Digital Integrated Circuits (83-313) Lecture 4: Design Metrics

28 April 2020

Bar-Ilan University אוניברסיטת בר-אילן

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email <u>adam.teman@biu.ac.il</u> and I will address this as soon as possible.

Lecture Outline

1 2 3 Design Abstraction Design Metrics Integrated Circuit Design Abstraction	Design	Abstraction 2 Cost of an Integrated Circuit	ninder
Emerging Narcacaled Tresported Clicults and Systems Lates	Bar-Ilan University אוניברסיטת בר-איק אוניברסיטת בר-איק	socialed Latis and Systems Latis	Bar-Ilan University אוניברסיטת בר-אילן
1 2 Cost of an Design Abstraction Design Metrics Integrated Circuit			
Cost of an Integrated (Circuit		
22 Energing Narcacalid Transported Gicults and Systems Lates	Bar-Ilan University אוניברסיטת בר-אילן		

Design Abstraction

Design Abstraction Levels

© Adam Teman, 2020

Device Level Abstraction

- Fabrication Plants or *Foundries* supply a *Process Design Kit* (PDK).
- The PDK includes:
 - Devices

(Transistors, Resistors, Capacitors, Diodes)

- Layers
- Rules

- Various "Flavors" of PDKs are available, e.g.:
 - General Purpose/High Speed/Low Power
 - RF/Image Sensor
 - Flash/DRAM
 - Various number of Metal Interconnect Layers

Circuit Level Abstraction

- Using the devices supplied in the PDK, Schematics are drawn.
- Simulators, such as SPICE, are used to test and optimize the circuits.
- Various parameters (called CDF parameters) can be modified to optimize the schematic, e.g.:
 - Length and Width of transistors.
 - Number of Fingers.

Circuit Level

- Capacitances and Resistances.
- Circuits are drawn with a Layout Editor and parasitics are extracted for accurate simulation.

Gate Level Abstraction

- Drawn circuits are abstracted into a black box for use as gates.
- These gates are defined by easy to use characteristics, such as:
 - Boolean Functionality.
 - Interface (i.e. pins or ports).
 - Delay and power consumption.
 - Input and output capacitance.
 - Size and geometry.
- Once a gate is abstracted, it can be used by higher level tools, such as HDLs.

Module Level Abstraction

- Gates and other low level circuits are connected together into modules (adders, memories, etc.).
- These are tested for functionality and are abstracted for system integration.
- Analog modules are abstracted from circuit level.
- Digital modules and full systems are defined with HDLs, *instantiating* gates and modules.
- EDA tools are used to verify functionality at all depths of hierarchy.

8

System

Level

Module

Level

Gate Level

Circuit Level

Device

Level

SDIO

Timer

network IO

System Level Abstraction

- Architectural design defines high level abstractions to build a system.
- This abstraction level defines:
 - Registers
 - Instruction Sets
 - Control Blocks
 - Buses
 - etc.

Device Level

- Systems are implemented with HDLs and functionality is verified with logical verification.
- System are defined to comply with standards and implement protocols.

AUDIO Output

12C

Mat

System Level

Accelerati

Dual Core

ARM11

ARM 11

Icache

Deache

L2 Cache

Controller

USB 2.0

cavium.com

PureVu

Video Processo

Audio

Higher Level Abstraction

- Programmers write code in a high level programming language (C, Java, Perl, etc.)
- A Compiler translates the code into an Assembly language.
 - Compilers try to optimize the instructions according to the actual architecture they are compiling to.
- An Assembler translates the Assembly into Machine Language (i.e. 0's and 1's).

00100000 01100001 01101100 01 00001101 00001010 00100000 00

Design Metrics - Reminder

There's No Free Lunch!

 Remember, the job of a VLSI designer is to understand, design and optimize the *trade-offs* between:

- In this section, we will go over the main design metrics for evaluating these design aspects.
- You can rarely improve all these factors simultaneously.

Performance Metrics

Performance

- When measuring performance, we usually use:
 - Propagation delay t_{pd}
 - Rise/Fall time t_r/t_f

Performance

Performance Metrics

Performance

- Based on our derivation of optimal load driving and Logical Effort, the performance of a gate is often given in terms of "Fan out of 4" (FO4).
- How would we measure FO4 in a simulation?

How to measure FO4 delay

Power Metrics

Power

- When discussing *power*, we generally mean the *average power* consumption of a component.
 - Other times we may discuss
 peak power, but this is less common.
- The power consumption is usually decomposed into three factors:
 - Dynamic Power, which is essentially the energy consumed during a switching operation.
 - Static Power, which is usually caused by leakage currents in steady states.
 - Short Circuit Power, which is the component of dynamic power that is due to direct currents between the supply rails.

$$P_{av} = \frac{1}{T} \int_{0}^{T} p(t) dt = \frac{V_{supply}}{T} \int_{0}^{T} i_{supply}(t) dt$$
$$P_{peak} = i_{peak} V_{supply} = \max\left[p(t)\right]$$

 \sum

Dynamic Power

• The energy required to charge a capacitive node to V_{DD} is approximately:

$$E_{LH} = C_{switch} V_{DD}^2$$

- Therefore, if a circuit is operated at frequency f, the dynamic power can be written as: $P_{dynamic} = f \cdot C_{switch} V_{DD}^2$
- However, not all of the circuit capacitance switches during every cycle. The percentage of capacitance that switches will be called the activity factor α , resulting in:

$$P_{dynamic} = \alpha \cdot f \cdot C_{total} V_{DD}^2$$

Static and Short Circuit Power

- Both static and short circuit power are caused by current flowing between the supply rails.
 - Static power is due to leakage or static currents in the steady state of a circuit.
 - Short circuit power is due to low resistive paths between the supplies during a switching event.

Both types of consumption are unwanted and should be minimized.

18

Reliability Metrics

Reliability

- Reliability is the ability of the circuit to provide correct results during all operations throughout the lifetime of the system.
- The only measure of reliability we have learned so far is the digital noise margin metric: $NM_H = V_{OH\min} - V_{IH}$ $NM_L = V_{IL} - V_{OL\max}$ $NM = \min(NM_L, NM_H)$

We will discuss further reliability aspects later on in the course.

Cost Metrics

- The final, and often, most important, design metric is cost.
- The only cost feature we have previously considered is area/size of a transistor/gate. But we never actually quantified this in terms of prices.
- This is an important enough issue to deserve an entire section on its own.

Source: www.betterthanpants.com © Adam Teman, 2020

ver

>

Cost

The Computer Hall of Fame

Source: wikipedia

Presenting the IBM of

ersonal Computers.

The IBM Personal Computer

Source: computerhistory.org

The computer that brought computers home

INE IBM PC "IBM bringing out a personal computer

- would be like teaching an elephant to tap dance." Introduced in 1981, sold for \$1,565
- Ran on an Intel 8088 processor developed in Haifa!
 4.77 MHz, 16-256 kB

Microsoft (intel)

 Along with its release, a new operating system, called MS-DOS, introduced Microsoft to the world.

Cost of an Integrated Circuit

How much does it cost?

- In the end, it all comes down to cost.
- Cost can come in many ways, but to get a basic understanding of this concept, let us develop a simple cost model for an IC chip.

Cost of Integrated Circuits

• NRE

(non-recurrent engineering) costs

- One-time cost factor
- Design time and effort
- Mask generation

Recurrent costs

- Silicon processing, packaging, test
- Proportional to volume
- Proportional to chip area

Total Cost

Cost per IC

cost per IC = variable cost per IC +

 $\left(\frac{\text{fixed cost}}{\text{volume}}\right)$

Summary

Variable cost

Total Cost

variable $cost = \frac{die cost + package cost + test cost}{final test yield}$

 $Yield = \frac{\text{No. of good chips}}{\text{Total number of chips}} \times 100\%$

27

© Adam Teman, 2020

Some Examples (1994)

Chip	Metal layers	Line width	Wafer cost	Def./ cm ²	Area mm ²	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

From "Estimating IC Manufacturing Costs," by Linley Gwennap, Microprocessor Report, August 2, 1993, p. 15

ie Cost 💙 Dies/Wafer 💙 Defects 🔷 Summary

Add the packaging and test costs...

Chip	Die cost	Pins	Package Type	Cost	Test & Assembly	Total	Sale Price	Comment
386DX	\$4	132	QFP	\$1	\$4	\$9	\$31	Intense Competition
486 DX2	\$12	168	PGA	\$11	\$12	\$35	\$245	No Competition
Power PC 601	\$53	304	QFP	\$3	\$21	\$77	\$280	
HP PA 7100	\$73	504	PGA	\$35	\$16	\$124		
DEC Alpha	\$149	431	PGA	\$30	\$23	\$202	\$1231	Recoup R&D?
Super Sparc	\$272	293	PGA	\$20	\$34	\$326		
Pentium	\$417	273	PGA	\$19	\$37	\$473	\$965	Early in Shipments

Some actual numbers

- According to Adapteva (2014), the cost of chip development (NRE):
 - Hardware development (Engineers): \$300K \$200M
 - Software development (Engineers): \$0 \$800M
 - IP Licensing: \$0 \$10M
 - EDA Tools: \$0 \$10M
 - Chip Tapeout (mostly masks): \$100K \$3M
 - Test Development: \$5K \$1M
 - <u>TOTAL NRE</u>: \$1M \$1B

33

http://www.adapteva.com/andreas-blog/semiconductor-economics-101/

Some actual numbers

• According to Adapteva (2014), the cost per chip:

- Die Cost: \$0.1 \$1000
- Package: \$0.1 \$30
- Assembly: \$0.1 \$50
- Testing: \$0 \$10
- IP Royalty: \$0 \$2
- TOTAL Recurring Cost: \$0.3 \$1K

http://www.adapteva.com/andreas-blog/semiconductor-economics-101/

Further Reading

- J. Rabaey, "Digital Integrated Circuits" 2003, Chapter 1.3
- E. Alon, Berkeley *EE-141*, Lecture 2 (Fall 2009) http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/
- <u>http://bnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture05.pdf</u>
- ADAPTEVA http://www.adapteva.com