Digital Integrated Circuits (83-313)

Lecture 4: Technology Scaling

Semester B, 2016-17

Lecturer: Dr. Adam Teman

Emerging Nanoscaled Integrated Circuits and Systems Labs

TAs:

Itamar Levi, Robert Giterman

2 April 2017

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email <u>adam.teman@biu.ac.il</u> and I will address this as soon as possible.

Motivation

• If transistors were people...

Courtesy: Intel 2011

- Now imagine that those 1.3B people could fit onstage in the original music hall.
- That's the scale of Moore's Law.

Lecture Content

Moore's Law

Moore's Law

- In 1965, Gordon Moore noted that the number of components on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months

Electronics, April 19, 1965.

3.3 billion

6

Reports of my death were greatly exaggerated

Computers in the future may weigh no more than 1.5 tons

"In my 34 years in the semiconductor industry, I have witnessed the advertised death of Moore's Law no less than four times. As we progress from 14 nanometer technology to 10 nanometer and plan for 7 nanometer and 5 nanometer and even beyond, our plans are proof that Moore's Law is alive and well"

Bryan Krzanich, CEO Intel, April 2016

Technology supporting Moore's Law

Process/device innovation has always been an indispensable part of scaling

Moore's Law Today (2016)

Intel Xeon E5-2600 V4

- 14nm "Broadwell"
- 22 Cores
- 2.2 GHz
- 55MB Cache
- 416 mm²
- 7.2 Billion Transistors
- 456 mm² Die size
- Introduced March 31, 2016

IBM 7nm Test Chip

- 7nm
- EUV Photolithography
- SiGe channels
- Introduced July 2015

Evolution in Memory Complexity

≧nICS

Die Size Growth

Intel High-End (2C/4C) CPU Die Size 2006-2015

Courtesy, Intel

Moore was not always accurate

Teman's Law

~25 cm

8 cm

Cost per Transistor

Goals of Technology Scaling

• Make things cheaper:

- Want to sell more functions (transistors) per chip for the same money
- Build same products cheaper, sell the same part for less money
- Price of a transistor has to be reduced
- But also want to be faster, smaller, lower power

Rabaey's Law of Playstations

Technology Scaling – Dennard's Law

• Benefits of scaling the dimensions by 30% (Dennard):

- Double transistor density
- Reduce gate delay by 30%
 (increase operating frequency by 43%)
- Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency
- Die size used to increase by 14% per generation
- Technology generation spans 2-3 years

Scaling Models

Dennard Scaling

- In 1974, Robert Dennard of IBM described the MOS scaling principles that have accompanied us for forty years.
- As long as we scale all dimensions of a MOSFET by the same amount (S), we will arrive at better devices and lower cost:
 - L 1/S
 - W 1/S
 - t_{ox} 1/S
 - Na S
 - Vdd 1/S
 - $V_T 1/S$

Reminder – our simple timing/power models

• In our previous course, we developed the *unified model* for MOS transistor conduction: $I_{DS} = K \left(V_{CT} V_{DSeff} - 0.5 V_{DSeff}^2 \right) \left(1 + \lambda V_{DS} \right)$

 $K = \mu_n C_{ox} W / L$ $C_{\rm ox} = \frac{\mathcal{E}_{\rm ox}}{t_{\rm ox}}$ $I_{on} = K_{n} V_{GT}^{2}$ $R_{\rm on} = \frac{V_{\rm DD}}{I_{\rm on}}$ $t_{\rm pd} = R_{\rm on} C_{\rm g}$ $P_{\rm dyn} = f \cdot C \cdot V_{\rm DD}^2$

$$K \left(V_{GT} V_{DSeff} - 0.5 V_{DSeff}^2 \right) \left(1 + \lambda V_{DS} \right)$$
$$V_{DSeff} = \min \left(V_{GT}, V_{DS}, V_{DSAT} \right)$$

Dennard (Full) Scaling for Long Transistors

$L \propto S^{-1}$	Property	Sym	Equation	Calculation	Scaling	Good?
$W \propto S^{-1}$	Oxide Capacitance	C _{ox}	\mathcal{E}_{ox}/t_{ox}	$1/S^{-1}$	S	
$t_{ox} \propto S^{-1}$	Device Area	A	$W \cdot L$	$S^{-1} \cdot S^{-1}$	$1/S^{2}$	•••
$V_{ m DD} \propto S^{-1}$	Gate Capacitance	Cg	$C_{ox} \cdot W \cdot L$	$S \cdot S^{-1} \cdot S^{-1}$	1/ <i>S</i>	•••
$V_{_{ m T}} \propto S^{-1}$	Transconductance	K _n	$\mu_n C_{ox} W/L$	$S \cdot S^{-1}/S^{-1}$	S	•••
$N_A \propto S$	Saturation Current	Ion	$K_n V_{DSdt} (V_n V_{TGT}^2 V_{DSat})$	$S \cdot S \cdot S \cdot S \cdot S^{-1}$	1/S	
$V_{\rm DG} = \mathcal{E} \cdot L$	On Resistance	R _{on}	V_{DD}/I_{on}	S^{-1}/S^{-1}	1	
DSat Scrit	Intrinsic Delay	t _{pd}	$R_{on}C_{g}$	$1 \cdot S^{-1}$	1/S	••
	Power	P _{av}	$f \cdot C \cdot V_{DD}^2$	$S \cdot S^{-1} \cdot S^{-2}$	$1/S^{2}$	
μ <i>μ</i> <i>μ</i>	Power Density	PD	P_{av}/A	S^{-2}/S^{-2}	1	00
$\xi_{crit}=v_{sat}/\mu$					ĉ	

v_{sat}

Dennard Scaling

- This previous slide showed the principal that has led to scaling for the last 50 years.
 - Assume that we scale our process by 30% every generation.

$$\frac{1}{S} = 0.7 \longrightarrow S = \sqrt{2}$$

- Therefore, if the area scales by 1/S²=1/2, our *die size* goes down by 2X every generation!
- In addition, our *speed* goes up by 30%!
- And our *power* also gets cut in half, without any increase in power density.
- We have hit one of those rare win-win free lunch situations!

But what if we want more speed?

• We saw that

$$t_{pd} \propto C_g \cdot V_{DD} / I_{on}$$

• We can aggressively increase the speed by keeping the voltage constant.

$$I_{on} \propto K_n V_{GT}^2 \propto S \implies t_{pd} \propto S^{-1} \cdot 1/S = 1/S^2$$

• This led to the *Fixed Voltage Scaling Model,* which was used until the 1990s (*V_{DD}*=5V)

Moore's Law in Frequency

E⊓ICS

Fixed Voltage Scaling

$V_{ m DD} \propto 1$	Property	Sym	Equation	Calculation	Scaling	Good?
$L \propto S^{-1}$	Oxide Capacitance	C _{ox}	\mathcal{E}_{ox}/t_{ox}	$1/S^{-1}$	S	
$W \propto S^{-1}$	Device Area	A	$W \cdot L$	$S^{-1} \cdot S^{-1}$	$1/S^{2}$	•••
$\sim S$	Gate Capacitance	C_{g}	$C_{ox} \cdot W \cdot L$	$S \cdot S^{-1} \cdot S^{-1}$	1/ <i>S</i>	00
$t_{ox} \propto S^{-1}$	Transconductance	K _n	$\mu_n C_{ox} W/L$	$S \cdot S^{-1}/S^{-1}$	S	00
$V_{ m T} \propto S^{-1}$	Saturation Current	Ion	$K_n V_{GT}^2$	$S \cdot 1$	S	•••
$N_A \propto S$	On Resistance	R _{on}	V_{DD}/I_{on}	1/S	1/ <i>S</i>	
	Intrinsic Delay	t _{pd}	$R_{on}C_{g}$	$S^{-1} \cdot S^{-1}$	$1/S^{2}$	
	Power	P_{av}	$f \cdot C \cdot V_{DD}^2$	$S^2 \cdot S^{-1} \cdot 1$	S	×
	Power Density	PD	P_{av}/A	S/S^{-2}	S ³	××
		•	•		-	

Fixed Voltage Scaling – Short Channel

What happens with velocity saturated devices?

$$I_{on} \propto K_n V_{DSat} \left(V_{GT} - V_{DSat} \right) \propto S \cdot S^{-1} \cdot 1 = 1$$

• So the on current doesn't increase leading to less effective speed increase.

$$t_{pd} \propto R_{on}C_g \propto 1 \cdot S^{-1} = 1/S$$

• The power density still increases quadratically!

$$PD \propto fCV_{DD}^2 / A \propto S \cdot S^{-1} \cdot 1 / S^{-2} = S^2$$

Power density (2004 expectation)

What happens when the CPU cooler is removed?

www.tomshardware.de www.tomshardware.com

What actually happened?

Power Trends in Intel's Microprocessors

Technology Scaling Models

• Fixed Voltage Scaling

- Supply voltages have to be similar for all devices (one battery)
- Only device dimensions are scaled.
- 1970s-1990s

• Full "Dennard" Scaling (Constant Electrical Field)

- Scale both device dimensions and voltage by the same factor, S.
- Electrical fields stay constant, eliminates breakdown and many secondary effects.
- 1990s-2005
- General Scaling
 - Scale device dimensions by S and voltage by U.
 - Now!

How about Leakage Power?

• Later in the semester, we will see that the off current is exponentially dependent on the threshold voltage. $-V_T/$

$$I_{off} \propto e^{-1/n\phi_T}$$

• In the case of *Full Scaling*, the leakage current *increases exponentially* as V_T is decreased!

• Since the 90nm node, static power is one of the major problems in ICs.

Current and Future Trends

International Technology Roadmap for Semiconductors

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
$L_{\text{gate}} (\text{nm})$	20	14	10	7	5
$V_{DD}(\mathbf{V})$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

Technology Strategy Roadmap

When will Moore's Law End?

Current Strategies

Further Reading

- J. Rabaey, "Digital Integrated Circuits" 2003, Chapter 1.3
- E. Alon, Berkeley EE-141, Lecture 2 (Fall 2009)

http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/

• ...a number of years of experience!

