
1 May 2023

On-Chip Interconnect
Prof. Adam Teman

EnICS Labs, Bar-Ilan University

SoC 101:
a.k.a., “Everything you wanted to know about a computer but were afraid to ask”

May 1, 2023© Adam Teman,

This Lecture

2

Source: ARM

May 1, 2023© Adam Teman,

Lecture Overview

3

On-Chip Communication

On-Chip
Communication

Connecting with
Peripherals

Simple Bus
Operation

Higher
Performance

Buses

May 1, 2023© Adam Teman,

Typical Computing System

• On-Chip Interconnect

• Processors

• IP Blocks

• On Chip Memory

• Off-Chip Interconnect

• Off-chip peripherals

• Off-chip memory

• Off-chip ASICs

• In this lecture, we will focus

on On-Chip Interconnect

May 1, 2023© Adam Teman,

Communication Considerations

System-level issues and specifications for choosing communication architecture:

• Communication Bandwidth
• Rate of information transfer (bytes/sec)

• Communication Latency
• Time delay between a request and response

• Application dependent, e.g., Video Streaming vs. two-way communication

• Master and Slave
• Who can control transactions? What can be controlled?

• Concurrency Requirement
• The number of independent simultaneous channels open in parallel.

• Multiple Clock Domains
• Different IPs may operate at different frequencies.

6

May 1, 2023© Adam Teman,

System-level Trends

• Heterogeneity among components that need to be interconnected

• Increasing volume and diversity of traffic

• Complexity of

communication logic can

easily compare to a small

microprocessor!

7

May 1, 2023© Adam Teman,

Interconnect Scaling Trends

• Global wires scale slower than

transistors/gates

• Gates, local wires scale with technology,

global wires do not

• Global on-chip comm to operation

delay changed from 2:1 to 9:1 over

a few technology generations

Source: ITRS
Source: Bill Dally, DAC 2009 keynote

May 1, 2023© Adam Teman,

Need for Communication-centric Design

• Communication is THE most critical aspect affecting system performance

• Communication architecture consumes up to 50% of total on-chip power

• Ever increasing number of wires, repeaters, bus components

(arbiters, bridges, decoders etc.) increases system cost

• Communication architecture design, customization, exploration, verification

and implementation takes up the largest chunk of a design cycle

Communication Architectures in today’s complex systems

significantly affect performance, power, cost and time-to-market!

Communication Architectures in today’s complex systems

significantly affect performance, power, cost and time-to-market!

May 1, 2023© Adam Teman,

On-Chip Communication Architecture Design

Three topics to consider when discussing on-chip communication architecture:

• Communication Topology

• How the communication resources are connected

• Simple shared bus, hierarchical bus structures,

rings, mesh, custom bus networks

• Protocols

• How you manage the communication resources

• Static priority, TDMA, round-robin, token passing

• Mapping of System Communications

• Which components connect where?

• e.g., exploit locality, by putting close

components on same bus
10

Wingard, Kurosawa,

IEEE CICC, 1998

Connecting with
Peripherals

11

On-Chip
Communication

Connecting with
Peripherals

Simple Bus
Operation

Higher
Performance

Buses

May 1, 2023© Adam Teman,

Connecting with Memory

• In our discussion of Microprocessors,

we assumed the existence of external memory components:

• In a Princeton Architecture, one homogenous memory space.

• In a Harvard Architecture, separate channels for Instruction and Data Memory

• Before we go into more complex interconnect options, let’s start by looking at

how these tightly-coupled memory blocks are interfaced with the CPU.

Source: Wolf,

Computers as ComponentsHarvard ArchitecturePrinceton Architecture

May 1, 2023© Adam Teman,

Synchronous SRAM Interface

• A typical on-chip synchronous SRAM features:

• Single-cycle write/read latency

• Byte write mask

• Active low Write Enable (i.e., WEN=1→ Read Enable)

• The timing diagram can be viewed, as follows:

13

A[m-1:0]

D[n-1:0]

WEN[p-1:0]

CEN

Q[n-1:0]

2mxn SRAM

CLK

A

CLK

D

WEN

Q

A0 A1 A2 A3

D0 D1

D2 D3

(1) Rising edge of the clock results

in WRITE, when WEN is low.

(2) Rising edge of the clock results

in READ, when WEN is high.

Valid data appears on the

output after a delay.

May 1, 2023© Adam Teman,

Scaling to a larger network

• The previous SRAM interface is an example of a point-to-point (p2p) link

• P2P links are simple and fast, but not scalable

• Every additional link added requires a full (private) set of signals and control

• Such an approach cannot even accommodate a simple microcontroller,

much less a complex SoC.

• Large amounts of SRAM

• Slower, higher density

memory (DRAM, Flash)

• Peripherals and accelerators

• Therefore,

we need a System Bus.
14

Source: Greaves, U. Cambridge

May 1, 2023© Adam Teman,

System Bus

• A collection of signals (wires) to which one or more IP components

(which need to communicate data with each other) are connected.

• In addition to the clock, a synchronous bus consists of:

• An Address Bus

• A Data Bus

• A Control Bus

• In a typical system, the CPU serves

as the bus master (a.k.a. “manager”)

and initiates all transfers.

• Other devices are typically called slaves (a.k.a. “subordinates”)

and they react to transfers initiated by the master.

15

Source: Wolf,

Computers as Components

May 1, 2023© Adam Teman,

Memory Mapping

• Amazingly, the three bus components described above (address, data and

control) can facilitate the majority of required control and data transfer.

• This is thanks to the concept of Memory Mapping

• An n-bit bus supplies 2n unique byte addresses

• With a wide bus (e.g., 32-bits) only a small portion of these

addresses are required for data storage (i.e., memory)

• Therefore, every other device connected to the

system is just treated as a memory address.

• For example, registers of peripherals and accelerators

are given addresses in the system memory map.

• These registers are used to control the devices

(e.g., “start operation” command) as well as to transfer data to and from them.

16

Source: Peckol, Embedded Systems

May 1, 2023© Adam Teman,

Bus Terminology

17

Master
(Manager)

Sl
av

e
(S

u
b

o
rd

in
at

e)
M

u
lt
ip

le
x
o

r

Multiplexor

Select

Address
Decoder

Slave
(Subordinate) 1

Slave
(Subordinate) 2

Slave
(Subordinate) 3

Source: ARM

May 1, 2023© Adam Teman,

Bus Terminology

• Master (or Manager)

• Component that initiates a read or write data transfer.

• Slave (or Subordinate)

• Component that does not initiate transfers

and only responds to incoming transfer requests.

• Decoder

• Determines which component a transfer is intended for.

• Bridge

• Connects two busses. Slave on one side and master on the other.

• Arbiter

• Controls access to the shared bus.

Selects master to grant access to bus.
18

A bus can accommodate multiple

Masters and multiple Slaves

A bus can accommodate multiple

Masters and multiple Slaves

May 1, 2023© Adam Teman,

Basic Bus Topologies

• Shared bus

• Components share a single set of signals.

• Only one transaction can exist at a time.

• Hierarchical busses enable multiple transactions.

• Ring

• Very low cost connection (only connect to neighbor).

• Potential long propagation delay.

• Multiple concurrent transactions.

• Crossbar

• Point-to-point connection between all.

• Very high throughput, but very costly wiring.

• Can be reduced into partial crossbar/matrix.
19

Simple Bus Operation

20

On-Chip
Communication

Connecting with
Peripherals

Simple Bus
Operation

Higher
Performance

Buses

May 1, 2023© Adam Teman,

How does communication work?

• Communication through ports consisting of:

• An Interface – set of pins/wires that connect the components.

• A Protocol – set of rules for changing the logic levels and meaning of data.

• Flow-control is implemented through handshaking

• Data is transferred when both the sender and receiver are happy to receive.

• “ack”s and “nack”s are used for communicating readiness.

• Communication is convened between:

• A Master – the port initiating the communication.

• A Slave – the port responding to the communication.

• Interfaces can be:

• Synchronous – both sides are clocked by the same clock.

• Asynchronous – data is transferred through a clock domain crossing.
21

May 1, 2023© Adam Teman,

Handshaking

• In order to ensure that both devices are ready to communicate

over the bus, a handshaking protocol is required.

• A conceptual handshake protocol utilizes two signals:

• ENQ (enquiry) – from transmitter to receiver

• ACK (acknowledge) – from receiver to transmitter

• The four-cycle handshake process includes:

• Device 1 raises ENQ to initiate transfer

• Device 2 raises ACK, when

ready and transmission can start

• Device 2 lowers ACK to

signal that data was received

• Device 1 lowers ENQ to finish

22

Source: Wolf,

Computers as Components

May 1, 2023© Adam Teman,

Bus Arbitration

• Only one master can control the bus

• Need some way of deciding who is master

• And to make sure the right slave answers

• Arbitration

• Decides which master can use the shared bus if

several masters request bus access simultaneously

• Common arbitration schemes include:

Random, Priority-based, Round Robin, Time Division Multiplexing (TDMA), etc.

• Decoding

• Determines the target for any transfer initiated by a master

• Tells the right slave to put the response on the bus

23

Source: Ques10.com

A
rb

it
e

r

May 1, 2023© Adam Teman,

A Typical Bus Operation Example

• The following steps illustrate a typical operation
to access a peripheral:
• The Master (e.g., a processor) selects one

Slave (e.g., peripheral or register) by giving the
address to the address bus.

• At the same time, it sets control signals,
such as read or write and transfer size.

• The Master waits for the Slave to respond.

• Once the Slave is ready, it sends back the
requested data to the Master.

• At the same time, it sets the
ready signal on the control bus.

• Finally, the Master reads the transmitted data
and starts another communication cycle

24

Address bus

Select a peripheral

Control bus

Read operation,

transfer size at the same time

Data bus

Send data back to processor

Control bus

Set ready signal at the same time

Processor reads the data

and starts the next operation

Address bus

Select a peripheral

Source: ARM

M
a
s
te

r
(M

a
n

a
g

e
r)

S
la

v
e
 (

S
u

b
o

rd
in

a
te

)

May 1, 2023© Adam Teman,

Example: The Advanced Peripheral Bus (APB)

• APB is a simple, low performance bus, part of the AMBA specification by ARM.

• APB uses the following signals (Master/Slave):

• PCLK: the bus clock source (rising-edge triggered)

• PRESETn: the bus reset signal (active low)

• PADDR: the APB address bus (up to 32-bits wide)

• PSELx: the select line for each slave device

• PENABLE: indicates the 2nd cycle of an APB transfer

• PWRITE: indicates transfer direction (Write=H, Read=L)

• PWDATA: the write data bus (up to 32-bits wide)

• PREADYX: used to extend a transfer

• PRDATA: the read data bus (up to 32-bits wide)

• PSLVERR: indicates a transfer error (OKAY=L, ERROR=H)

25

APB

Bridge

PCLK

PRESETn

PRDATA
32

PADDR
32

PWDATA
32

PWRITE

PENABLE

PSEL1

PSEL2

PSELn

PREADY1

PSLVERR

PREADY2

PREADYn

May 1, 2023© Adam Teman,

APB Write Transfer

• Setup Phase

• PWRITE, PADDR, PWDATA are set

• PSEL is raised for selected Slave

• Access Phase

• PENABLE is raised, with other signals held

• When selected Slave acks, PREADY is raised

• Next Transfer

• PENABLE is lowered by Master

• PREADY may be lowered by Slave

PCLK

PWRITE

PADDR A0

PSEL1

PSEL2

1 2 3

PENABLE

PWDATA D0

PSEL[1]

PWDATA[31:0]

Slave 1

PWRITE

PADDR[31:0]

PENABLE

PREADY[1]

PRDATA[31:0]

Slave 2

PWRITE

PADDR[31:0]

PSEL[2]

PWDATA[31:0]

PENABLE

PREADY[2]

PRDATA[31:0]

Master

PWRITE

PADDR[31:0]

PWDATA[31:0]

PSEL[1:N]

PENABLE

PRDATA[31:0]

PREADY[1:N]

PRDATA

PREADY1

PREADY2

1

A1

D1

Select
Slave 1

Select
Slave 2

Can extend
to delay write

2

3

May 1, 2023© Adam Teman,

APB Read Transfer

• Setup Phase
• PWRITE is lowered, PADDR is set
• PSEL is raised for selected Slave

• Access Phase
• PENABLE is raised, with other signals held
• Slave raises PREADY and drives PRDATA

• Next Transfer
• PENABLE is lowered by Master
• PREADY may be lowered by Slave

PCLK

PWRITE

PADDR A0

PSEL1

PSEL2

1 2 3

PENABLE

PWDATA

PSEL[1]

PWDATA[31:0]

Slave 1

PWRITE

PADDR[31:0]

PENABLE

PREADY[1]

PRDATA[31:0]

Slave 2

PWRITE

PADDR[31:0]

PSEL[2]

PWDATA[31:0]

PENABLE

PREADY[2]

PRDATA[31:0]

Master

PWRITE

PADDR[31:0]

PWDATA[31:0]

PSEL[1:N]

PENABLE

PRDATA[31:0]

PREADY[1:N]

PRDATA

PREADY1

PREADY2

1

A1

Select
Slave 1

Select
Slave 2

Can extend
to delay read

2

3

D0

May 1, 2023© Adam Teman,

APB State Diagram

28

Only remains in the

SETUP state for one
clock cycle

Enter ACCESS

state one cycle
after SETUP state

Slave pulls PREADY
low to cause WAIT

state

Source: ARM

See straightforward RTL implementation

by Quick Silicon at:

https://www.edaplayground.com/x/AXrK

https://www.edaplayground.com/x/AXrK

Higher Performance Buses

29

On-Chip
Communication

Connecting with
Peripherals

Simple Bus
Operation

Higher
Performance

Buses

May 1, 2023© Adam Teman,

Increasing Bus Performance

• The APB example was a simple low-performance bus

• Two-cycles to carry out a single transfer

• Each transfer requires the definition of address and data

• However, this can be easily improved by:

• Pipelining transfers:

Overlap Setup and Access phases

to achieve single-clock edge transfers.

• Burst operations:

Provide a single address with

multiple (sequential) data.

• Wide bus widths:

Support 64-bit, 128-bit, or even wider buses.

30 source: gruzovikpress.ru/

May 1, 2023© Adam Teman,

Example: Advanced High-Performance Bus

• A more advanced bus defined within the AMBA specification

is the Advanced High-Performance (AHB) bus.

31

Source: ARM

HWRITE

HADDR[31:0]

HWDATA[31:0]

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

HTRANS[1:0]

HMASTLOCK

Master

HREADY

HRESP

HRESETn

HCLK

HRDATA[31:0]

HWRITE

HADDR[31:0]

HWDATA[31:0]

HSIZE[1:0]

HBURST[2:0]

HPROT[3:0]

HTRANS[1:0]

HMASTLOCK

Slave

HREADYOUT

HRESPx

HRESETn

HCLK

HRDATAx[31:0]

HSELx

HREADY

Decoder selects the correct

slave according to the address.

Multiplexor multiplexes the correct read data bus

and response from the selected slave.

May 1, 2023© Adam Teman,

AHB Basic Read Operation

• An AHB transfer consists of two (overlapped) phases:

• The address phase: Master drives address and control signals onto the bus.

• The data phase: Selected Slave responds with HRDATA.

HREADY is lowered to extend the data phase

• The next address phase is applied during the current data phase.

32

HCLK

HREADY

HADDR [31:0] Address 0 Address 1 Address 2 Address 3

CONTROL Control 0 Control 1 Control 2 Control 3

HRDATA [31:0]
Read Data 0 Read Data 1 Read Data 2

HWRITE

May 1, 2023© Adam Teman,

AHB Burst Transfer

• AHB Supports bursts of different lengths

• Master provides one address and the burst length

• Several operations (W/R) are applied to incrementing addresses

• Allows reducing the overhead of the address phase

34

Example: 4-beat Read Burst with “wait” state.
1 Provide address and burst length

Lower HWRITE

First HTRANS=NONSEQ
2 Slave reads out first address

Master is not ready so sets BUSY
3 Master sets HTRANS=SEQ

Read data (delayed) is ignored

HADDR[31:0]

HWRITE

HBURST[2:0]

HREADY

HRDATA[31:0]

HTRANS[1:0]

4 Master increments address

Slave reads out second address
5 Slave reads out third address

But lowers HREADY to delay
6 Slave reads out last address

one cycle after raising HREADY

May 1, 2023© Adam Teman,

AHB with Multiple Masters

• Arbiter controls which master

initiates current transaction.

35

May 1, 2023© Adam Teman,

Even More Performance

• To get even more performance, a bus can have the following capabilities:

• Independent read and write channels:

Simultaneous reads and writes → Improved bandwidth

• Multiple outstanding addresses:

Master can issue new transactions without waiting for previous to complete

• Out-of-order transaction completion:

A later transaction can complete before a previously launched one.

• Independent address and data operations:

If there is no strict timing relationship between address and data operations,

they can be arbitrarily separated

• These and other features are supported by the

Advanced eXtensible Interface (AXI) bus of the AMBA specification.

36

May 1, 2023© Adam Teman,

The Advanced eXtensible Interface (AXI)

• AXI is an interface specification that defines the interface of IP blocks,

rather than the interconnect itself.

• AXI supports multiple masters (Managers)

and multiple slaves (Subordinates)

• AXI uses five main channels

(i.e., groups of signals) for communication:

• Write Address (AW)

• Write Data (W)

• Write Response (B)

• Read Address (AR)

• Read Data (R)

• Read response is passed as part of Read Data

37 Source: ARM

May 1, 2023© Adam Teman,

Channel handshake

• All channels have VALID (from source)

and READY (from destination) signals

• VALID remains high until

READY signal rises.

38

(1) Source Information is ready.

VALID goes high.

(2) Destination acknowledges

it is ready to receive information.

READY goes high.

(4) Transaction is complete.

VALID goes low. Information changed.

READY goes low.

(3) Information is passed from source to

destination at rising edge of clock.

* Note that READY can be asserted before VALID

May 1, 2023© Adam Teman,

Example: Write Transaction

39

(1) ADDRESS

Handshake.

(2) DATA Handshake.

(3) Burst transaction.
WVALID remains

high.

(4) WVALID falls.

Pause in

transaction

(6) RESPONSE

handshake.

Note that SLAVE

is source.

(5) WLAST indicates

final data.

May 1, 2023© Adam Teman,

Transaction Ordering

• AXI Supports Interleaved/

Out-of-Order Transactions

• Example of a simple

transaction

• Example of a more

complex transaction

40
Source: ARM

May 1, 2023© Adam Teman,

Multi-Level Buses

• A microprocessor system often has more than one bus.

• Complexity: High speed buses are more complex (wider and implement

sophisticated protocols), often not required for simple, slower devices.

• Parallelism: Breaking up the bus can provide less contention between devices

that operate independently.

• A bridge connects two buses:

• Acts as a slave on one bus

(e.g., the fast bus)

• Acts as a master on the second

bus (e.g., the slow bus)

• Provides protocol translation

and speed synchronization.

41

Source: Wolf,

Computers as Components

May 1, 2023© Adam Teman,

AMBA Multi-Level Approach

• AMBA is designed for multi-level buses

• Commonly use a bridge from a high-speed

bus (e.g., AXI) to a low-speed bus (e.g., APB)

to accommodate low-speed peripherals.

42

PULPino architecture

https://pulp-platform.org/

Source: ARM

May 1, 2023© Adam Teman,

References

• Anand Raghunathan, ECE 695R: System-on-Chip Design

• https://nanohub.org/courses/ECE695R/o1a

• Lectures 1.7, 4.1, 4.2

• Pasricha, Dutt, “On-Chip Communication Architectures”, 2008

• Flynn, Luk “Computer System Design: System-on-Chip”, 2011

• University of Texas, EE319K Introduction to Embedded Systems

• Circuits Basics “BASICS OF UART COMMUNICATION

• ARM AMBA Bus specifications

• ARM Education Kits

• AXI Protocol Overview,

https://developer.arm.com/documentation/102202/0200/AXI-protocol-overview
43

https://nanohub.org/courses/ECE695R/o1a

	Default Section
	Slide 1: On-Chip Interconnect
	Slide 2: This Lecture

	Summary Section
	Slide 3: Lecture Overview

	Introduction
	Slide 4: On-Chip Communication
	Slide 5: Typical Computing System
	Slide 6: Communication Considerations
	Slide 7: System-level Trends
	Slide 8: Interconnect Scaling Trends
	Slide 9: Need for Communication-centric Design
	Slide 10: On-Chip Communication Architecture Design

	Connecting with Peripherals
	Slide 11: Connecting with Peripherals
	Slide 12: Connecting with Memory
	Slide 13: Synchronous SRAM Interface
	Slide 14: Scaling to a larger network
	Slide 15: System Bus
	Slide 16: Memory Mapping
	Slide 17: Bus Terminology
	Slide 18: Bus Terminology
	Slide 19: Basic Bus Topologies

	Communication
	Slide 20: Simple Bus Operation
	Slide 21: How does communication work?
	Slide 22: Handshaking
	Slide 23: Bus Arbitration
	Slide 24: A Typical Bus Operation Example
	Slide 25: Example: The Advanced Peripheral Bus (APB)
	Slide 26: APB Write Transfer
	Slide 27: APB Read Transfer
	Slide 28: APB State Diagram

	Advanced Bus Features
	Slide 29: Higher Performance Buses
	Slide 30: Increasing Bus Performance
	Slide 31: Example: Advanced High-Performance Bus
	Slide 32: AHB Basic Read Operation
	Slide 34: AHB Burst Transfer
	Slide 35: AHB with Multiple Masters
	Slide 36: Even More Performance
	Slide 37: The Advanced eXtensible Interface (AXI)
	Slide 38: Channel handshake
	Slide 39: Example: Write Transaction
	Slide 40: Transaction Ordering
	Slide 41: Multi-Level Buses
	Slide 42: AMBA Multi-Level Approach
	Slide 43: References

