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Motivation

* If transistors were people... Courtesy:Intel 2011
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 Now imagine that those 1.3B people could fit onstage in the original music hall.
* That's the scale of Moore’s Law.
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Moore’s Law

* In 1965, Gordon Moore noted that the number of
components on a chip doubled every 18 to 24 months.

* He made a prediction that semiconductor technology
will double its effectiveness every 18 months
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Moore’s Law
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Reporis of my death were greatly exaggerated

Faith no Moore

Selected predictions for the end of Moore’s Law
. Prediction Predicted
Cited reason: issued end date

M Economic limits M Technical limits =]

1995 2000 2005 2010 2015 2020 2025 2030
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2005 N . . .
Gordon Moore, Intel @ = = = = = = — s -015-25 | "IN MY 34 years in the semiconductor industry, | have
St witnessed the advertised death of Moore’s Law no less
Michlo Kaku, City College of NY| @ =====7 W 2024-22 than four times. As we progress from 14 nanometer
2013 technology to 10 nanometer and plan for 7 nanometer
Robert Colwell, DARPA; (fmr) Intel @ = = = = = B °020-22
and 5 nanometer and even beyond, our plans are proof
Sources: Press reports; The Economist Gordon Moore, Intel .2—012 ————— W 2025 that MOO I‘e'S LaW iS alive and We””
Bryan Krzanich, CEQ Intel, April 2016




Technology supporting Moore’s Law
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Moore’s Law Today (2016)

Intel Xeon E5-2600 V4 IBM 7nm Test Chip
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Die Size Growth

Intel High-End (2C/4C) CPU Die Size 2006-2015
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Apparently, that doesn’t
apply anymore...
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Moore was not always accurate

Projected 2000 Water, circa 1979
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Teman’s Law
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Cost per Transistor

COST PER TRANSISTOR RISING - HISTORIC FIRST

28nm May Become an
Optimal Cost Node

28nm is the Cost Sweet Spot
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Relative Process Technology
Scaling from 14004 - Core Solo
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Goals of Technology Scaling

 Make things cheaper:

« Want to sell more functions (transistors) per chip for the same money
« Build same products cheaper, sell the same part for less money
* Price of a transistor has to be reduced

 But also want to be faster, smaller, lower power

Rabaey’s Law of Playstations
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Technology Scaling - Dennard’s Law

* Benefits of scaling the dimensions by 30% (Dennard):

* Double transistor density

« Reduce gate delay by 30%
(increase operating frequency by 43%)
« Reduce energy per transition by 65%
(50% power savings @ 43% increase in frequency

* Die size used to increase by 14% per generation

* Technology generation spans 2-3 years

ZnlCS
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Dennard Scaling

* In 1974, Robert Dennard of IBM described the MOS scaling
principles that have accompanied us for forty years.

* As long as we scale all dimensions of a MOSFET by the same
amount (S), we will arrive at better devices and lower cost:

e L—-1/S
e W-1/S ;,k LS,

et —1/S [
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¢ V- 1/S
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Reminder - our simple fiming/power models

* In our previous course, we developed the unified model for MOS
transistor conduction: I =K (VGTVDSeff ~0.5V2 )(1 + AV )

K=uC W/L :
Hin'ox / Visert = MIN (VGT , Vis 1 Vpsar )

C _gox

0X tox
Ion — KnVGZT
Ron :VDD |
ts = R C,
den =f.C VDZD
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Dennard (Full) Scaling for Long Transistors

LocS™
W oc S
t ocS™
Vo, ocS™
V. ocS™
N, ocS

VDSat — (:'&crit L
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Oxide Capacitance C,, E, /tox 1/8_1 S
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Dennard Scaling

* This previous slide showed the principal that has led to scaling for
the last 50 years.

« Assume that we scale our process by 30%
every generation.

%:0.7 5 S5=2

« Therefore, if the area scales by 1/52=1/2,

our die size goes down by 2X every generation!
- In addition, our speed goes up by 30%! Sorry... I couldn't resist!
« And our power also gets cut in half, without any increase in power density.

* We have hit one of those rare win-win free lunch situations!

2 &nlCS
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But what if we want more speed?
- W that
e Saw thd tpd oC Cg 'VDD/Ion

» We can aggressively increase the speed by keeping the voltage constant.

IOﬂ = KnVGZT = S :>tpd x S_l.l/s :]7/82

* This led to the Fixed Voltage Scaling Model,
which was used until the 1990s (V,,=5V)

ZnlCS
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Moore’s Law in Frequency
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Fixed Voltage Scaling

Vi, ¢l
LocS™
W oc S
t ocS™
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N, ocS
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Fixed Voltage Scaling - Short Channel
« What happens with velocity saturated devices?

Ion oC KnVDSat (VGT _VDSat) oS- S_l 1=1

 So the on current doesn’t increase leading to less effective speed increase.

tpg ¢ Ry Gy c1-87 =1/S

* The power density still increases quadratically!

PD oc fCVZ,/AcS-S*.1/S?=5> __
oo/ &nlCS



Power density (2004 expectation)

Power density
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What happens
when the
CPU cooler is

removed?
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IntelvsAMD.mp4

What actually happened?

Power Trends in Intel's Microprocessors
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Technology Scaling Models

* Fixed Voltage Scaling

« Supply voltages have to be similar for all devices (one battery)
* Only device dimensions are scaled.

* 1970s-1990s
* Full “Dennard” Scaling (Constant Electrical Field)

« Scale both device dimensions and voltage by the same factor, S.

 Electrical fields stay constant, eliminates breakdown and many secondary
effects.

* 1990s-2005

 General Scaling -
« Scale device dimensions by S and voltage by U.
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How about Leakage Power?

« Later in the semester, we will see that the off current is exponentially dependent

Static Power Significant at 90 nm

100

0]

on the threshold voltage. V;
; oC € % o
ff

* In the case of Full Scaling, the leakage current 1
increases exponentially as V7 is decreased!

0.01

Normalized Power

* Since the 90nm node, static power is one of
the major problems in ICs.
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Current and Future
Trends

Current and Future Trends
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ITRS

* International Technology Roadmap for Semiconductors

Year 2009 2012 2015 2018 2021
Feature size (nm) 34 24 17 12 8.4
Lgate (nm) 20 14 10 7 5
Vop (V) 1.0 0.9 0.8 0.7 0.65
Billions of transistors/die 1.5 5.1 6.2 12.4 24.7
Wiring levels 12 12 13 14 15
Maximum power (W) 198 198 198 198 198
DRAM capacity (Gb) 2 4 8 16 32
Flash capacity (Gb) 16 3 64 128 256
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Technology Strategy Roadmap

2000 2005 2010

2015 2020 2025 2030

Plan A: Extending Si CMOS
[

R D

lan B: Subsytem Integration

R D

Plan C: Post Si CMOS Options

[ .
R R&D e
Plan Q: Quantum Comﬁutini sanig
R

T.C. Chen, Where Si-CMOS is going: Trendy Hype vs. Real Technology, ISSCC'06
34
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When will Moore’s Law End?

Early production

IMEC view of logic technology roadmap

FinFET

FinFET

Lateral nanowire

2018-2019
NS5

Lateral nanowire

=2020
N3

Lateral nanowire

Vertical nanowire

fairgaps [.3x}

airgaps 1.3x

Vdd (V) 0.8 0.8-0.7 0.7-0.6 0.7-0.5 f.6-0.5
Gate Pitch (nm) 70-90, 1931 j2-64, 193i J6-46, 1931 26-36, EUV, 193i 18-28 EUV, 193i
Device FinFET FinFET FinFE T Lateral NW Luk_’mf '\ H".
flateral NW} fverical NW}
Channel nfet/pfet Si/8i Si / 5i {5iGe} Si / SiGe Si/ SiGe High mobility
Metal Pitch (nm) 52-64, 1931 36-48 193i 26-40, EUV, 193i 18-28 EUV, 193i 10-20, EUV, 193i
Low k diclectric 2.5-24 2.5-2.3 2.4-2.1 2.4-1.9 2.4-19

airgaps 1.3x

airgaps 1.3x

Metallization

TaN/Ta or CuMn
ECD Cu

TaN/Co or Ru
ECD Cu

MnN/Co or Ru
ECD Cu

Adv. Barrier/liner
ELD or CVD Cu

Alternative metals

21
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Current Strategies

More Moore: Miniaturization

Baseline CMOS: CPU, Memeory, Logic

More than Moore;:

Information
Processing

Digital content
System-on-chip
(SoC)

Diversification

Non-digital content
System-in-package

EnlCS
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Further Reading

* J. Rabaey, “Digital Integrated Circuits” 2003, Chapter 1.3
* E. Alon, Berkeley EE-141, Lecture 2 (Fall 2009)

* ...a humber of years of experience!
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