Digital VLSI Design:
From RTL to GDS

Lecture 3:
How to code Synthesizeable RTL

Prof. Adam Teman
EnICS Lalbs, Bar llan University

adam.teman@biu.ac.il

E N “CS 20 June 202 The Alexander Kofkin NA

Emerging Nanoscaled FaCUIty Of Englneerlng

Integrated Circuits and Systems Labs

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited,;
however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,
please feel free to email and | will address this as soon as possible.



mailto:adam.teman@biu.ac.il
mailto:adam.teman@biu.ac.il

Reminder: What is RTL? rete| e next b| | b

A A
|
 RTL stands for “Register Transfer Logic” Clk clk

* |n other words, it is a description of a sequential design that passes data
between registers, possible applying some logic to the data on the way.

* RTL is the synthesizeable subset of a hardware-description language

 HDLs (e.g., Verilog, VHDL, System Verilog) usually are Turing Complete
programming languages. In other words, they can “do it all”.

« But not everything can be implemented in hardware (i.e., with logic gates).
* Therefore, only a subset of the HDL is considered “Synthesizeable”

* RTL coding is not straightforward

* Veteran logic designers don’t understand why it's so complicated,
but noobs just can’t get it right until the coin finally drops.

* This lecture is to try and help you get it right, despite your intuition!




The Unforgiveable Rules

* Never put logic on reset or on the clock
* Never mix reset types
* Never create clock domain crossings

» Do Not Infer Latches
- Every if has an else \
* Full case statements
« LHS for every signal for each condition

 Assignment (always blocks)
« Combinational (always@*) =>blocking (=) assignment
« Sequential (always@posedge) - non-blocking (<=) assignment
- Always separate sequential and combinational logic
* Never assign a signal (LHS) from more than one always block.




No Logic on reset (or clock)

* The reset and clock signals are not just any signal
and they need to be handled with care
 Clock signals should only be used to clock registers
» Reset signals should only be used to reset registers

* Logic glitches are a characteristic, 0>1 |
not a design error 150 — > >>

* Any glitch on a clock or reset signal is catastrophic!
A glitch on the clock causes an unwanted (and unexpected) data sampling.
« A glitch on the reset causes flops to reset accidentally.

asSwign something = a && reset ;

0->1

» Therefore, no logic on reset and clock signals! | 5%, ...
1’b : if (b || re
next state = i




No Logic on Reset - Emphasized Example

* To provide an example of a “no no” that can easily be overlooked, let’s assume
you have an input that you want to sample at the beglnnlng of a process.

* The intuitive (wrong) way to do
it would be something like this:

 But remember that we need to map

a synchronous block to a flip flop. —

A flip flop can be reset/setto ‘0’ or ‘1’ and in is a non-constant signal.

« Therefore, the synthesizer would need to decide to create a set or reset
signal during reset, depending on the value of in. This is logic on reset!!!

* Instead, make an “initialize” state and

a “start” state: a1waysex
case state:
INIT: begin
next in = in;
next state = START;

always @ (posedge clk or negedge rst )
if ('rst))
state <= INIT;
in sampled <= 0;
else
state <= next state;
in sampled <= next in;




No Clock Domain Crossings

« Some (most) designs have more than one clock  —|ck
* These clocks may have a different source
« They may run at different frequencies

* We cannot know the phase between them - they are “asynchronous”

* You cannot have a path between asynchronous clocks, i.e.:
* This is known as a clock domain crossing

— clk2

4

ways @ (posedge clkl
<= next a;

next a

always @ (pQsedge clk2)
b <= next™\;

alwaxys Q@*
next b = a;




No Latch Inference

START: begin
next state=FINISH;
end

* The only way to “remember” a value, FINISH: begin

next state=START;

is with a register (i.e., flip flop or latch) finished = 1'b1;

end

* If we accidentally ask to remember a value, | cdce=e
a latch will be inferred

» This is due to not assigning (LHS) for all conditions .y _m
« A combinational if without an else. —
* A missing case option (and no default) T S/Wy
* An if/else/case without assignment to all LHS signals  FINISH state

* For all of the above, we have to keep the value for the non-defined condition.

* A similar problem is a missing signal in the sensitivity list
« Essentially “don’t change the output when this signal changes”
* The synthesizer may ignore this, but the simulator will adhere to it!
« Just use always@™ and this will not happen!



Default values

* To ensure no latch inference, just assign default values
for all combinatorial assignments:

« At the beginning of an always@* block
assign all LHS to a default value

« Overwrite the default value, as necessary,
oy : . ey always @*
within following if/else/case conditions e
next a = 1'b0;
b, ] ] . next b = 1'bl;
* Also, it’s good practice to provide flip flops next c = 1'b0;
with a reset value case (state)
STATEl: next a=1'bl;
always @ (posedge clk or negedge rst ) STATE2: next b=1'b0;
if (~rst ) STATES3: next c=1'bl;
state <= START;
else




And finally, seq/comb separation!

* | not only told you that this is important, but now
| have equated it to the killing curse, Avada Kedavra. /i

* Go . gle will give you piles of HDL code that does not follow g '
this guideline. But | promise you that if you don’t follow it, N
you will have to rewrite your code.

* The guideline is simple:
« Sequential logic is defined within simple always@posedge
blocks that map directly to standard cells from the library.

« Everything else (i.e., combinatorial logic) is
defined using assigns and always@* blocks.

* In other words, there is a clear separation A A

between sequential and combinatorial logic. Ik Clk
C

always@posedge always@posedge



The “State” of a system St _—

. variables value
* A sequential system has state
« “State” is the minimum set of variables required to A ~:Dd\(
know what all values in the system are. B—

* Therefore, the state is the collection of all the registers
along with the primary inputs to the design.

« Based on the state of the system, we can write a Boolean
function (truth table) for every internal value in our design

state outputs “EEEEWEEEE

l l 00 00 0 O
=L i 00000 1|1 1 1 00
S3 £ 00001 0|00 0 1 1
54 } F4
Primary SO F5 i
T\ A plojojajaln @fifali|a




The “State” of a system

* Note that the entire set of registers comprises the state

* In other words, the output functions (F1-F5 on the previous slide), can either be:
* Primary outputs of the design (very few of these)
 |Inputs to state registers

 So the combinatorial logic is fed back into the state registers!
* This will be sampled

on the rising edge of
the clock. L (\ \
S1 F1
* |n other words, the F2 |
combinatorial logic N F|3:4 Primary
: | Output
output is the — N —
“next state” Primary D
Input next_state
A
N

11 |



12

Separating state and nexi_state

 The sequential part of our design is now very clear.

* |tis the set of registers that make up the state of our design.

* These registers should be written out clearly:

always @ (posedge clk or negedge rst n)
if ('rst n)
state <= RESET STATE;
else
state <= next state;

7

clk

always@posedge

* Everything else calculates the next_state and is combinatorial

always @*
case (state)
STATEl: next state = STATE2;

clk




13

reset

* It is important to differentiate between
“state” of the design and the states that
make up a finite state machine (FSM)

* The states of an FSM are a good design
tool for creating sequential logic.

* However, the states of the FSM are not the entire state of the design.

* For example, looking at the simple counter from the lecture
* There are four states in the state machine
* This requires four registers for one hot encoding

« But the design also needs registers for storing the
current counter value (e.g., 8 registers for an 8-bit counter) counter

* Therefore, the state of the design includes registers
four “state” registers and eight “count” registers. =




“Fixing" the example from the lecture

* In the example code, | “cheated” and put
logic in the count registers’ sequential block

« This was really “simple logic”,
but don’t do it (until you're a veteran designer)

* Only write sequential code that directly maps
to a flip flop from the standard cell library

* | should have written this as such:

always @ (posedge clk or negedge rst n)
if (!'rst n)
count <='b0;
else
if (state==CNTUP) g
count <= count+l'bl;
else if (state==CNTDN)
count <= count-1'bl;

alway§ @* neXToctgut:ﬁtvsg (I:Inolt:ﬁ[“rflenegd = alv_vays @ (posedge clk or negedge rst n)
begin . » if ('rst _n)
next_count = count; assign it for every condition count <='b0 : =
if (state==CNTUP) else if (count_en) RST
next count = count+l'bl; count <= next count; —
else if (state==CNTDN) D Q
next_count = count-1'bl; Load enabile flip flops are part of EN
e the standard cell library and you
assign count en=(state==CNTUP) | (state==CNTDN) ; are encouraged o S e /\

ZF




15

No mulli-driven nefts

* Never assign a signal from two always blocks (or “assign”s)

* This results in two logic blocks driving the same net LHSA
* CMOS cannot tolerate multi-driven nets @K
* If you follow the guidelines, this is easy to check LHS2

« Each register should have its own always@posedge block
 Signals can appear in the LHS of only one always@* block
« Signals can appear in the RHS all over the place

* That being said, watch out for combinatorial loops
« A combinatorial signal cannot be assigned (LHS) by itself

 |In other words, it cannot appear on both LHS and RHS in
the same logic path (even upstream several stages)!

RHS LHS




16

Code Verification Checklist

 To summarize, after writing your code, go over this checklist:
Clock and reset signals do not appear on the RHS of any always@™* or assigns
dNo clock domain crossing occurs.
JAIll combinatorial ifs have a corresponding else.
JAIll case options are covered and/or a default case is provided.
JAIILHS in an if/else/case appear are assigned for all conditions.
AN LHS in an assign/always@™* are an LHS only in that block.
dAIll combinational sensitivity lists use the always@* notation.
AIl sequential blocks have (posedge clk or negedge rst_) notation.

No logic in sequential blocks, i.e., always@posedge blocks map directly to a
flip flop from the standard cell library

Check for combinatorial loops, i.e., no LHS is affected by itself in RHS



17

Additional useful tips

 Use System Verilog logic type:
 |nstead of screwing around with Verilog’'s wire and reg types, use SV's logic.

* Use System Verilog always blocks:
« Use always comb instead of always@* (also verifies no multi-driven!)
 Use always ff instead of always@posedge (also verifies no accidental latch)

* Initialize your LHS values
* Provide an initial value for each LHS in an always@* block
* Always use a default case value

* Run synthesis or linter:
« Synthesize your design and go over the errors and warnings.
« Use a linter to make sure your code is well-written.



18

References

* Hundreds (maybe thousands) of homework assignments handed in by noob
designers...

» ...and J. K. Rowling, of course!




	Default Section
	Slide 1: Digital VLSI Design: From RTL to GDS  Lecture 3:  How to code Synthesizeable RTL
	Slide 2: Reminder: What is RTL?
	Slide 3: The Unforgiveable Rules
	Slide 4: No Logic on reset (or clock)
	Slide 5: No Logic on Reset – Emphasized Example
	Slide 6: No Clock Domain Crossings
	Slide 7: No Latch Inference
	Slide 8: Default values
	Slide 9: And finally, seq/comb separation!
	Slide 10: The “State” of a system
	Slide 11: The “State” of a system
	Slide 12: Separating state and next_state
	Slide 13: Note about “state machines”
	Slide 14: “Fixing” the example from the lecture
	Slide 15: No multi-driven nets
	Slide 16: Code Verification Checklist
	Slide 17: Additional useful tips
	Slide 18: References


