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Reminder: What is RTL? rete| e next b| | b

A A
|
 RTL stands for “Register Transfer Logic” Clk clk

* |n other words, it is a description of a sequential design that passes data
between registers, possible applying some logic to the data on the way.

* RTL is the synthesizeable subset of a hardware-description language

 HDLs (e.g., Verilog, VHDL, System Verilog) usually are Turing Complete
programming languages. In other words, they can “do it all”.

« But not everything can be implemented in hardware (i.e., with logic gates).
* Therefore, only a subset of the HDL is considered “Synthesizeable”

* RTL coding is not straightforward

* Veteran logic designers don’t understand why it's so complicated,
but noobs just can’t get it right until the coin finally drops.

* This lecture is to try and help you get it right, despite your intuition!




The Unforgiveable Rules

* Never put logic on reset or on the clock
* Never mix reset types
* Never create clock domain crossings

» Do Not Infer Latches
- Every if has an else \
* Full case statements
« LHS for every signal for each condition

 Assignment (always blocks)
« Combinational (always@*) =>blocking (=) assignment
« Sequential (always@posedge) - non-blocking (<=) assignment
- Always separate sequential and combinational logic
* Never assign a signal (LHS) from more than one always block.




No Logic on reset (or clock)

* The reset and clock signals are not just any signal
and they need to be handled with care
 Clock signals should only be used to clock registers
» Reset signals should only be used to reset registers

* Logic glitches are a characteristic, 0>1 |
not a design error 150 — > >>

* Any glitch on a clock or reset signal is catastrophic!
A glitch on the clock causes an unwanted (and unexpected) data sampling.
« A glitch on the reset causes flops to reset accidentally.

asSwign something = a && reset ;

0->1

» Therefore, no logic on reset and clock signals! | 5%, ...
1’b : if (b || re
next state = i




No Logic on Reset - Emphasized Example

* To provide an example of a “no no” that can easily be overlooked, let’s assume
you have an input that you want to sample at the beglnnlng of a process.

* The intuitive (wrong) way to do
it would be something like this:

 But remember that we need to map

a synchronous block to a flip flop. —

A flip flop can be reset/setto ‘0’ or ‘1’ and in is a non-constant signal.

« Therefore, the synthesizer would need to decide to create a set or reset
signal during reset, depending on the value of in. This is logic on reset!!!

* Instead, make an “initialize” state and

a “start” state: a1waysex
case state:
INIT: begin
next in = in;
next state = START;

always @ (posedge clk or negedge rst )
if ('rst))
state <= INIT;
in sampled <= 0;
else
state <= next state;
in sampled <= next in;




No Clock Domain Crossings

« Some (most) designs have more than one clock  —|ck
* These clocks may have a different source
« They may run at different frequencies

* We cannot know the phase between them - they are “asynchronous”

* You cannot have a path between asynchronous clocks, i.e.:
* This is known as a clock domain crossing

— clk2

4

ways @ (posedge clkl
<= next a;

next a

always @ (pQsedge clk2)
b <= next™\;

alwaxys Q@*
next b = a;




No Latch Inference

START: begin
next state=FINISH;
end

* The only way to “remember” a value, FINISH: begin

next state=START;

is with a register (i.e., flip flop or latch) finished = 1'b1;

end

* If we accidentally ask to remember a value, | cdce=e
a latch will be inferred

» This is due to not assigning (LHS) for all conditions .y _m
« A combinational if without an else. —
* A missing case option (and no default) T S/Wy
* An if/else/case without assignment to all LHS signals  FINISH state

* For all of the above, we have to keep the value for the non-defined condition.

* A similar problem is a missing signal in the sensitivity list
« Essentially “don’t change the output when this signal changes”
* The synthesizer may ignore this, but the simulator will adhere to it!
« Just use always@™ and this will not happen!



Default values

* To ensure no latch inference, just assign default values
for all combinatorial assignments:

« At the beginning of an always@* block
assign all LHS to a default value

« Overwrite the default value, as necessary,
oy : . ey always @*
within following if/else/case conditions e
next a = 1'b0;
b, ] ] . next b = 1'bl;
* Also, it’s good practice to provide flip flops next c = 1'b0;
with a reset value case (state)
STATEl: next a=1'bl;
always @ (posedge clk or negedge rst ) STATE2: next b=1'b0;
if (~rst ) STATES3: next c=1'bl;
state <= START;
else




And finally, seq/comb separation!

* | not only told you that this is important, but now
| have equated it to the killing curse, Avada Kedavra. /i

* Go . gle will give you piles of HDL code that does not follow g '
this guideline. But | promise you that if you don’t follow it, N
you will have to rewrite your code.

* The guideline is simple:
« Sequential logic is defined within simple always@posedge
blocks that map directly to standard cells from the library.

« Everything else (i.e., combinatorial logic) is
defined using assigns and always@* blocks.

* In other words, there is a clear separation A A

between sequential and combinatorial logic. Ik Clk
C

always@posedge always@posedge



The “State” of a system St _—

. variables value
* A sequential system has state
« “State” is the minimum set of variables required to A ~:Dd\(
know what all values in the system are. B—

* Therefore, the state is the collection of all the registers
along with the primary inputs to the design.

« Based on the state of the system, we can write a Boolean
function (truth table) for every internal value in our design

state outputs “EEEEWEEEE

l l 00 00 0 O
=L i 00000 1|1 1 1 00
S3 £ 00001 0|00 0 1 1
54 } F4
Primary SO F5 i
T\ A plojojajaln @fifali|a




The “State” of a system

* Note that the entire set of registers comprises the state

* In other words, the output functions (F1-F5 on the previous slide), can either be:
* Primary outputs of the design (very few of these)
 |Inputs to state registers

 So the combinatorial logic is fed back into the state registers!
* This will be sampled

on the rising edge of
the clock. L (\ \
S1 F1
* |n other words, the F2 |
combinatorial logic N F|3:4 Primary
: | Output
output is the — N —
“next state” Primary D
Input next_state
A
N

11 |
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Separating state and nexi_state

 The sequential part of our design is now very clear.

* |tis the set of registers that make up the state of our design.

* These registers should be written out clearly:

always @ (posedge clk or negedge rst n)
if ('rst n)
state <= RESET STATE;
else
state <= next state;

7

clk

always@posedge

* Everything else calculates the next_state and is combinatorial

always @*
case (state)
STATEl: next state = STATE2;

clk
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reset

* It is important to differentiate between
“state” of the design and the states that
make up a finite state machine (FSM)

* The states of an FSM are a good design
tool for creating sequential logic.

* However, the states of the FSM are not the entire state of the design.

* For example, looking at the simple counter from the lecture
* There are four states in the state machine
* This requires four registers for one hot encoding

« But the design also needs registers for storing the
current counter value (e.g., 8 registers for an 8-bit counter) counter

* Therefore, the state of the design includes registers
four “state” registers and eight “count” registers. =




“Fixing" the example from the lecture

* In the example code, | “cheated” and put
logic in the count registers’ sequential block

« This was really “simple logic”,
but don’t do it (until you're a veteran designer)

* Only write sequential code that directly maps
to a flip flop from the standard cell library

* | should have written this as such:

always @ (posedge clk or negedge rst n)
if (!'rst n)
count <='b0;
else
if (state==CNTUP) g
count <= count+l'bl;
else if (state==CNTDN)
count <= count-1'bl;

alway§ @* neXToctgut:ﬁtvsg (I:Inolt:ﬁ[“rflenegd = alv_vays @ (posedge clk or negedge rst n)
begin . » if ('rst _n)
next_count = count; assign it for every condition count <='b0 : =
if (state==CNTUP) else if (count_en) RST
next count = count+l'bl; count <= next count; —
else if (state==CNTDN) D Q
next_count = count-1'bl; Load enabile flip flops are part of EN
e the standard cell library and you
assign count en=(state==CNTUP) | (state==CNTDN) ; are encouraged o S e /\

ZF




15

No mulli-driven nefts

* Never assign a signal from two always blocks (or “assign”s)

* This results in two logic blocks driving the same net LHSA
* CMOS cannot tolerate multi-driven nets @K
* If you follow the guidelines, this is easy to check LHS2

« Each register should have its own always@posedge block
 Signals can appear in the LHS of only one always@* block
« Signals can appear in the RHS all over the place

* That being said, watch out for combinatorial loops
« A combinatorial signal cannot be assigned (LHS) by itself

 |In other words, it cannot appear on both LHS and RHS in
the same logic path (even upstream several stages)!

RHS LHS
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Code Verification Checklist

 To summarize, after writing your code, go over this checklist:
Clock and reset signals do not appear on the RHS of any always@™* or assigns
dNo clock domain crossing occurs.
JAIll combinatorial ifs have a corresponding else.
JAIll case options are covered and/or a default case is provided.
JAIILHS in an if/else/case appear are assigned for all conditions.
AN LHS in an assign/always@™* are an LHS only in that block.
dAIll combinational sensitivity lists use the always@* notation.
AIl sequential blocks have (posedge clk or negedge rst_) notation.

No logic in sequential blocks, i.e., always@posedge blocks map directly to a
flip flop from the standard cell library

Check for combinatorial loops, i.e., no LHS is affected by itself in RHS
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Additional useful tips

 Use System Verilog logic type:
 |nstead of screwing around with Verilog’'s wire and reg types, use SV's logic.

* Use System Verilog always blocks:
« Use always comb instead of always@* (also verifies no multi-driven!)
 Use always ff instead of always@posedge (also verifies no accidental latch)

* Initialize your LHS values
* Provide an initial value for each LHS in an always@* block
* Always use a default case value

* Run synthesis or linter:
« Synthesize your design and go over the errors and warnings.
« Use a linter to make sure your code is well-written.
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References

* Hundreds (maybe thousands) of homework assignments handed in by noob
designers...

» ...and J. K. Rowling, of course!
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