
20 June 2025

adam.teman@biu.ac.il

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design:
From RTL to GDS

Lecture 3:

How to code Synthesizeable RTL
Prof. Adam Teman

EnICS Labs, Bar Ilan University

adam.teman@biu.ac.il

mailto:adam.teman@biu.ac.il
mailto:adam.teman@biu.ac.il

June 20, 2025© Adam Teman, 2

Reminder: What is RTL?

• RTL stands for “Register Transfer Logic”
• In other words, it is a description of a sequential design that passes data

between registers, possible applying some logic to the data on the way.

• RTL is the synthesizeable subset of a hardware-description language
• HDLs (e.g., Verilog, VHDL, System Verilog) usually are Turing Complete

programming languages. In other words, they can “do it all”.

• But not everything can be implemented in hardware (i.e., with logic gates).

• Therefore, only a subset of the HDL is considered “Synthesizeable”

• RTL coding is not straightforward
• Veteran logic designers don’t understand why it’s so complicated,

but noobs just can’t get it right until the coin finally drops.

• This lecture is to try and help you get it right, despite your intuition!

clk

next_a a next_b

clk

b

June 20, 2025© Adam Teman, 3

The Unforgiveable Rules

• Never put logic on reset or on the clock
• Never mix reset types

• Never create clock domain crossings

• Do Not Infer Latches
• Every if has an else

• Full case statements

• LHS for every signal for each condition

• Assignment (always blocks)
• Combinational (always@*) →blocking (=) assignment

• Sequential (always@posedge) → non-blocking (<=) assignment

• Always separate sequential and combinational logic

• Never assign a signal (LHS) from more than one always block.

Illustrations by Carella Art

June 20, 2025© Adam Teman, 4

No Logic on reset (or clock)

• The reset and clock signals are not just any signal
and they need to be handled with care
• Clock signals should only be used to clock registers

• Reset signals should only be used to reset registers

• Logic glitches are a characteristic,
not a design error

• Any glitch on a clock or reset signal is catastrophic!
• A glitch on the clock causes an unwanted (and unexpected) data sampling.

• A glitch on the reset causes flops to reset accidentally.

• Therefore, no logic on reset and clock signals!

0→1

1→0

0→1

1→→→0

glitch

assign something = a && reset ;

always@*

 case (state)

 1’b1011: if (b || reset)

 next_state = idle;

June 20, 2025© Adam Teman, 5

No Logic on Reset – Emphasized Example

• To provide an example of a “no no” that can easily be overlooked, let’s assume
you have an input that you want to sample at the beginning of a process.
• The intuitive (wrong) way to do

it would be something like this:

• But remember that we need to map
a synchronous block to a flip flop.
A flip flop can be reset/set to ‘0’ or ‘1’ and in is a non-constant signal.

• Therefore, the synthesizer would need to decide to create a set or reset
signal during reset, depending on the value of in. This is logic on reset!!!

• Instead, make an “initialize” state and
a “start” state:

input in;

reg in_sampled;

always @(posedge clk or negedge rst_)

 if (!rst_) in_sampled <= in;

 else ...

always@*

 case state:

 INIT: begin

 next_in = in;

 next_state = START;

 ...

always @(posedge clk or negedge rst_)

 if (!rst_)

 state <= INIT;

 in_sampled <= 0;

 else

 state <= next_state;

 in_sampled <= next_in;

June 20, 2025© Adam Teman, 6

No Clock Domain Crossings

• Some (most) designs have more than one clock
• These clocks may have a different source

• They may run at different frequencies

• We cannot know the phase between them → they are “asynchronous”

• You cannot have a path between asynchronous clocks, i.e.:
• This is known as a clock domain crossing

clk1

next_a a next_b

clk2

b

always @(posedge clk1)

 a <= next_a;

always @(posedge clk2)

 b <= next_b;

always @*

 next_b = a;

clk1

clk2

June 20, 2025© Adam Teman, 7

No Latch Inference

• The only way to “remember” a value,
is with a register (i.e., flip flop or latch)
• If we accidentally ask to remember a value,

a latch will be inferred

• This is due to not assigning (LHS) for all conditions
• A combinational if without an else.

• A missing case option (and no default)

• An if/else/case without assignment to all LHS signals

• For all of the above, we have to keep the value for the non-defined condition.

• A similar problem is a missing signal in the sensitivity list
• Essentially “don’t change the output when this signal changes”

• The synthesizer may ignore this, but the simulator will adhere to it!

• Just use always@* and this will not happen!

always @*

 case (state)

 START: begin

 next_state=FINISH;

 end

 FINISH: begin

 next_state=START;

 finished = 1’b1;

 end

 endcase

finishedSTART

FINISH1’b1

FINISH
state

June 20, 2025© Adam Teman, 8

Default values

• To ensure no latch inference, just assign default values
for all combinatorial assignments:
• At the beginning of an always@* block

assign all LHS to a default value

• Overwrite the default value, as necessary,
within following if/else/case conditions

• Also, it’s good practice to provide flip flops
with a reset value

always @*

 begin

 next_a = 1’b0;

 next_b = 1’b1;

 next_c = 1’b0;

 case (state)

 STATE1: next_a=1’b1;

 STATE2: next_b=1’b0;

 STATE3: next_c=1’b1;

 ...

 ...

always @(posedge clk or negedge rst_)

 if (~rst_)

 state <= START;

 else

 ...

June 20, 2025© Adam Teman, 9

And finally, seq/comb separation!

• I not only told you that this is important, but now
I have equated it to the killing curse, Avada Kedavra.

• Google will give you piles of HDL code that does not follow
this guideline. But I promise you that if you don’t follow it,
you will have to rewrite your code.

• The guideline is simple:
• Sequential logic is defined within simple always@posedge

blocks that map directly to standard cells from the library.

• Everything else (i.e., combinatorial logic) is
defined using assigns and always@* blocks.

• In other words, there is a clear separation
between sequential and combinatorial logic.

clk clk

always@posedge always@posedge

always@*

June 20, 2025© Adam Teman, 10

The “State” of a system

• A sequential system has state
• “State” is the minimum set of variables required to

know what all values in the system are.

• Therefore, the state is the collection of all the registers
along with the primary inputs to the design.

• Based on the state of the system, we can write a Boolean
function (truth table) for every internal value in our design

state outputs

F1
F2

S1
S2
S3
S4
S5

F3
F4

F5Primary

Input
A

A S1 S2 S3 S4 S5 F1 F2 F3 F4 F5

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1

1 1 1 1 1 1 0 1 0 1 0

A

B
Y

State

variables
Implicit

value

June 20, 2025© Adam Teman, 11

The “State” of a system

• Note that the entire set of registers comprises the state

• In other words, the output functions (F1-F5 on the previous slide), can either be:
• Primary outputs of the design (very few of these)

• Inputs to state registers

• So the combinatorial logic is fed back into the state registers!

• This will be sampled
on the rising edge of
the clock.
• In other words, the

combinatorial logic
output is the
“next state”

S1
S2
S3
S4
S5

Primary

Input
A

Primary

Output

F1
F2

F3
F4

F5

state next_state

June 20, 2025© Adam Teman, 12

Separating state and next_state

• The sequential part of our design is now very clear.
• It is the set of registers that make up the state of our design.

• These registers should be written out clearly:

• Everything else calculates the next_state and is combinatorial

always @(posedge clk or negedge rst_n)

 if (!rst_n)

 state <= RESET_STATE;

 else

 state <= next_state;

always @*

 case (state)

 STATE1: next_state = STATE2;

 ...

 ...

clk

always@posedge

clk

always@*

June 20, 2025© Adam Teman, 13

Note about “state machines”

• It is important to differentiate between
“state” of the design and the states that
make up a finite state machine (FSM)
• The states of an FSM are a good design

tool for creating sequential logic.

• However, the states of the FSM are not the entire state of the design.

• For example, looking at the simple counter from the lecture
• There are four states in the state machine

• This requires four registers for one hot encoding

• But the design also needs registers for storing the
current counter value (e.g., 8 registers for an 8-bit counter)

• Therefore, the state of the design includes
four “state” registers and eight “count” registers.

S1

S2

S3

S4

FSM

state

counter

registers

June 20, 2025© Adam Teman, 14

“Fixing” the example from the lecture

• In the example code, I “cheated” and put
logic in the count registers’ sequential block
• This was really “simple logic”,

but don’t do it (until you’re a veteran designer)

• Only write sequential code that directly maps
to a flip flop from the standard cell library

• I should have written this as such:

always @*

 begin

 next_count = count;

 if (state==CNTUP)

 next_count = count+1'b1;

 else if (state==CNTDN)

 next_count = count-1’b1;

 end

assign count_en=(state==CNTUP)|(state==CNTDN);

always @(posedge clk or negedge rst_n)

 if (!rst_n)

 count <=’b0;

 else if (count_en)

 count <= next_count;

Note that by initializing

next_count, we don’t need to

assign it for every condition

Load enable flip flops are part of

the standard cell library and you

are encouraged to use them.

D

EN

Q

RST_

always @(posedge clk or negedge rst_n)

 if (!rst_n)

 count <=’b0;

 else

 if (state==CNTUP)

 count <= count+1'b1;

 else if (state==CNTDN)

 count <= count-1'b1;

June 20, 2025© Adam Teman, 15

No multi-driven nets

• Never assign a signal from two always blocks (or “assign”s)
• This results in two logic blocks driving the same net

• CMOS cannot tolerate multi-driven nets

• If you follow the guidelines, this is easy to check
• Each register should have its own always@posedge block

• Signals can appear in the LHS of only one always@* block

• Signals can appear in the RHS all over the place

• That being said, watch out for combinatorial loops
• A combinatorial signal cannot be assigned (LHS) by itself

• In other words, it cannot appear on both LHS and RHS in
the same logic path (even upstream several stages)!

LHS1

LHS2

LHSRHS

June 20, 2025© Adam Teman, 16

Code Verification Checklist

• To summarize, after writing your code, go over this checklist:
❑Clock and reset signals do not appear on the RHS of any always@* or assigns

❑No clock domain crossing occurs.

❑All combinatorial ifs have a corresponding else.

❑All case options are covered and/or a default case is provided.

❑All LHS in an if/else/case appear are assigned for all conditions.

❑An LHS in an assign/always@* are an LHS only in that block.

❑All combinational sensitivity lists use the always@* notation.

❑All sequential blocks have (posedge clk or negedge rst_) notation.

❑No logic in sequential blocks, i.e., always@posedge blocks map directly to a
flip flop from the standard cell library

❑Check for combinatorial loops, i.e., no LHS is affected by itself in RHS

June 20, 2025© Adam Teman, 17

Additional useful tips

• Use System Verilog logic type:
• Instead of screwing around with Verilog’s wire and reg types, use SV’s logic.

• Use System Verilog always blocks:
• Use always_comb instead of always@* (also verifies no multi-driven!)

• Use always_ff instead of always@posedge (also verifies no accidental latch)

• Initialize your LHS values
• Provide an initial value for each LHS in an always@* block

• Always use a default case value

• Run synthesis or linter:
• Synthesize your design and go over the errors and warnings.

• Use a linter to make sure your code is well-written.

June 20, 2025© Adam Teman, 18

References

• Hundreds (maybe thousands) of homework assignments handed in by noob
designers…

• …and J. K. Rowling, of course!

	Default Section
	Slide 1: Digital VLSI Design: From RTL to GDS Lecture 3: How to code Synthesizeable RTL
	Slide 2: Reminder: What is RTL?
	Slide 3: The Unforgiveable Rules
	Slide 4: No Logic on reset (or clock)
	Slide 5: No Logic on Reset – Emphasized Example
	Slide 6: No Clock Domain Crossings
	Slide 7: No Latch Inference
	Slide 8: Default values
	Slide 9: And finally, seq/comb separation!
	Slide 10: The “State” of a system
	Slide 11: The “State” of a system
	Slide 12: Separating state and next_state
	Slide 13: Note about “state machines”
	Slide 14: “Fixing” the example from the lecture
	Slide 15: No multi-driven nets
	Slide 16: Code Verification Checklist
	Slide 17: Additional useful tips
	Slide 18: References

