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Typical Computing System

° On_Ch i p Intercon nect On-chip interconnect architecture

 Processors
. |P BlOCkS Processor
* On Chip Memory

* Off-Chip Interconnect Off-chip

« Off-chip peripherals iertace
« Off-chip memory p‘j{;‘;‘g,
* Off-chip ASICs IP Block IP Block

« In this lecture, we will focus '
on On-Chip Interconnect

Off-chip interconnect architecture

Off-chip ASIC

Processor




Communication Considerations

System-level issues and specifications for choosing communication architecture:

« Communication Bandwidth
« Rate of information transfer (bytes/sec)
« Communication Latency

« Time delay between a request and response
« Application dependent, e.g., Video Streaming vs. two-way communication

 Master and Slave

* Who can control transactions? What can be controlled?
 Concurrency Requirement

 The number of independent simultaneous channels open in parallel.
 Multiple Clock Domains

 Different IPs may operate at different frequencies.



System-level Trends

 Heterogeneity among components that need to be interconnected
* Increasing volume and diversity of traffic
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Interconnect Scaling Trends
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Need for Communication-centric Design

« Communication is THE most critical aspect affecting system performance
« Communication architecture consumes up to 50% of total on-chip power

 Ever increasing number of wires, repeaters, bus components
(arbiters, bridges, decoders etc.) increases system cost

« Communication architecture design, customization, exploration, verification
and implementation takes up the largest chunk of a design cycle

Communication Architectures in today’'s complex systems
significantly affect performance, power, cost and time-to-market!



On-Chip Communication Architecture Design

Three topics to consider when discussing on-chip communication architecture:

« Communication Topology

« How the communication resources are connected

« Simple shared bus, hierarchical bus structures,
rings, mesh, custom bus networks

* Protocols
 How you manage the communication resources

« Static priority, TDMA, round-robin, token passing

* Mapping of System Communications

* Which components connect where?
* e.g., exploit locality, by putting close

components on same bus
10
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Connecting with Memory

* In our discussion of Microprocessors,
we assumed the existence of external memory components:

* In a Princeton Architecture, one homogenous memory space.
* In a Harvard Architecture, separate channels for Instruction and Data Memory

Address
Address
- Data memory
CPU b
Data - - CPU
i Data
Memory -
ADD15,1r1,13 |- ————— ] PC | Address
________ Program memory PC
——
Instructions
Princeton Architecture Harvard Architecture

 Before we go into more complex interconnect options, let’s start by looking at
how these tightly-coupled memory blocks are interfaced with the CPU.



s m R
Synchronous SRAM Interface SR
m-1:
* A typical on-chip synchronous SRAM features: Din-1:0] Q[n-1:0]
 Single-cycle write/read latency WEN[p-1:0]
» Byte write mask CEN
* Active low Write Enable (i.e., WEN=1 - Read Enable) CLK
N /

* The timing diagram can be viewed, as follows:

B (1) Rising edge of the clock results
A A K

in WRITE, when WEN is low.
ﬂo
WEN \

CLK

(2) Rising edge of the clock results
in READ, when WEN is high.

Valid data appears on the
output after a delay.




Scaling to a larger network

 The previous SRAM interface is an example of a point-to-point (p2p) link

 P2P links are simple and fast, but not scalable
« Every additional link added requires a full (private) set of signals and control

 Such an approach cannot even accommodate a simple microcontroller,
much less a complex SoC.

« Large amounts of SRAM o e

DRAM

DRAM : PsU :
° SI h. h d -t 12{;““”5 Ethemnet Interface [~ Local i andtest logic
Bme : :
ower, higher density R T
mem DRAM, Flash cacne | | cacne ‘
emory ( , Flash) o | [ o e
i block ' ' % Bridge | [ » VO pins
¢ P h I d I t g Special peripheral -+ g Tor special
eripnerails ana acceleratlors ... " ) o [T enhera
- o UART(S) |y ] Control DsP I ™ function
Processor Processor processor ’ B
ARM ARM
PetBus FCl b AtaD
us P, (1] =
° Therefore ™ interface «+—| FIFO Bus Bridge OSP las | DMa  [*™] channels |[+—  Anlog Inpul
processor -
L) Caontroller
icrocontollgr | | Counter Counter Bus T Diod | el Analog Output
we need a System Bus a5 O 0 e s [T 5 U s
y - Block Block
Local Misc Peripherals

14 on the same PCB

I0/BUS  a p mw



System Bus

* A collection of signals (wires) to which one or more IP components
(which need to communicate data with each other) are connected.

* In addition to the clock, a synchronous bus consists of:

 An Address Bus
 AData Bus
A Control Bus
* In a typical system, the CPU serves
as the bus master (a.k.a. “manager”)
and initiates all transfers.

* Other devices are typically called s/aves (a.k.a. “subordinates™)
and they react to transfers initiated by the master.

15

Device 1

CPU

Device 2

Clock
= Control

= Address

» Data
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Memory Mapping

* Amazingly, the three bus components described above (address, data and
control) can facilitate the majority of required control and data transfer.

* This is thanks to the concept of Memory Mapping

16

An n-bit bus supplies 2" unique byte addresses

With a wide bus (e.g., 32-bits) only a small portion of these
addresses are required for data storage (i.e., memory)

Therefore, every other device connected to the
system is just treated as a memory address.

For example, registers of peripherals and accelerators
are given addresses in the system memory map.

These registers are used to control the devices

Memory Mapped /O
and DMA

RAM

Monvolatile RAM

Stack Space

System Memory

OxFFFF

OxESFF

0x68FF

0x8FF

Ox4FF

0x3FF

0x0

(e.qg., “start operation” command) as well as to transfer data to and from them.
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Bus Terminology

Master
(Manager)

r
'

Multiplexor
Select

Slave
(Subordinate) 1

Slave
(Subordinate) 2

LTI

Slave
(Subordinate) 3

A A

Source: ARM
© Adam Teman, 2023



Bus Terminology

 Master (or Manager)
« Component that initiates a read or write data transfer.
* Slave (or Subordinate) A bus can accommodate multiple

- Component that does not initiate transfers SIS I il el
and only responds to incoming transfer requests.

* Decoder
» Determines which component a transfer is intended for.

* Bridge ®
 Connects two busses. Slave on one side and master on the other.

- Arbiter

« Controls access to the shared bus.
Selects master to grant access to bus.




Basic Bus Topologies

e Shared bus

« Components share a single set of signals.
« Only one transaction can exist at a time.
« Hierarchical busses enable multiple transactions.

* Ring

« Very low cost connection (only connect to neighbor).

» Potential long propagation delay.

* Multiple concurrent transactions.
 Crossbhar

» Point-to-point connection between all.

* Very high throughput, but very costly wiring.

e Can be reduced into partial crossbar/matrix.

‘ Master 3 \

‘ Master 2 \

Slave 2

Master 4 \

Slave 3

Slave 4

Slave

Master 1

Slave

Slave

Master 2

Master 3

Slave 3

Slave 4
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How does communication work?

« Communication through ports consisting of:

* An Interface — set of pins/wires that connect the components.

« A Protocol — set of rules for changing the logic levels and meaning of data.
 Flow-control is implemented through handshaking

« Data is transferred when both the sender and receiver are happy to receive.

« “ack’s and “nack’s are used for communicating readiness.
« Communication is convened between:

« A Master — the port initiating the communication.

« A Slave — the port responding to the communication.
* Interfaces can be:

« Synchronous — both sides are clocked by the same clock.
« Asynchronous — data is transferred through a clock domain crossing.

21
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Handshaking

* In order to ensure that both devices are ready to communicate

over the bus, a handshaking protocol is required.

* A conceptual handshake protocol utilizes two signals:

« ENQ (enquiry) — from transmitter to receiver
« ACK (acknowledge) — from receiver to transmitter

* The four-cycle handshake process includes:

* Device 1 raises ENQ to initiate transfer

* Device 2 raises ACK, when
ready and transmission can start

* Device 2 lowers ACK to
signal that data was received

* Device 1 lowers ENQ to finish

Device 2

Device 1

Enqg

Ack

Device 2

\ Action

\
L

3

-

Time

T
=




Master 1 Magter 2 Master 1

Bus Arbitration — | |l

Logic Logic Logic

* Only one master can control the bus f
* Need some way of deciding who is master | _ [susrewsz
* And to make sure the right slave answers T

 Arbitration

« Decides which master can use the shared bus if
several masters request bus access simultaneously

« Common arbitration schemes include:
Random, Priority-based, Round Robin, Time Division Multiplexing (TDMA), etc.

 Decoding
* Determines the target for any transfer initiated by a master
 Tells the right slave to put the response on the bus

23
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A Typical Bus Operation Example

* The following steps illustrate a typical operation
to access a peripheral:

The Master (e.g., a processor) selects one
Slave (e.g., peripheral or register) by giving the
address to the address bus.

At the same time, it sets control signals,

such as read or write and transfer size.

The Master waits for the Slave to respond.
Once the Slave is ready, it sends back the
requested data to the Master.

At the same time, it sets the

ready signal on the control bus.

Finally, the Master reads the transmitted data
and starts another communication cycle

Master (Manager)

v

Address bus
Select a peripheral

v

Control bus
Read operation,
transfer size at the same time

Data bus
Send data back to processor

<

Control bus
Set ready signal at the same time

Processor reads the data
and starts the next operation

Address bus >

Select a peripheral

Slave (Subordinate)




Example: The Advanced Peripheral Bus (APB)

- APB is a simple, low performance bus, part of the AMBA specification by ARM.

» APB uses the following signals (Master/Slave):
« PCLK: the bus clock source (rising-edge triggered)

_ _ PCLK PSEL1
« PRESETn: the bus reset signal (active low) PRESETH PSEL2
- PADDR: the APB address bus (up to 32-bits wide) ozpara

- PSELx: the select line for each slave device PSLVERR FSELD

- PENABLE: indicates the 2" cycle of an APB transfer

« PWRITE: indicates transfer direction (\Write=H, Read=L)

+ PWDATA: the write data bus (up to 32-bits wide) =***°*"
« PREADYX: used to extend a transfer S

. PRDATA: the read data bus (up to 32-bits wide) Preabyn

* PSLVERR: indicates a transfer error (OKAY=L, ERROR=H)

PENABLE
PWRITE

PADDR

PWDATA




APB Write Transfer PADDRLS 0

PCLK

PWRITE

PADDR
PWDATA
PSEL,

PSEL,
PENABLE
PRDATA

PREADY,
PREADY,

PWRITE

PSEL[1]
0 e e PWRITE PENABLE
PADDR[31:0] PRDATA[31:0]
p K K PWDATA[31:0] PREADY[1]
PSEL[1:N]
i | | PENABLE
| | i <+—— PRDATA[31:0] PWRITE
/ . | <+—— PREADY[1:N] PADDR][31:0]
| : PWDATA[31:0]
: A0 | >_< A1 PSEL[2]
< : i PENABLE

e T T
[ Select a - Setup Phase @
- Slavel i - PWRITE, PADDR, PWDATA are set

[ §oleet . PSEL is raised for selected Slave

| / 3 « Access Phase @

« PENABLE is raised, with other signals held

« When selected Slave acks, PREADY is raised

an exten_:d i
delay wni"ce\/—g_\_ « Next Transfer @

° 0

- PENABLE is lowered by Master
« PREADY may be lowered by Slave




PWRITE

APB Read Transfer ot
© o o

PWRITE PENABLE
PADDR[31:0] PRDATA[31:0]

A A A PWDATA[31:0] PREADY[1]
PCLK PSEL[1:N]

| PENABLE
PWRITE i \ <+—— PRDATA[31:0] PWRITE

<+—— PREADY[1:N] PADDR][31:0]

PADDR 4( A0 S A

PWDATA[31:0]
PSEL[2]
! | ! PENABLE
PWDATA i | PRDATA[31:0]
| | | PREADY[2] «——
i f f  Setup Phase @
PSEL [ Select | i .
1 HJS'aV“ ; \ - PWRITE is lowered, PADDR is set
PSEL, i g ] St « PSEL is raised for selected Slave
| » Access Phase @
15 / . PENABLE is raised, with other signals held
PRDATA { D0 »——  « Slave raises PREADY and drives PRDATA

Can exten:tl

! * Next Transfer
PREADY, to delay reai:d \/_—\— e

| , : « PENABLE is lowered by Master
PREADY, § - PREADY may be lowered by Slave
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APB State Diagram

PREADY = 1
and no
transfer

Enter ACCESS

after SETUP state

IDLE
PSELx =0
PENABLE =0

Transfer

SETUP
PSELx = 1
PENABLE =0

ACCESS
_PSFIx=1 _

state one cycle —"

PENABLE =1

No transfer

See straightforward RTL implementation
by Quick Silicon at:
https://www.edaplayground.com/x/AXrK

Only remains in the
SETUP state for one
clock cycle

PREADY =1
and transfer

PREADY = 0

)/

Slave pulls PREADY

low to cause WAIT
state
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Increasing Bus Performance

* The APB example was a simple low-performance bus

« Two-cycles to carry out a single transfer
« Each transfer requires the definition of address and data

* However, this can be easily improved by:

 Pipelining transfers:
Overlap Setup and Access phases
to achieve single-clock edge transfers.

« Burst operations:
Provide a single address with
multiple (sequential) data.

« Wide bus widths:
Support 64-bit, 128-bit, or even wider buses.

30



Example: Advanced High-Performance Bus

» A more advanced bus defined within the AMBA specification

Decoder selects the correct

slave according to the address.

Slave
(Subordinate) 1

—— CONTROL
HWDATA [31\0] l >
—— HADDR [31:0 —; 1 + >
>
— HSEL_1 >
Address >—>
— HSEL_2—
Decoder ?——p
— HSEL_3- P& >
P
Master —
M Multiplexor
(Manager) Select e
>
>
_ :: HRDATA 3 [31:0]
HRDATA g RESPONSE_3
¢ [31:0] @
: 3 :: HRDATA_2 [31:0]
RESPONSE = RESPONSE_2
= :: HRDATA_1 [31:0]
RESPONSE_1

Slave
(Subordinate) 2

Slave
(Subordinate) 3

31

Multiplexor multiplexes the correct read data bus HREADY
and response from the selected slave.

is the Advanced High-Performance (AHB) bus.

— HWRITE
HREADY —! — HADDR[31:0]
HRESP —» — HWDATA[31:0]
. —> HSIZE[2:0]
HRDATA[31:0]—>
Master — HBURST[2:0]
HRESETn—> — HPROTI[3:0]
— HTRANS[1:0]
HCLK—>
— HMASTLOCK

HSELx
HWRITE
HADDR[31:0]
HWDATA[31:0]
HSIZE[1:0]
HBURST[2:0]
HPROTI[3:0]
HTRANS[1:0]
HMASTLOCK

HREADYOUT
HRESPx
HRDATAX[31:0]

HRESETn
HCLK
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AHB Basic Read Operation

« An AHB transfer consists of two (overlapped) phases:
 The address phase: Master drives address and control signals onto the bus.

 The data phase: Selected Slave responds with HRDATA.

HREADY Is lowered to extend the data phase

* The next address phase is applied during the current data phase.

HCLK

CONTROL

HADDR [31:0]

HRDATA [31:0]

HWRITE

HREADY

X Control 0 x Control 1 X Control 2 X Control 3

X Address0 X Address1 ¥ Address2 Y Address3

X X Read Data 0 X Read Data 1 X Read Data 2

N\




AHB Burst Transfer

« AHB Supports bursts of different lengths

- Master provides one address and the burst length
« Several operations (W/R) are applied to incrementing addresses
 Allows reducing the overhead of the address phase

a Provide address and burst length

Lower HiRITE Example: 4-beat Read Burst with “wait” state.

. TO T1 T2 T3 T4 T5 T6 T7
First HTRANS=NONSEQ | s s s s s = =
a Slave reads out first address . 1 —-—L- gg
Master is not ready so sets BUSY ~ HTRANS[1:0] [jGNONSEQY BUSY [I}X sEa |f} sEQ |K) gEQ
9 Master sets HTRANS=SEQ HApDR(31:0] [ oxee\JJ)ox2a | oxa4 . oxas [ ) uizc
Read data (delayed) is ignored HWRITE T\ ‘ If\ ‘
. i i | | ; |
a Master increments address HBURST[2:0] | ) 1 CR |
Slave reads out second address Hreany |V K 1 K :
a Slave reads out third address HRDATA31:0] 1 Ei—; = < s D§|1a 0:28)
But lowers HREADY to delay Datalpx20) Data(px24)~ ) Data px20)~

Slave reads out last address
34 one cycle after raising HREADY
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AHB with Multiple Masters

* Arbiter controls which master
Initiates current transaction.

HADDR
HADDR HWDATA Slave
#1
Master | HWDATA HRDATA
#1
HRDATA
HADDR
HADDR HWDATA Slave
#2
Master | HWDATA Address and HRDATA
#2 control mux
HRDATA [~
T HADDR
HADDR ) HWDATA Slave
#3
Master | HWDATA Write data mux HRDATA
#3
HRDATA Read data mux
r HADDR
HWDATA Slave
HRDATA #4
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Even More Performance

* To get even more performance, a bus can have the following capabilities:
* Independent read and write channels:
Simultaneous reads and writes - Improved bandwidth

* Multiple outstanding addresses:

Master can issue new transactions without waiting for previous to complete
« Qut-of-order transaction completion:

A later transaction can complete before a previously launched one.

* Independent address and data operations:
If there is no strict timing relationship between address and data operations,

they can be arbitrarily separated
 These and other features are supported by the
Advanced eXtensible Interface (AXI) bus of the AMBA specification.
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The Advanced eXiensible Interface (AXI)

 AXl is an interface specification that defines the interface of IP blocks,
rather than the interconnect itself.

 AXI supports multiple masters (Managers)
and multiple slaves (Subordinates)

« AXI uses five main channels

(i.e., groups of signals) for communication:

Write Address (AW)
Write Data (W)
Write Response (B)
Read Address (AR)
Read Data (R)

Master
Interface

Write Address

Write Data

Write Response

Read Address

Read Data

Slave
Interface

Write address channel

Address
and control

* Read response is passed as part of Read Data

B
Write data channel
aster Writ Write Writ Writ
terfac dat data dat dat
_—., > —— —p
Write response ch |
Write
response
‘—
Read address ch |
Address
and control
e

Slave
interface

Slave
interface
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Channel handshake

* All channels have VAL 1D (from source)
and READY (from destination) signals

* VALID remains high until
READY signal rises.

fii | (1) Source Information is ready.
ACLK —_— VALID goes high.
. /\ (2) Destination acknowledges
Information ><\ \ it is ready to receive information.

‘\ \ READY goes high.

/ | (3) Information is passed from source to

=
2
)
[
i=
=
w0
o]
]

/-ﬂ\

VALID

destination at rising edge of clock.

I
I
I
I
[
I
I
I
I
I
1
I
I
I
I
I
I
I

READY \/ h/ | (4) Transaction is complete.
VALID goes low. Information changed.
Clock cycle . 1 2 R 4 READY goes low.

* Note that READY can be asserted before VALID
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Transaction Ordering

 AXI Supports Interleaved/

|
Out-of-Order Transactions L.--- B“

a e
« Example of a simple
transaction . -
- HEER
« Example of a more

N
complex transaction . L.... .
e .

mm
- [IEEEES

Source: ARM
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Multi-Level Buses

* A microprocessor system often has more than one bus.
« Complexity: High speed buses are more complex (wider and implement
sophisticated protocols), often not required for simple, slower devices.

« Parallelism: Breaking up the bus can provide less contention between devices
that operate independently.

* A bridge connects two buses: CPU Low-speed
* Acts as a slave on one bus
(e.g., the fast bus) "N : e
» Acts as a master on the second - e ":f g
bus (e.g., the slow bus) -
* Provides protocol translation

and Speed Sanhronization_ Memory High-speed Low-speed

device device




AMBA Multi-Level Approach PULPino architecture

)
Instr.

- AMBA is designed for multi-level buses
« Commonly use a bridge from a high-speed
bus (e.g., AXl) to a low-speed bus (e.g., APB)
to accommodate low-speed peripherals.

SPI
Slave

Adv.
Debug Unit

v 1 t
H |g h_perfﬂ rmance ng h-bandwidth GPIO  UART r'c SPI SPI e
ARM processor on-chip RAM
B UART Timer
R
High-bandwidth AHB | APB

Memory Interface D
G
E Keypad PIO

DMA bus

master AHB fo APB Bridge
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