
22 May 2023

Communicating
with Peripherals

(How to build a router…)
Prof. Adam Teman

EnICS Labs, Bar-Ilan University

Heavily based on the wonderful lecture

“Interfaces: External/Internal, or why CPUs suck”

by Tzachi Noy, 2019

SoC 101:
a.k.a., “Everything you wanted to know about a computer but were afraid to ask”

May 22, 2023© Adam Teman,

What do a car and a router have in common?

May 22, 2023© Adam Teman,

Both the car and the router have interfaces

May 22, 2023© Adam Teman,

This Lecture

4

Source: ARM

We will “design” a router as an example

to introduce these concepts

May 22, 2023© Adam Teman,

Lecture Outline

5

Communicating with the
outside world

6

GPIO and UART Accelerators Ethernet DMA and ASIP DDR AXI and Boot

May 22, 2023© Adam Teman,

Reminder: Memory-Mapped I/O

• Registers and I/O Devices are given an address in the system’s memory map:

• Everything is treated the same as memory.

• To communicate with an I/O, we write to and read from these addresses.

• These are achieved with simple load and store assembly commands.

• In C, we can define two functions,
peek and poke, to accomplish

this easily:

• Now to access a register,

just define its address,

and use these functions

8

int peek (char *location) {
// Read from a memory-mapped address
return *location;

}
void poke (char *location, char newval) {
// Write to a memory-mapped address
(*location) = newval;

}

#define DEV1 0x1000
...
dev_status = peek(DEV1)
...
poke(DEV1,8);

May 22, 2023© Adam Teman,

General Purpose I/O (GPIO)

• Most microcontrollers have a set of general purpose input/output (GPIO) pins.

• Can be configured as input pins or output pins.

• Can be programmed by software for various purposes.

9

Q
D

Q
D

Q
D

Output
Enable

External
GPIO Pin

GPIO
Config
Register

Memory-
Mapped
Output
Register

Memory-
Mapped
Input
Register

May 22, 2023© Adam Teman,

Example: Blinking a LED

• First, configure the GPIO to be an output.

• Next, create an infinite loop that:

• Toggles the state of the output.

• Waits for a given period.

10

#define GPIO_CONFIG_REG 0x10000000

#define GPIO_OUTPUT_REG 0x10000001

#define GPIO_BLINK_PIN 0b00000001

#define BLINK_PERIOD 1000000

int main () {

// Set LED connected GPIO PIN to output

toggle_config |= peek(GPIO_CONFIG_REG);

poke(GPIO_CONFIG_REG,toggle_config);

while (true) {

// Toggle the state of the GPIO output register

output_status = peek(GPIO_OUTPUT_REG);

poke(GPIO_OUTPUT_REG,

output_status~GPIO_BLINK_PIN);

// Wait for a predefined delay

wait(BLINK_PERIOD);

}

}

0

0→1→0→1

May 22, 2023© Adam Teman,

Communicating Off-Chip

• What if we want to communicate with something more sophisticated

than a LED or a button?

• We need a communication protocol.

• Introducing UART

• The Universal Asynchronous

Receiver/Transmitter

11

UART1 UART2

• Baud Rate
• Number of bits per unit time

• Bandwidth
• Data per unit time

1Baud Rate
bit time

=

data bits
Baud Rate

frame bits
BW = 

May 22, 2023© Adam Teman,

BAUD RATE: 115,200 bits/sec

SAMPLE RATE: 230,400 samples/sec

CODE: 40 instructions/sample

OVERHEAD: 9,216,000 instructions/sec

9.2% of CPU time

Can we use UART for our router?

* Assuming a 100MHz

clock frequency

Offloading the CPU

13

GPIO and UART Accelerators Ethernet DMA and ASIP DDR AXI and Boot

May 22, 2023© Adam Teman,

Offload the CPU with a controller

• UART is a slow serial protocol

• One bit is transferred at a time at a low baud rate (e.g., 1200-115200 bits/sec).

• Integrate a specific UART controller that offloads the CPU

• Communicate with the UART through a wider register (e.g., byte, 32-bit).

• Use a Shift Register to serialize/deserialize parallel data

• Use a FIFO to buffer several CPU transactions

15

UART0_DR_RWrite data

1 0

Stop Start

Shift
clock

Data

7 6 5 4 3 2 1 0

 U0Tx

Transmit data register

16-element
FIFO TXEF Fifo empty flag

TXFF Fifo full flag

Transmit shift register

Transmit Parallel-In Serial-Out (PISO)

UART0_DR_RRead data

1 0

Stop Start

Shift
clock

Data

7 6 5 4 3 2 1 0

 U0Rx

Receive data register

12-bit, 16-element
FIFO

RXFE Fifo empty flag

OE BE PE FE

RXFF Fifo full flag

Receive shift register

Source: Bard, EE319K

Receive Serial-In Parallel-Out (SIPO)

1-byte → 16X speedup

64 byte FIFO→512X speedup

May 22, 2023© Adam Teman,

Hardware Acceleration

• CPUs are general purpose programmable machines

• In other words, they are Turing Complete.

• But CPUs are not great (sometimes terrible)

at carrying out certain operations.

• Offload the CPU by providing dedicated hardware

• The dedicated hardware can be designed

to efficiently run a specific task → accelerate it.

• The CPU can continue running the program,

while the accelerator runs its task.

• Data transfer achieved through memory mapping

• CPU writes/stores inputs and control in memory/registers.

• Accelerator writes outputs/status in memory/registers.

16 Source: Raghunathan, ECE 695R

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇original

𝑇unaccel + 𝑇accelerated + 𝑇comm

May 22, 2023© Adam Teman,

But how do we know when it’s done?

• How can the CPU know when a new byte of data is received?

• Simple way: “Polling”

• Check on the status of the UART every

so often to see if data has been received

(or if it is ready to receive new data)

• Polling can be carried out with a “busy-wait” loop:

17

while (TRUE) {
// Wait until a new character has been read
while (peek(UART_IN_STATUS)==0);
// Read the new character
achar=(char)peek(UART_DATA);

}

Busy-wait on input from the UART

current_char = mystring;
// Continue until the end of string
while (*current_char != ‘\0’) {
// Wait until the UART is ready
while (peek(UART_OUT_STATUS)!=0);
// Send character to UART
poke(UART_DATA_OUT, *current_char);
// update character pointer
current_char++;

}

Busy-wait on writing to the UART

do {
// Play games
...
// Poll to see if we're there yet.
status = areWeThereYet();

} while (status == NO);

May 22, 2023© Adam Teman,

Interrupts

• An interrupt is an asynchronous signal from a peripheral to the processor.

• Can be generated from peripherals external or internal

to the processor, as well as by software.

• Frees up the CPU, while the

peripheral is doing its job.

• Upon receiving an interrupt:

• The CPU decides when to handle the interrupt

• When ready, the CPU acknowledges the interrupt

• The CPU calls an interrupt service routine (ISR)

• Upon finishing, the ISR returns and the CPU continues operation

19

Source: Computers as
Components

Dealing with
Faster Interfaces

20

GPIO and UART Accelerators Ethernet DMA and ASIP DDR AXI and Boot

RATE: 115200 bit/sec

0.1152 Mbps

RANGE: 15m

May 22, 2023© Adam Teman,

Ethernet

• Widely used for realization of Local Area Networks (LANs)

• Bus with single signal path

• Originally: Nodes are not synchronized → Collisions

• Arbitration: “Carrier Sense Multiple Access

with Collision Detection (CSMA/CD)”

• If collision → wait for random time → retransmit.

• Now: switched (point-to-point), fully duplex

• Ethernet packet:

• Addresses

• Variable-length data payload: 46 – 1518 bytes

• Throughput:

• 10M = 2.5 x 4bit 100M = 25 x 4bit 1G = 125 x 8bit
23

Source: Computers as
Components

May 22, 2023© Adam Teman,

Side note: The OSI Model

• The Open Systems Interconnection (OSI) model defines seven network layers.

1. Physical: electrical and physical components

2. Data Link: Peer2Peer communication across

a singe physical layer.

3. Network: basic routing over the link.

4. Transport: ensure data is delivered in the proper

order and without errors across multiple links.

5. Session: interaction of end-user services

across a network

6. Presentation: defines data exchange formats

including encryption and compression.

7. Application: interface between the network

and end-user
24

Source: Computers as
Components

Ethernet

May 22, 2023© Adam Teman,

Ethernet

May 22, 2023© Adam Teman,

Let’s try a simple interface: APB

• 32-bit bus

• Two phase access:

• Address (Setup) phase

• Read/Write (Access) phase

PCLK

PWRITE

PADDR A0

PSEL1

PSEL2

1 2 3

PENABLE

PWDATA D0

PRDATA

PREADY1

PREADY2

A1

D1

Select
Slave 1

Select
Slave 2

Can extend
to delay write

• Setup Phase

• PWRITE, PADDR, PWDATA are set

• PSEL is raised for selected Slave

• Access Phase

• PENABLE is raised, with other signals held

• When selected Slave acks, PREADY is raised

• Next Transfer

• PENABLE is lowered by Master

• PREADY may be lowered by Slave

1

2

3

May 22, 2023© Adam Teman,

ETH RATE: 109 bits/sec

APB TRANSFER WIDTH: 32 bits

APB RATE: 2 cycles/transfer

CLOCK: 108 cycles/sec

APB THROUGHPUT: 1.6 x 109 bits/sec

Is APB Sufficient?

May 22, 2023© Adam Teman,

So let’s make it faster: AHB

• Wider bus (>32 bits)

• Pipelined address and R/W phases (X2 throughput)

• Supports Bursts

HCLK

HREADY

HADDR [31:0] Address 0 Address 1 Address 2 Address 3

CONTROL Control 0 Control 1 Control 2 Control 3

HRDATA [31:0]
Read Data 0 Read Data 1 Read Data 2

HWRITE

May 22, 2023© Adam Teman,

ETHERNET RATE: 2 x 109 bits/sec

AHB TRANSFER WIDTH: 64 bits

AHB RATE: 1 cycle/transfer

CLOCK: 108 cycles/sec

AHB THROUGHPUT: 6.4 x 109 bits/sec

Is AHB fast enough?

More Offloading

31

GPIO and UART Accelerators Ethernet DMA and ASIP DDR AXI and Boot

May 22, 2023© Adam Teman,

ETHERNET RATE: 2 x 109 bits/sec

AHB TRANSFER WIDTH: 64 bits

AHB RATE: 1 cycle/transfer

CLOCK: 108 cycles/sec

AHB THROUGHPUT: 6.4 x 109 bits/sec

Is AHB fast enough?

May 22, 2023© Adam Teman,

ETHERNET RATE: 2 x 109 bits/sec

CPU WORD: 32 bits

INSTRUCTIONS PER SW/LW: 3 inst/load

CLOCK: 108 cycles/sec

CPU THROUGHPUT: 1.1 x 109 bits/sec

Can the CPU support this?

May 22, 2023© Adam Teman,

DMA

• Direct memory access (DMA) is a bus operation

that allows reads and writes not controlled by the CPU.

• A DMA transfer is controlled by a DMA controller

that requests control of the bus from the CPU.

• With control, the DMA controller performs read and

write operations directly between devices and memory.

• DMA adds new signals:

• Bus request

• Bus grant

35

Source: Computers as

Components

Read from memory,
write to accelerator

Read from
accelerator,
write to memory

P
ro

c
e

ss
o

r

A
c

c
e

le
ra

to
r

START

D
M

A

C
o

n
tr

o
ll
e

r

May 22, 2023© Adam Teman,

DMA Registers

• The CPU controls the DMA operation through registers in the DMA controller.

• Starting address register

• Length register

• Status register – to start and stall the DMA

• After the DMA operation is complete,

the DMA controller interrupts the CPU to tell it that the transfer is done.

• DMA controllers usually use short bursts (e.g., 4-16 words) to only occupy the

bus for a few cycles at a time

36

Source: Computers as
Components

May 22, 2023© Adam Teman,

BIT RATE: 2 x 109 bits/sec

each packet includes 20 bytes of overhead

DATA RATE: BIT-RATE x P/(P+20)
P=64 → 2 x 0.76 x 109 bits/sec

P=1518 → 2 x 0.98 x 109 bits/sec

PACKET RATE: BIT-RATE / ((P+20) x 8)
P=64 → 2 x 1.48 x 106 packets/sec

P=1518 → 2 x 81.2 x 103 packets/sec

Data Rate or Packet Rate?

Larger packets mean

interconnect is busier

Smaller packets mean

CPU has to do more

May 22, 2023© Adam Teman,

How does this affect the CPU?

• The CPU (in a router) needs to handle the packet

• i.e., figure out where to send the packet to.

• So, all it cares about is packet rate

• How much work can the CPU do on each packet?

• For packets with 1518 bytes of data, the packet rate is about 160K packets/sec

• At 100 MHz → 615 instructions per packet → Not that much

• For 64 byte packets → 34 instructions per packet → Infeasible!

• What can we do???

• Trivial solution: Raise the frequency

• Still not enough: Add additional CPUs

• Better solution: Integrate dedicated hardware (Accelerators and ASIPs)
39

May 22, 2023© Adam Teman,

PARSER CLASSIFIER POLICER
TRAFFIC

MANAGEMENT

ASIP

0

ASIP

1

ASIP

2

HOST

I/F

0

I/F

1

I/F

2
I/F

3

I/F

4

I/F

5

A typical router SoC

Memory

41

GPIO and UART Accelerators Ethernet DMA and ASIP DDR AXI and Boot

May 22, 2023© Adam Teman,

But what about memory?

• We now have a processor that can communicate with peripherals,

with an off-chip network, etc.

But what about memory?
• Our router needs a lot of memory:

• To buffer packets

• To store routing tables

• To host the operating system

• …

• The on-chip memory (~MB) is nowhere near enough.

We need to use DRAM

43

May 22, 2023© Adam Teman,

DRAM Organization

44

Source: Onur Mutlu

Source: Bruce Jacob

Rank

Chip

Bank

May 22, 2023© Adam Teman,

1 Gb

8K

128K

DRAM Organization

• So, for a 1GB DIMM (i.e., 8 chips),

we need chips with 1Gb of memory

• e.g., 128k x 8k

• But that is a lot of rows…

May 22, 2023© Adam Teman,

128 Mb

8K

16K

128 Mb

8K

16K

DRAM Banks

• So, we break it into 8 banks of 16k rows

• And readout an entire row to a buffer

• Once the row is buffered, we can directly

access any byte in the buffer.

Source: Computers as Components

May 22, 2023© Adam Teman,

128 Mb

8K

16K

128 Mb

8K

16K

B0/R0

B1/R1

B0/R0

B1/R1

B0/R0

B1/R1

B0/R3

B0/R0

B1/R2

B1/R1

B0/R0

B1/R1

B0/R3

B1/R2

DRAM Banks

• Reordering the

memory accesses can

improve throughput

• Add a dedicated DDR

controller to optimize

memory access patterns

Finishing our Design

48

GPIO and UART Accelerators Ethernet DMA and ASIP DDR AXI and Boot

In AHB, we always have to wait until a transaction is finished

before starting a new one…

May 22, 2023© Adam Teman,

MASTER SLAVE

WRITE ADDR CHANNEL

WRITE DATA CHANNEL

WRITE RESPONSE CHANNEL

READ ADDR CHANNEL

READ DATA CHANNEL

AXI

CACHE

May 22, 2023© Adam Teman,

But what happens on Startup?

• Start by reading from a BootROM

• A small piece of memory, which contains

the very first code that is executed upon reset.

• Either hard-wired (mask-ROM) or rewriteable (embedded Flash)

• Can use bootstraps/fuses to change configuration.

• Then move on to the Bootloader

• Usually stored on rewriteable flash (i.e., SD card)

• Configures the chip and some of the peripherals

• Loads the end application (e.g., OS) from storage (flash, SSD, HDD)

• Passes control to the end application

• The BootROM and bootloader can be combined

• The BootROM of an x86 system is called the BIOS
52

Source: Intel

May 22, 2023© Adam Teman,

Conclusions

• Processors are great at processing.

• They are not so great at data movement.

• They are not so great at doing simple tasks.

• For a well-defined task, dedicated hardware

will never lose to a processor.

• With Processors we gain flexibility.

• Software development is faster than Hardware.

• Bugs in Software are much cheaper to fix.

Parks and Recreation. Source: Giphy

Source: xkcd

May 22, 2023© Adam Teman,

Main References

• Tzachi Noy, “Interfaces: External/Internal, or why CPUs suck”, 2019

• Wolf, “Computer as Components - Principles of Embedded Computing System

Design,” Elsevier 2012

55

	Default Section
	Slide 1: Communicating with Peripherals (How to build a router…)
	Slide 2: What do a car and a router have in common?
	Slide 3: Both the car and the router have interfaces
	Slide 4: This Lecture

	Summary Section
	Slide 5: Lecture Outline

	Introduction
	Slide 6: Communicating with the outside world
	Slide 7
	Slide 8: Reminder: Memory-Mapped I/O
	Slide 9: General Purpose I/O (GPIO)
	Slide 10: Example: Blinking a LED
	Slide 11: Communicating Off-Chip
	Slide 12: Can we use UART for our router?

	Accelerator
	Slide 13: Offloading the CPU
	Slide 14
	Slide 15: Offload the CPU with a controller
	Slide 16: Hardware Acceleration
	Slide 17: But how do we know when it’s done?
	Slide 18
	Slide 19: Interrupts

	Faster interfaces
	Slide 20: Dealing with Faster Interfaces
	Slide 21
	Slide 22
	Slide 23: Ethernet
	Slide 24: Side note: The OSI Model
	Slide 25: Ethernet
	Slide 26: Let’s try a simple interface: APB
	Slide 27: Is APB Sufficient?
	Slide 28: So let’s make it faster: AHB
	Slide 29
	Slide 30: Is AHB fast enough?

	DMA and Accelerator
	Slide 31: More Offloading
	Slide 32: Is AHB fast enough?
	Slide 33: Can the CPU support this?
	Slide 34
	Slide 35: DMA
	Slide 36: DMA Registers
	Slide 37
	Slide 38: Data Rate or Packet Rate?
	Slide 39: How does this affect the CPU?
	Slide 40: A typical router SoC

	DDR
	Slide 41: Memory
	Slide 42
	Slide 43: But what about memory?
	Slide 44: DRAM Organization
	Slide 45: DRAM Organization
	Slide 46: DRAM Banks
	Slide 47: DRAM Banks

	Final Thoughts
	Slide 48: Finishing our Design
	Slide 49
	Slide 50: AXI
	Slide 51
	Slide 52: But what happens on Startup?
	Slide 53
	Slide 54: Conclusions
	Slide 55: Main References

