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What do a car and a router have in common?
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Both the car and the router have interfaces
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This Lecture

4

Source: ARM

We will “design” a router as an example 

to introduce these concepts
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Lecture Outline
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Communicating with the 
outside world
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Reminder: Memory-Mapped I/O

• Registers and I/O Devices are given an address in the system’s memory map:

• Everything is treated the same as memory.

• To communicate with an I/O, we write to and read from these addresses.

• These are achieved with simple load and store assembly commands.

• In C, we can define two functions,
peek and poke, to accomplish 

this easily:

• Now to access a register, 

just define its address, 

and use these functions

8

int peek (char *location) {
// Read from a memory-mapped address
return *location;

}
void poke (char *location, char newval) {
// Write to a memory-mapped address
(*location) = newval;

}

#define DEV1 0x1000
... 
dev_status = peek(DEV1)
...
poke(DEV1,8);
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General Purpose I/O (GPIO)

• Most microcontrollers have a set of general purpose input/output (GPIO) pins.

• Can be configured as input pins or output pins.

• Can be programmed by software for various purposes.

9
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Example: Blinking a LED

• First, configure the GPIO to be an output.

• Next, create an infinite loop that:

• Toggles the state of the output.

• Waits for a given period.

10

#define GPIO_CONFIG_REG 0x10000000

#define GPIO_OUTPUT_REG 0x10000001

#define GPIO_BLINK_PIN 0b00000001 

#define BLINK_PERIOD 1000000

int main () {

// Set LED connected GPIO PIN to output

toggle_config |= peek(GPIO_CONFIG_REG);

poke(GPIO_CONFIG_REG,toggle_config);

while (true) {

// Toggle the state of the GPIO output register

output_status = peek(GPIO_OUTPUT_REG);    

poke(GPIO_OUTPUT_REG,

output_status~GPIO_BLINK_PIN);

// Wait for a predefined delay

wait(BLINK_PERIOD);

}

}

0

0→1→0→1
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Communicating Off-Chip

• What if we want to communicate with something more sophisticated 

than a LED or a button?

• We need a communication protocol.

• Introducing UART

• The Universal Asynchronous 

Receiver/Transmitter

11

UART1 UART2

• Baud Rate
• Number of bits per unit time

• Bandwidth
• Data per unit time

1Baud Rate
bit time

=

data bits
Baud Rate

frame bits
BW = 
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BAUD RATE: 115,200 bits/sec

SAMPLE RATE: 230,400 samples/sec

CODE: 40 instructions/sample

OVERHEAD: 9,216,000 instructions/sec

9.2% of CPU time

Can we use UART for our router?

* Assuming a 100MHz   

clock frequency



Offloading the CPU
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Offload the CPU with a controller

• UART is a slow serial protocol

• One bit is transferred at a time at a low baud rate (e.g., 1200-115200 bits/sec).

• Integrate a specific UART controller that offloads the CPU

• Communicate with the UART through a wider register (e.g., byte, 32-bit).

• Use a Shift Register to serialize/deserialize parallel data

• Use a FIFO to buffer several CPU transactions

15

UART0_DR_RWrite data

1 0

Stop Start

Shift
clock

Data

7  6  5  4  3  2 1  0

    U0Tx

Transmit data register

16-element
FIFO TXEF  Fifo empty flag

TXFF  Fifo full flag

Transmit shift register

Transmit Parallel-In Serial-Out (PISO)

UART0_DR_RRead data

1 0

Stop Start

Shift
clock

Data

7  6  5  4  3  2 1  0

    U0Rx

Receive data register

12-bit, 16-element
FIFO

RXFE  Fifo empty flag

OE BE PE FE

RXFF  Fifo full flag

Receive shift register

Source: Bard, EE319K

Receive Serial-In Parallel-Out (SIPO)

1-byte → 16X speedup

64 byte FIFO→512X speedup
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Hardware Acceleration

• CPUs are general purpose programmable machines

• In other words, they are Turing Complete.

• But CPUs are not great (sometimes terrible) 

at carrying out certain operations.

• Offload the CPU by providing dedicated hardware

• The dedicated hardware can be designed 

to efficiently run a specific task → accelerate it.

• The CPU can continue running the program, 

while the accelerator runs its task.

• Data transfer achieved through memory mapping

• CPU writes/stores inputs and control in memory/registers.

• Accelerator writes outputs/status in memory/registers.

16 Source: Raghunathan, ECE 695R

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇original

𝑇unaccel + 𝑇accelerated + 𝑇comm
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But how do we know when it’s done?

• How can the CPU know when a new byte of data is received?

• Simple way: “Polling”

• Check on the status of the UART every 

so often to see if data has been received 

(or if it is ready to receive new data)

• Polling can be carried out with a “busy-wait” loop:

17

while (TRUE) {
// Wait until a new character has been read
while (peek(UART_IN_STATUS)==0);
// Read the new character
achar=(char)peek(UART_DATA);

}

Busy-wait on input from the UART 

current_char = mystring;
// Continue until the end of string
while (*current_char != ‘\0’) {
// Wait until the UART is ready
while (peek(UART_OUT_STATUS)!=0);
// Send character to UART
poke(UART_DATA_OUT, *current_char);
// update character pointer
current_char++;

}

Busy-wait on writing to the UART 

do {
// Play games
...
// Poll to see if we're there yet.
status = areWeThereYet();

} while (status == NO);
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Interrupts

• An interrupt is an asynchronous signal from a peripheral to the processor. 

• Can be generated from peripherals external or internal 

to the processor, as well as by software.

• Frees up the CPU, while the 

peripheral is doing its job. 

• Upon receiving an interrupt:

• The CPU decides when to handle the interrupt

• When ready, the CPU acknowledges the interrupt

• The CPU calls an interrupt service routine (ISR)

• Upon finishing, the ISR returns and the CPU continues operation

19

Source: Computers as 
Components



Dealing with 
Faster Interfaces
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RATE: 115200 bit/sec

0.1152 Mbps

RANGE: 15m
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Ethernet

• Widely used for realization of Local Area Networks (LANs)

• Bus with single signal path

• Originally: Nodes are not synchronized → Collisions

• Arbitration: “Carrier Sense Multiple Access 

with Collision Detection (CSMA/CD)”

• If collision → wait for random time → retransmit.

• Now: switched (point-to-point), fully duplex

• Ethernet packet:

• Addresses

• Variable-length data payload: 46 – 1518 bytes

• Throughput:

• 10M = 2.5 x 4bit   100M = 25 x 4bit    1G = 125 x 8bit
23

Source: Computers as 
Components
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Side note: The OSI Model

• The Open Systems Interconnection (OSI) model defines seven network layers. 

1. Physical: electrical and physical components

2. Data Link: Peer2Peer communication across

a singe physical layer.

3. Network: basic routing over the link.

4. Transport: ensure data is delivered in the proper 

order and without errors across multiple links.

5. Session: interaction of end-user services 

across a network

6. Presentation: defines data exchange formats

including encryption and compression.

7. Application: interface between the network

and end-user
24

Source: Computers as 
Components

Ethernet
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Ethernet
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Let’s try a simple interface: APB

• 32-bit bus

• Two phase access:

• Address (Setup) phase

• Read/Write (Access) phase

PCLK

PWRITE

PADDR A0

PSEL1

PSEL2

1 2 3

PENABLE

PWDATA D0

PRDATA

PREADY1

PREADY2

A1

D1

Select 
Slave 1

Select 
Slave 2

Can extend 
to delay write

• Setup Phase

• PWRITE, PADDR, PWDATA are set

• PSEL is raised for selected Slave

• Access Phase

• PENABLE is raised, with other signals held

• When selected Slave acks, PREADY is raised

• Next Transfer

• PENABLE is lowered by Master

• PREADY may be lowered by Slave

1

2

3
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ETH RATE: 109 bits/sec

APB TRANSFER WIDTH: 32 bits

APB RATE: 2 cycles/transfer

CLOCK: 108 cycles/sec

APB THROUGHPUT: 1.6 x 109 bits/sec

Is APB Sufficient?
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So let’s make it faster: AHB

• Wider bus (>32 bits)

• Pipelined address and R/W phases (X2 throughput)

• Supports Bursts

HCLK

HREADY

HADDR [31:0] Address 0 Address 1 Address 2 Address 3 

CONTROL Control 0 Control 1 Control 2 Control 3 

HRDATA [31:0]
Read Data 0 Read Data 1 Read Data 2 

HWRITE
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ETHERNET RATE: 2 x 109 bits/sec

AHB TRANSFER WIDTH: 64 bits

AHB RATE: 1 cycle/transfer

CLOCK: 108 cycles/sec

AHB THROUGHPUT: 6.4 x 109 bits/sec

Is AHB fast enough?



More Offloading

31
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ETHERNET RATE: 2 x 109 bits/sec

AHB TRANSFER WIDTH: 64 bits

AHB RATE: 1 cycle/transfer

CLOCK: 108 cycles/sec

AHB THROUGHPUT: 6.4 x 109 bits/sec

Is AHB fast enough?
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ETHERNET RATE: 2 x 109 bits/sec

CPU WORD: 32 bits

INSTRUCTIONS PER SW/LW: 3 inst/load

CLOCK: 108 cycles/sec

CPU THROUGHPUT: 1.1 x 109 bits/sec

Can the CPU support this?
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DMA

• Direct memory access (DMA) is a bus operation 

that allows reads and writes not controlled by the CPU. 

• A DMA transfer is controlled by a DMA controller

that requests control of the bus from the CPU. 

• With control, the DMA controller performs read and 

write operations directly between devices and memory.

• DMA adds new signals:

• Bus request

• Bus grant

35

Source: Computers as 

Components
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DMA Registers

• The CPU controls the DMA operation through registers in the DMA controller.

• Starting address register

• Length register

• Status register – to start and stall the DMA

• After the DMA operation is complete, 

the DMA controller interrupts the CPU to tell it that the transfer is done.

• DMA controllers usually use short bursts (e.g., 4-16 words) to only occupy the 

bus for a few cycles at a time 

36

Source: Computers as 
Components
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BIT RATE: 2 x 109 bits/sec

each packet includes 20 bytes of overhead

DATA RATE: BIT-RATE x P/(P+20)
P=64 → 2 x 0.76 x 109 bits/sec

P=1518 → 2 x 0.98 x 109 bits/sec

PACKET RATE: BIT-RATE / ((P+20) x 8)
P=64 → 2 x 1.48 x 106 packets/sec

P=1518 → 2 x 81.2 x 103 packets/sec

Data Rate or Packet Rate?

Larger packets mean 

interconnect is busier

Smaller packets mean 

CPU has to do more
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How does this affect the CPU?

• The CPU (in a router) needs to handle the packet

• i.e., figure out where to send the packet to.

• So, all it cares about is packet rate

• How much work can the CPU do on each packet?

• For packets with 1518 bytes of data, the packet rate is about 160K packets/sec

• At 100 MHz → 615 instructions per packet → Not that much

• For 64 byte packets → 34 instructions per packet → Infeasible!

• What can we do???

• Trivial solution: Raise the frequency

• Still not enough:     Add additional CPUs

• Better solution: Integrate dedicated hardware (Accelerators and ASIPs)
39
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PARSER CLASSIFIER POLICER
TRAFFIC 

MANAGEMENT

ASIP

0

ASIP

1

ASIP

2

HOST

I/F

0

I/F

1

I/F

2
I/F

3

I/F

4

I/F

5

A typical router SoC 



Memory
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But what about memory?

• We now have a processor that can communicate with peripherals, 

with an off-chip network, etc. 

But what about memory?
• Our router needs a lot of memory:

• To buffer packets

• To store routing tables

• To host the operating system

• …

• The on-chip memory (~MB) is nowhere near enough.

We need to use DRAM

43
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DRAM Organization

44

Source: Onur Mutlu

Source: Bruce Jacob

Rank

Chip

Bank
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1 Gb

8K

128K

DRAM Organization

• So, for a 1GB DIMM (i.e., 8 chips), 

we need chips with 1Gb of memory

• e.g., 128k x 8k

• But that is a lot of rows…
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128 Mb

8K

16K

128 Mb

8K

16K

DRAM Banks

• So, we break it into 8 banks of 16k rows

• And readout an entire row to a buffer

• Once the row is buffered, we can directly

access any byte in the buffer.

Source: Computers as Components
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128 Mb

8K

16K

128 Mb

8K

16K

B0/R0

B1/R1

B0/R0

B1/R1

B0/R0

B1/R1

B0/R3

B0/R0

B1/R2

B1/R1

B0/R0

B1/R1

B0/R3

B1/R2

DRAM Banks

• Reordering the 

memory accesses can 

improve throughput

• Add a dedicated DDR 

controller to optimize 

memory access patterns



Finishing our Design
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In AHB, we always have to wait until a transaction is finished 

before starting a new one…
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MASTER SLAVE

WRITE ADDR CHANNEL

WRITE DATA CHANNEL

WRITE RESPONSE CHANNEL

READ ADDR CHANNEL

READ DATA CHANNEL

AXI



CACHE
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But what happens on Startup?

• Start by reading from a BootROM

• A small piece of memory, which contains 

the very first code that is executed upon reset.

• Either hard-wired (mask-ROM) or rewriteable (embedded Flash)

• Can use bootstraps/fuses to change configuration.

• Then move on to the Bootloader

• Usually stored on rewriteable flash (i.e., SD card)

• Configures the chip and some of the peripherals

• Loads the end application (e.g., OS) from storage (flash, SSD, HDD)

• Passes control to the end application

• The BootROM and bootloader can be combined

• The BootROM of an x86 system is called the BIOS
52

Source: Intel
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Conclusions

• Processors are great at processing.

• They are not so great at data movement.

• They are not so great at doing simple tasks.

• For a well-defined task, dedicated hardware 

will never lose to a processor.

• With Processors we gain flexibility.

• Software development is faster than Hardware.

• Bugs in Software are much cheaper to fix.

Parks and Recreation. Source: Giphy

Source: xkcd
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