
© Adam Teman, 2018

Lecture Outline

November 16, 2018

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 4: Logic Synthesis
Part 2

Semester A, 2018-19

Lecturer: Dr. Adam Teman

mailto:adam.teman@biu.ac.il

3 © Adam Teman, 2018

What have we discussed so far?

• Not too much…
• We briefly discussed compilation.

• And then we really dove down and dirty into standard
cell libraries.

• So at this point:
• We have loaded our design into the synthesizer.

• And we have loaded our standard cell library and IPs.

• We can move on to discuss the “brains” of the synthesis
process.

Elaboration and

Binding

Pre-mapping

Optimization

Technology Mapping

Constraint Definition

Post-mapping

Optimization

Report and export

Syntax Analysis

Library Definition

Boolean Minimization
Mapping to Generics and Libs, Basics of Boolean Minimization
(BDDs, Two-Level Logic, Espresso)

4

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

1

Boolean

Minimization

2

Constraint

Definition

3

Technology

Mapping

4

Verilog for

Synthesis

5

Post-Synthesis

Optimization

5 © Adam Teman, 2018

Elaboration and Binding

• During the next step of logic synthesis, the tool:
• Compiles the RTL into a Boolean data structure (elaboration)

• Binds the non-Boolean modules to leaf cells (binding), and

• Optimizes the Boolean logic (minimization).

• The resulting design is mapped to generic,
technology independent logic gates.

• This is the core of synthesis and has been a very central subject of
research in computer science since the eighties.

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

Compilation Binding OptimizationRTL

Generic

Netlist

© Adam Teman, 2018

Elaboration Illustrated

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

Inferred Registers

x1 x2 x3 f(x1x2x3)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

Boolean Logic

F1=ACB’+DEF’+A’BCF+…

F2=C’B’+D’GH’+A’FG’+…

…
Two-level Logic

7 © Adam Teman, 2018

Two-Level Logic
• During elaboration, primary inputs and outputs (ports)

are defined and sequential elements (flip-flops, latches)

are inferred.

• This results in a set of combinational logic clouds with:
• Input ports and register outputs are inputs to the logic

• Output ports and register inputs are the outputs of the logic

• The outputs can be described as Boolean functions of the inputs.

• The goal of Boolean minimization is to reduce

the number of literals in the output functions.

• Many different data structures are used to represent

the Boolean functions:
• Truth tables, cubes, Binary Decision Diagrams,

equations, etc.

• A lot of the research was developed upon SOP or POS
representation, which is better known as “Two-Level Logic”

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

x1

x2

x3

f = x1x2

B

B

C

C

C

D

D

F

A

A

D

F

C
D

A
B
D

A
B
C

8 © Adam Teman, 2018

Two-Level Logic Minimization

• In our freshman year we learned about Karnaugh maps:

• For n inputs, the map contains 2n entries

• Objective is to find the minimum prime cover

• However…
• Difficult to automate (NP-complete)

• Number of cells is exponential (<6 variables)

• A different approach is the Quine-McCluskey method
• Easy to implement in software

• BUT computational complexity too high

• Some Berkeley students fell asleep while solving
a Quine-McCluskey exercise.

They needed a shot of Espresso.

AB
00 01 11 10

X 1 0 1

0 1 1 1

0 X X 0

0 1 0 1

00

01

11

10
C

CD

A

D

B

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

9 © Adam Teman, 2018

Espresso Heuristic Minimizer

• Start with an SOP solution.
• Expand

• Make each cube as large as possible without
covering a point in the OFF-set.

• Increases the number of literals (worse solution)

• Irredundant
• Throw out redundant cubes.

• Remove smaller cubes whose points are covered by larger cubes.

• Reduce
• The cubes in the cover are reduced in size.

• In general, the new cover will be different from the initial cover.
• “expand” and “irredundant” steps can possibly find out a new way to cover

the points in the ON-set.

• Hopefully, the new cover will be smaller.

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

ESPRESSO(F) {
do {

reduce(F);
expand(F);
irredundant(F);

} while (fewer terms in F);
verify(F);

}

© Adam Teman, 2018

Espresso Example

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

Initial Set of Primes found by
Steps1 and 2 of the Espresso

Method

4 primes, irredundant cover,
but not a minimal cover!

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

Result of REDUCE:
Shrink primes while still

covering the ON-set

Choice of order in which
to perform shrink is important

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

ESPRESSO(F) {
do {

reduce(F);
expand(F);
irredundant(F);

} while (F smaller);
verify(F);

}

f AC CD AC CD= + + +

f AC ACD AC ACD= + + +

© Adam Teman, 2018

Espresso Example

Second EXPAND generates a
different set of prime implicants

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

IRREDUNDANT COVER found by
final step of espresso

Only three prime implicants!

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

ESPRESSO(F) {
do {

reduce(F);
expand(F);
irredundant(F);

} while (F smaller);
verify(F);

}

f AC AD AC CD= + + +

f AC AD CD= + +
Only 6

literals!

12 © Adam Teman, 2018

Multi-level Logic Minimization

• Two-level logic minimization has been widely researched

and many famous methods have come out of it.
• However, often it is better and/or more practical to use

many levels of logic (remember logical effort?).

• Therefore, a whole new optimization regime, known as

multi-level logic minimization was developed.
• We will not cover multi-level minimization in this course,

however, you should be aware that the output of logic

minimization will generally be multi-level and not two-level.

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

13 © Adam Teman, 2018

Multi-level Logic Minimization

• For example:
• Given the following logic set:

• Multi-level Logic Minimization can result in:

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

t1 = a + bc;
t2 = d + e;
t3 = ab + d;
t4 = t1t2 + fg;
t5 = t4h + t2t3;
F = t5’;

d+e

a+bc

t5’

t1t2 + fg

F

ab+d

t4h + t2t3

17

Literals

t1 = d + e;
t2 = b + h;
t3 = at2 + c;
t4 = t1t3 + fgh;
F = t4’;

13

Literals

d+e

b+h

t4’

at2 +c

t1t3 + fgh F

14 © Adam Teman, 2018

Binary Decision Diagrams (BDD)

• BDDs are DAGs that represent the truth table of a given function

0 1

1 0

0 1 0 1

0 1 0

x1

x2 x2

x3
x3

f(x1,x2,x3)

Root node

~(x2x3) x2 ~x3

~x3

~x3x3 x3

11 010 0

100 1 1

f(x1, x2, x3) = ~x1~x2~x3 + ~x1~x2x3 + ~x1x2~x3 + x1x2~x3

x1 x2 x3 f(x1x2x3)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

15 © Adam Teman, 2018

Binary Decision Diagrams (BDD)

• The Shannon Expansion of a function relates
the function to its cofactors:
• Given a Boolean function f(x1,x2,…,xi,…,xn)

• Positive cofactor: fi
1 = f(x1,x2,…,1,…,xn)

• Negative cofactor: fi
0 = f(x1,x2,…,0,…,xn)

• Shannon’s expansion theorem states that
• f = xi’ fi

0 + xi fi
1

• f = (xi + fi
0)(xi’ + fi

1)

• This leads to the formation of a BDD:
• Example: f = ac + bc + a’b’c’

= a’ (b’c’ + bc) + a (c + bc)

= a’ (b’c’ + bc) + a (c)

b’c’ + bc c

a

f

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

16 © Adam Teman, 2018

Reduced Ordered BDD (ROBDD)

• BDDs can get very big.
• So let’s see if we can provide a reduced representation.

• Reduction Rule 1: Merge equivalent leaves

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

aa a

1

x1

x2 x2

x3
x3

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3 ~x3
x3 x3

0

f(x1, x2, x3) = ~x1~x2~x3 + ~x1~x2x3 + ~x1x2~x3 + x1x2~x3 = ~x1~x2 + ~x1x2~x3 + x1x2~x3

x1

x2 x2

x3
x3

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3 ~x3
x3 x3

1111 0 00

17 © Adam Teman, 2018

Reduced Ordered BDD (ROBDD)

• BDDs can get very big.
• So let’s see if we can provide a reduced representation.

• Reduction Rule 2: Merge isomorphic nodes

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

y

x

z

x

y

x

z

x

1

x1

x2 x2

x3
x3

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3 ~x3
x3 x3

0 1

x1

x2 x2

x3
x3

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3
x3

0

18 © Adam Teman, 2018

Reduced Ordered BDD (ROBDD)

• BDDs can get very big.
• So let’s see if we can provide a reduced representation.

• Reduction Rule 3: Eliminate Redundant Tests

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

y

x

y

1

x1

x2 x2

x3
x3

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3x3

0 1

x1

x2 x2

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3

0

x3f(x1, x2, x3) = ~x1~x2 +

~x1x2~x3 + x1x2~x3

19 © Adam Teman, 2018

Binary Decision Diagrams (BDD)

• Some benefits of BDDs:
• Check for tautology is trivial.

• BDD is a constant 1.

• Complementation.
• Given a BDD for a function f, the BDD for f’ can be

obtained by interchanging the terminal nodes.

• Equivalence check.
• Two functions f and g are equivalent if their BDDs (under

the same variable ordering) are the same.

• An Important Point:
• The size of a BDD can vary drastically if the order

in which the variables are expanded is changed.

• The number of nodes in the BDD can be

exponential in the number of variables in the

worst case, even after reduction.

f = ab+a’c+a’bd

c

a

b b

c c

d

0 1

c+bd b

root
node

c+d

d

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

1

Boolean

Minimization

2

Constraint

Definition

3

Technology

Mapping

4

Verilog for

Synthesis

5

Post-Synthesis

Optimization

Constraint Definition

20

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

21 © Adam Teman, 2018

Constraint Definition

• Following Elaboration, the design is loaded into the synthesis tool
and stored inside a data structure.

• Hierarchical ports (inputs/outputs) and registers can be accessed by
name.

• At this point, we can load the design constraints in SDC format, as
we will learn in Lecture 5.

• For example, to create a clock and define the target frequency:

• Carefully check that all constraints were accepted by the tool!

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

set in_ports [get_ports IN*]
set regs [get_cells –hier *_reg]

read_sdc –verbose sdc/constraints.sdc

create_clock –period $PERIOD –name $CLK_NAME [get_ports $CLK_PORT]

Technology Mapping

22

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

1

Boolean

Minimization

2

Constraint

Definition

3

Technology

Mapping

4

Verilog for

Synthesis

5

Post-Synthesis

Optimization

23 © Adam Teman, 2018

Technology mapping

• Technology mapping is the phase of logic synthesis when gates are
selected from a technology library to implement the circuit.

• Why technology mapping?
• Straight implementation may not be good.

• For example, F=abcdef as a 6-input AND gate causes a long delay.

• Gates in the library are pre-designed, they are usually optimized in
terms of area, delay, power, etc.

• Fastest gates along the critical path, area-efficient gates (combination)
off the critical path.

• Can apply a minimum cost tree-covering algorithm to solve this
problem.

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

24 © Adam Teman, 2018

Technology Mapping Algorithm

• Using a recursive tree-covering algorithm, we can easily, and almost
optimally, map a logic network to a technology library.

• This process incurs three steps:
• Map netlist and tech library to simple gates

• Describe the netlist with only NAND2 and NOT gates

• Describe SC library with NAND2 and NOT gates and associate a cost with each gate

• Tree-ifying the input netlist
• Tree covering can only be applied to trees!

• Split tree at all places, where fanout > 2

• Minimum Cost Tree matching
• For each node in your tree, recursively find the minimum cost target pattern at that

node.

• Let us briefly go through these steps

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

25 © Adam Teman, 2018

1. Simple Gate Mapping

• Apply De Morgan laws to your Boolean function to make it
a collection of NAND2 and NOT gates.
• Let’s take the example of multi-level logic minimization:

t1 = d + e;
t2 = b + h;
t3 = at2 + c;
t4 = t1t3 + fgh;
F = t4’;

()

()

()()

()

()()

1

2

3 2 2 2

4 1 3 1 3

4

NAND ,

NAND ,

NAND NAND , ,

NAND ,

NAND NAND , ,

t d e d e

t b h b h

t at c at c a t c

t t t fgh t t fgh

fgh fh g fh g f h g

F t

= + =

= + =

= + =  =

= + =

=  =  =

=

F

f

g

d

e

h

b

a

c

t2

t1

t3

fgh

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

26 © Adam Teman, 2018

1. Simple Gate Mapping

• And then, given a set of gates (standard cell library)
with cost metrics (area/delay/power):

• We need to define the gates with the same NAND2/NOT set:

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

inv(1) nand3 (3)

nor2(2)
nor3 (3)

nand2(2)

oai22 (4)aoi21 (3)

xor (5)

27 © Adam Teman, 2018

2. Tree-ifying

• To apply a tree covering algorithm, we must work on a tree!
• Is any given logic network a tree?

• No!

• We must break the tree at any node with fanout>2

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

We get 3 trees

28 © Adam Teman, 2018

3. Minimum Tree Covering

• Now, we can apply a recursive algorithm to achieve a minimum cover:
• Start at the output of the graph.

• For each node, find all the matching target patterns.

• The cost of node i for using gate g is:

• where ki are the inputs to gate g.

• For simplicity, we will redraw our graph and show an example:

• Every NOT is just an empty circle:

• Every NAND is just a full circle:

• Every input is just a box:

() () () cost min cost costk i ik
i g k= +

i

gi

k1 k2

k inputs to gi

I

N

A

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

© Adam Teman, 2018

3. Minimum Tree Covering - Example

A B

C D

F

I

N

A

I N

NB

C D

f

w

zy

x

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

I N N

I N

I

II

N

I

NI

NOT NAND2 AND2 NOR2 AOI21

66

4

32

f: NOT 2 + min(w)

AND2 4 + min(y)+min(z)

AOI21 6 + min(x)

w: NAND2 3 + min(y)+min(z)

y: NOT 2

z: NAND2 3 + min(x)

x: NAND2 3

= 3 + 3 = 6

= 3 + 2 + 6 = 11

= 2 + 11 = 13

= 4 + 2 + 6 = 12

= 6 + 3 = 9
AOI21

NAND2

The Chip Hall of Fame

• Since we’re speaking about synthesis,

how about a very famous synthesizer

• Used in Texas Instrament’s “Speak & Spell”

and used by E.T. to “phone home”

• The first single-chip speech synthesizer.

• Release date: 1978 Chip Size: 44 mm2

• The sound emerges from a combination of buzzing,

hissing and popping.

2017 Inductee to the IEEE Chip Hall of Fame

Verilog for Synthesis -
revisited

31

1

Boolean

Minimization

2

Constraint

Definition

3

Technology

Mapping

4

Verilog for

Synthesis

5

Post-Synthesis

Optimization

32 © Adam Teman, 2018

Some things we may have missed
• Now that we’ve seen how synthesis works, let’s revisit some of

the things we may have skipped or only briefly mentioned earlier…

• Let’s take a simple 4→2 encoder as an example:
• Take a one-hot encoded vector and output the position of the ‘1’ bit.

• One possibility would be to describe this logic with a nested if-else block:

• The result is known as “priority logic”
• i.e., some bits have priority over others…

always @(x)
begin : encode
if (x == 4'b0001) y = 2'b00;
else if (x == 4'b0010) y = 2'b01;
else if (x == 4'b0100) y = 2'b10;
else if (x == 4'b1000) y = 2'b11;
else y = 2'bxx;

end

33 © Adam Teman, 2018

Some things we may have missed

• It would have been better to use a case construct:
• All cases are

matched in parallel

• And better yet, synthesis
can optimize away the
constants and other
Boolean equalities:

always @(x)
begin : encode
case (x)
4’b0001: y = 2'b00;
4’b0010: y = 2'b01;
4'b0100: y = 2'b10;
4'b1000: y = 2'b11;
default: y = 2'bxx;

endcase
end

34 © Adam Teman, 2018

Some things we may have missed

• In the previous example, if the encoding was wrong (i.e., not one-hot), we would
have propagated an x in the logic simulation.
• But what if we guarantee that the input was one hot encoded?

• Then we could write our code differently…

• In fact, we have implemented a “priority decoder”
(the least significant ‘1’ gets priority)

always @(x)
begin : encode
if (x[0]) y = 2'b00;
else if (x[1]) y = 2'b01;
else if (x[2]) y = 2'b10;
else if (x[3]) y = 2'b11;
else y = 2'bxx;

end

35 © Adam Teman, 2018

A few points about operators

• Logical operators map into primitive logic gates

• Arithmetic operators map into adders, subtractors, …
• Unsigned or signed 2’s complement

• Model carry: target is one-bit wider that source

• Watch out for *, %, and /

• Relational operators generate comparators

• Shifts by constant amount are just wire connections
• No logic involved

• Variable shift amounts a whole different story → shifter

• Conditional expression generates logic or MUX

Y = ~X << 2

X[3]

Y[0]

Y[1]

Y[2]X[0]

X[1]

X[2]

Y[3]

Y[4]

Y[5]

36 © Adam Teman, 2018

Datapath Synthesis

• Complex operators (Adders, Multipliers, etc.) are implemented in a special way

• Pre-written descriptions can be found in
Synopsys DesignWare or Cadence ChipWare IP libraries.

37 © Adam Teman, 2018

Clock Gating

• As you know, since a clock is continuously toggling, it is a
major consumer of dynamic power.
• Therefore, in order to save power, we will try to turn off the

clock for gates that are not in use.

• Block level (Global) clock-gating
• If certain operating modes do not use an entire

module/component, a clock gate should be defined in the RTL.

• Register level (Local) clock-gating
• However, even at the register level,

if a flip-flop doesn’t change it’s output,
internal power is still dissipated due
to the clock toggling.

• This is very typical of an enabled signal
sampling, and therefore can be automatically
detected and gated by the synthesis tool. clk

qn

qd
doutdin

en

clk

clk

qn

qd doutdin

en

clk

Local Clock Gating

FSM

Execution

Unit

Memory

Control
clk

enM

enE

enF

Global Clock Gating

38 © Adam Teman, 2018

Clock Gating

• Local clock gating: 3 methods
• Logic synthesizer finds and

implements local gating
opportunities

• RTL code explicitly specifies
clock gating

• Clock gating cell explicitly
instantiated in RTL

• Global clock gating: 2 methods
• RTL code explicitly specifies

clock gating

• Clock gating cell explicitly
instantiated in RTL

• Conventional RTL Code

• Low Power Clock Gated RTL

• Instantiated Clock Gating Cell

//always clock the register
always @ (posedge clk) begin

if (enable) q <= din;
end

//only clock the ff when enable is true
assign gclk = enable && clk;
always @ (posedge gclk) begin

q <= din;
end

//instantiate a clock gating cell
clkgx1 i1 (.en(enable), .cp(clk), .gclk_out(gclk));
always @ (posedge gclk) begin

q <= din;
end

39 © Adam Teman, 2018

Clock Gating – Glitch Problem

• What happens if there is a glitch on the enable signal?

clk

en

gclk

Ah, we live in a
perfect world! ☺

Not so

Fast!

What if the glitch

happened during

the high phase?

Maybe the world aint

so perfect after all…

40 © Adam Teman, 2018

Solution: Glitch-free Clock Gate

• By latching the enable signal during the
positive phase, we can eliminate glitches:

clk

en

en_out

gclk

//clock gating with glitch prevention latch
always @ (enable or clk)
begin

if (!clk)
en_out <= enable;

end
assign gclk = en_out && clk;

41 © Adam Teman, 2018

Merging clock enable gates

• Clock gates with common enable can be merged
• Lower clock tree power, fewer gates

• May impact enable signal timing and skew.

E

E

E

E
enable

clk

en

clk

E

42 © Adam Teman, 2018

Data Gating

• While clock gating is very well understood and automated, a similar situation
occurs due to the toggling of data signals that are not used.

• These situations should be
recognized and data gated.

assign shift_in_A = A && shift_add;
assign shift_in_B = B && shift_add;
assign shift_out = shift_in_A << shift_in_B;
assign out = shift_add ? shift_out : add_out;

assign add_out = A+B;
assign shift_out = A<<B;
assign out = shift_add ? shift_out : add_out;

43 © Adam Teman, 2018

Design and Verification – HDL Linting

• HDL Linting tools provide a quick easy check of likely coding inconsistencies:
• Simulation problems
• Synthesis Problems
• Simulation Synthesis mismatches
• Clock gating
• Latch inference
• Clock Domain Crossing issues
• Nonsensical assignments / implicit bit widths issues

• Not for checking syntactic correctness
• Use your simulator for that.

(Will generally be more helpful)

• Alternatively some synthesis tools will give you
basic lint warnings
• For simulation-synthesis mismatch errors

43

always @(a)

z = a & b;

Simulation/Synthesis

Miss-matches

always @(a or b or c)

if (c) z = a & b;

Latch Inference

assign clka = clk & cond;

always @(posedge clka)

z <= a & b;

Clock Gating

Timing Optimization

44

Syntax

Analysis

Elaboration

and Binding

Pre-mapping

Optimization

Technology

Mapping

Constraint

Definition

Post-mapping

Optimization

Report and

export

Library

Definition

1

Boolean

Minimization

2

Constraint

Definition

3

Technology

Mapping

4

Verilog for

Synthesis

5

Post-Synthesis

Optimization

45 © Adam Teman, 2018

How can we optimize timing?

• There are many ‘transforms’ that the synthesizer applies to the logic to
improve the cost function:
• Resize cells

• Buffer or clone to reduce load on
critical nets

• Decompose large cells

• Swap connections on commutative pins or among equivalent nets

• Move critical signals forward

• Pad early paths

• Area recovery

• Simple example:
• Double inverter removal transform:

Delay = 4

Delay = 2

46 © Adam Teman, 2018

Resizing, Cloning and Buffering

• Resize a logic gate to better drive a load:

• Or make a copy (clone of the gate) to distribute the load:

• Or just buffer the fanout net:

0

0.01

0.02

0.03

0.04

0.05

0 0.2 0.4 0.6 0.8 1

load

d

A B C

b

a
d

e

f

0.2

0.2

0.3

?
b

a
A

0.035
b

a
C

0.026

b

a

d

e

f

g

h

0.2

0.2

0.2

0.2

0.2

?

b

a

d

e

f

g

h

A

B

b

a

d

e

f

g

h
0.1

0.2

0.2

0.2

0.2

B

B

0.2

47 © Adam Teman, 2018

Redesign Fan-In/Fan-out Trees

• Redesign Fan-In Tree

• Redesign Fan-Out Tree

a

c

d

b eArr(b)=3

Arr(c)=1

Arr(d)=0

Arr(a)=4

Arr(e)=6
1

1

1 c

d

e

Arr(e)=51

1b
1

a

1

1

1

3

1

1

1

Longest Path = 5

1

1

1

3

1

2

Longest Path = 4

Slowdown of

buffer due to

load

48 © Adam Teman, 2018

Decomposition and Swapping

• Consider decomposing complex gates into less complex ones:

• Swap commutative pins:
• Simple sorting on arrival times and delays can help

c

a

b

2

1

0
1

1

1

3

2

a

c

b
2

1

0

1

1

2

1

5

49 © Adam Teman, 2018

Retiming

• Given the following network:

• How would you meet the 10ns clock cycle time?

• Re-order sequential elements and combinational logic

clock

FF

D Q

FF

D Q

FF

D Q

6 4 2 4 4

Cycle = 10

clock

FF

D Q

FF

D Q

FF

D Q

6 4 2 4 4

Cycle = 10

50 © Adam Teman, 2018

Main References

• Rob Rutenbar “From Logic to Layout”

• IDESA

• Rabaey, “Low Power Design Essentials”

• vlsicad.ucsd.edu ECE 260B – CSE 241A

• Roy Shor, BGU

• Synopsys slides

