant

• For example, setting a register for a certain operating mode.

• In such cases, many timing paths are false

• For example, if the constant sets a multiplexer selector.

• Or a ‘0’ is driven to one of the inputs of an AND gate.

• To propagate these constants through the design and disable irrelevant timing

arcs, a set_case_analysis constraint is used:

42

set_case_analysis 0 [get_ports TEST_MODE]

43 © Adam Teman, 2018

Design Rule Violations (DRV)

• You can set specific design rules that should be met, for example:

• Maximum transition through a net.

• Maximum Capacitive load of a net.

• Maximum fanout of a gate.

set_max_transition $MAX_TRAN_IN_NS

set_max_capacitance $MAX_CAP_IN_PF

set_max_fanout $MAX_FANOUT

44 © Adam Teman, 2018

Yield-driven and Advanced STA

• There are many more concepts, approaches, and terminologies

used in timing analysis for high-yield signoff:

• On-chip Variation (OCV)

• Advanced On-Chip Variation (AOCV)

• Signal Integrity (SI)

• and more and more…*

• We will end with the basics now and get back to this

towards the end of the course.

44

* Between the time I wrote this slide and presented it to you, each

EDA vendor has presented another method for timing closure that

you just must know about and have to use ☺.

Timing Reports

45

1

Sequential

Clocking

2

Static Timing

Analysis

3

Design

Constraints

4

Timing

Reports

5

Multi Mode

Multi Corner

46 © Adam Teman, 2018

Check Types

• Throughout this lecture, we have

discussed the two primary timing checks:

• Setup (max) Delay

• Hold (min) Delay

• However, in practice, there are other

categories of timing checks that you will

encounter:

• Recovery

• Removal

• Clock Gating

• Min Pulse Width

• Data-to-Data

47 © Adam Teman, 2018

Recovery, Removal and MPW

• Recovery Check

• The minimum time that an asynchronous control

input pin must be stable after being deasserted and

before the next clock transition (active-edge)

• Removal Check

• The minimum time that an asynchronous control

input pin must be stable before being deasserted and

after the previous clock transition (active edge)

• Minimum Clock Pulse Width (MPW)

• The amount of time after the rising/falling edge of a

clock that the clock signal must remain stable.

48 © Adam Teman, 2018

Clock Gating Check

• Clock gating occurrences are any signals on the clock path

that block (gate) the clock from propagating.

• The enable path of the clock gate must arrive enough time before the clock

itself to ensure glitch-free functionality (and similarly hold after the edge).

Ex. 1: Gating signal should only change

when the clock is in the low state

Ex. 2: Gating signal should only change

when the clock is in high low state

49 © Adam Teman, 2018

Checking your design

• report_analysis_coverage checks that you have fully constrained your

design.

• check_timing Performs a variety of consistency and completeness checks

on the timing constraints specified for a design.

50 © Adam Teman, 2018

Report Timing

• Perhaps the most important command in any synthesis or place and route tool

is report_timing.

• For convenience, we will look

at the Stylus Common UI syntax

and reports.

• For other tools, the

concepts are similar.

50

© Adam Teman, 2018

Report Timing

51

Header

Launch path

report_timing

© Adam Teman, 2018

Report Timing - Header

52

Path # - ordered by WNS Did we meet timing? Setup or Hold?

Endpoint Rising or falling

Start Point

Path Group

Flop Setup Time

Clock Uncertainty (Jitter)

Required Time = Arrival - Setup - Jitter

Data Path arrival time

Final Slack Calculation

Clock Edges

Source Latency

Clock Net Latency

53 © Adam Teman, 2018

Report Timing – Launch Path

• Standard timing report only shows the data delay of the launch path and very

basic information.

53

Instance name

Arrival Time

Gate + Wire Delay

rising/falling

Timing Arc

Fanout

Transition

54 © Adam Teman, 2018

• To get more data about the clock propagation, use the full_clock option:

• Pay attention –

timing calculation

has changed!

Report Timing – Full Clock

report_timing –path_type full_clock

Source insertion delay is calculated

to average out I/O clocking

Clock Port

Launch Clock

Data Start Point

Timing report continues…

55 © Adam Teman, 2018

Report Timing – Full Clock (2)

• We also get to see the Capture Clock.
Continued from last slide

Launch path endpoint

Capture Clock

Same Clock Port

Endpoint

clock pin

Endpoint

data pin

56 © Adam Teman, 2018

• To debug timing, we would like more information, for example, the net name,

the wire capacitance, the pin capacitance, etc.

• Use the –fields option to get the info you really need.

• For example:

Report Timing – fields option

report_timing -fields "timing_point cell arc edge fanout load pin_load transition delay arrival"

“Timing point”

“cell” – standard

cell name

“edge” – falling

or rising signal
“transition” – rise/fall

time on the net

“delay” – total delay

through the cell

“arc” – timing arc

“load” - wire and input

capacitances on the net
“arrival” – arrival time

at the timing point

57 © Adam Teman, 2018

Report Timing – Selecting Paths

• By default, report_timing shows you the most critical path

• i.e., the path with the worst negative slack (WNS)

• But sometimes, we want to analyze a specific path or set of paths.

• For example, I only want to see the paths that come from a primary input…

• Use the –from, – to, – through flags and their variants:

• -from: To select a start point (= input port or register/IP clock pin)

• -to: To select an endpoint (= output port or register/IP data pin)

• -through: to select any other pin

• You can specify direction (i.e., -through_rise), clock (i.e., -clock_from)

report_timing –from ff1/CK –through_fall mux1/I0 –to [all_outputs]

58 © Adam Teman, 2018

Report Timing - Path Groups

• Path groups are categories of paths that are both

optimized and reported separately.

• Default path groups, as we saw before, are

reg2reg, in2reg, reg2out, in2out.

• In addition, paths ending at clock gates (reg2cgate) are treated separately.

• To automatically create these groups, use the create_basic_path_groups
command in Innovus.

• To create specific path groups for your design, use the group_path command:

• To report timing for a certain path group:

create_basic_path_goups -expanded

group_path –from ff1/CLK –to ff2/D –name my_path

report_timing –path_group my_path

59 © Adam Teman, 2018

• By default, the report_timing command reports setup (max delay) timing.

• After clock tree synthesis, you will want to make sure your design meets

hold (min_delay),

as well.

• To report hold timing,

just add the –early

option

Report Timing - Hold

report_timing –early

Hey, it worked!

Register hold constraint

Launch and capture clock at the

same edge

Now, it’s

Slack=Arrival-Required

The analysis view changed to the

Best Case (more later…)

60 © Adam Teman, 2018

Report Timing Debugger

• A very good GUI option is to use the Innovus “Debug Timing” tool.

• This tool lets you explore the

timing report interactively, even

showing path schematics, SDC,

and highlighting the path in the

layout.

Multi-Mode Multi-Corner
Or how to deal with the corner crisis!

61

1

Sequential

Clocking

2

Static Timing

Analysis

3

Design

Constraints

4

Timing

Reports

5

Multi Mode

Multi Corner

62 © Adam Teman, 2018

More than one operating mode

• During synthesis, we (usually) target timing for a worst-case scenario.

• But, what is “worst-case”?

• Intuitively, that would be a slow corner, (i.e., SS, VDD-10%, 125C)

• No need for hold checking, since clock is ideal (No skew = No hold)

• But, what if there is an additional operating mode?

• For example, a test (scan) mode.

• Do we have to close timing

at the same (high) clock speed?

• No problem, we’ll just deal with both modes separately

• Prepare an additional SDC and rerun STA/optimization.

62

set_case_analysis 1 [get_ports TEST_MODE]
create_clock –period [expr $TCLK/100] –name TEST_CLK [get_ports TEST_CLK]

Mode TEST_MODE FREQ

Functional 0 1 GHz

Test 1 10 MHz

63 © Adam Teman, 2018

Many, many, corners…

• But real SoCs are much more complex:
• Many operating modes.

• Many voltage domains.

• With real clock, need to check hold.

• We easily get to hundreds of corners
• Setup and hold for every mode.

• Hold can be affected by SI →
check hold for all corners

• Temperature inversion – what is the worst case?

• RC Extraction – what is the worst case?

• Leakage – what is the worst case?

• Aaaaarrrrrgggghhhh!

63

Mode VDD1 FREQ1 VDD2 FREQ2

F1 1.2 V 2 GHz 0.8 V 500 MHz

F2 0.8 V 400 MHz 0.8 V 400 MHz

F3 Off Off 0.5 V 50 MHz

TEST 1.2 V 10 MHz 1.2 V 10 MHz

64 © Adam Teman, 2018

The corner crisis

• Traditional approach not feasible

64

65 © Adam Teman, 2018

Multi-Mode, Multi-Corner

• MMMC to the rescue!

• It’s implemented in a slightly (!) confusing way,

but it really simplifies things.

• The basic concept is that we create analysis views that can then

be selected for setup and hold (max and min) constraints.

65

VDD=1.2V
Freq=2 GHz
Corner=SS

Temp=125 C
OpMode=“Turbo”

Analysis View = “Turbo”

VDD=0.5V
Freq=50 MHz
Corner=SS

Temp=125 C
OpMode=“LP”

Analysis View = “Low Power”

VDD=1.3V
Freq=2 GHz
Corner=FF

Temp= -40 C
OpMode=“Turbo”

Analysis View = “Turbo - Hold”

Setup checks: “Turbo” and “Low Power” Modes

Hold checks: “Turbo – Hold” Mode

66 © Adam Teman, 2018

Multi-Mode, Multi-Corner

• Defining Analysis Views is done in hierarchical fashion.
• An analysis view is constructed from a

delay corner and a constraint mode.

• A delay corner tells the tool how the delays are supposed to be calculated.
Therefore it contains timing libraries and extraction rules.

• A constraint mode is basically the relevant SDC commands/conditions for the
particular operating mode.

66

create_analysis_view –name turbo \
–constraint_mode turbo_mode –delay_corner slow_corner_vdd12

create_analysis_view –name low_power \
–constraint_mode low_power_mode –delay_corner slow_corner_vdd05

create_analysis_view –name turbo_hold \
–constraint_mode turbo_mode –delay_corner fast_corner_vdd13

set_analysis_view –setup {turbo low_power} –hold {turbo_hold}

67 © Adam Teman, 2018

Multi-Mode, Multi-Corner

• So now, let’s define the lower levels of the MMMC hierarchy.

• A constraint mode is simply a list of relevant SDC files. When you move

between analysis views, the STA tool will automatically apply the relevant

constraints to the design.

• A delay corner is a bit more complex. It comprises a timing condition, an RC

corner and a few other things that we won’t discuss right now.

67

create_constraint_mode –name turbo_mode –sdc_files {turbo.sdc}
create_constraint_mode –name low_power_mode –sdc_files {low_power.sdc}

create_delay_corner –name slow_corner_vdd12 \
–rc_corner {RCmax} –timing_condition {ss_1p2V_125C}

create_delay_corner –name slow_corner_vdd05 \
–rc_corner {RCmax} –timing_condition {ss_0p5V_125C}

create_delay_corner –name fast_corner_vdd13 \
–rc_corner {RCmin} –timing_condition {ff_1p3V_m40C}

68 © Adam Teman, 2018

Multi-Mode, Multi-Corner

• Confused yet? Well, we still have more to go.

• A timing condition is a collection of library sets to be used for a certain power

domain. For this course, we will just automatically connect a timing condition to

a library set.

• A library set is a collection of the .lib characterizations that should be used

for timing the relevant gates.

This includes the standard cells and other macros, such as RAMs and I/Os.

There also may be special “SI” characterizations for noise.

68

create_library_set -name ss_1p2V_125C \
-timing [list ${sc_libs}/ss_1p2V_125.lib ${mem_libs}/ss_1p2V_125.lib \
${io_libs}/ss_1p8V_125.lib] –si ${sc_libs}/ss_1p2V_125.si

create_timing_condition -name tc_ss_1p2V_125C \
-library_sets ss_1p2V_125C

69 © Adam Teman, 2018

Multi-Mode, Multi-Corner

• And finally, an RC corner is a collection of the rules for RC extraction. There

may be a “capacitance table” for quick extraction and a

QRC techfile for accurate extraction.

The temperature is also defined in the RC corner, but it is taken into account in

the .lib file, as well.

69

create_rc_corner -name RCmax -cap_table ${tech}/RCmax.CapTbl} -T {125} \
-qx_tech_file ${tech}/RCmax.qrctech

© Adam Teman, 2018

Multi-Mode, Multi-Corner - Summary

70

Selected Hold
Views

Selected
Setup Views

Analysis View 1

Analysis View 2

Analysis View 3

Analysis View 4

Analysis View 5

Analysis View 6

Constraint
Mode 1
Constraint

Mode 1
Constraint

Mode 3

Delay
Corner 1

Delay
Corner 1

Delay
Corner 3

Library Set 1
Library Set 2

Library Set 3

RC Corner 1
RC Corner 2

RC Corner 3

Timing
Condition 1Timing

Condition 2Timing
Condition 3

71 © Adam Teman, 2018

…So you think that was complicated?

• What if I have multiple voltage domains?

• Now, for example, in a certain operating mode, one inverter is operated at

1.2V, while another one, only a few microns away, is at 0.6V.

• How do I define that library set?

• Even worse…

• What happens if I want to power down a certain module?

• What if I want to power down a module, but retain the state (i.e., the value

stored in the flip flops)?

• How do I transfer data between two voltage domains?

• Arrrrrgggghhhh!

• We’ll briefly discuss this next lecture…
71

72 © Adam Teman, 2018

References

• Gil Rahav, BGU

• Gangadharan, Churiwala “Constraining Designs for Synthesis and Timing

Analysis: A Practical Guide to Synopsys Design Constraints (SDC)”, Springer,

2013

• Synopsys SourceLink (+Synthesis Quick Reference)

• Cadence Support (+Genus and Innovus Text Command References)

• Rob Rutenbar “From Logic to Layout”, Coursera

72

