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o o o
What is Logic Synthesis? nodule counter
input clk, rstn, load,
input [1:0] in,

» Synthesis is the process that converts RTL into a technology- . output reg “iﬁ] out);
specific gate-level netlist, optimized for a set of pre-defined e L bes
constraints. else if (load) out <= in;

. 1 t <= out 1;

» You start with: endmodule

* Abehavioral RTL design

- A standard cell library Standard Cell Library juus
» A set of design constraints

* You finish with:

ISOYIUAS

<

 Agate-level netlist, mapped to the module counter ( clk, rstn, load, in, out );
c input [1:0] in;
standard cell library oops [ae0]
] input clk, rstn, load;
* (For FPGAs: LUTs, flip-flops, and RAM blocks) wire N6, N7, n5, né, n7, ng;
» Hopefully, it's also efficient in terms of speed, FFPQL out_reg 1 (.D(N7),.CK(clk),.Q(out[1]));
FFPQ1l out_reg © (.D(N6),.CK(clk),.Q(out[@]));
area, powetr, etc. NAN2D1 U8 (.Al(out[@]),.A2(n5),.Z(n8));

NAN2D1 U9 (.A1(n5),.A2(n7),.Z(n6));
INVD1 U1e (.A(load),.Z(n5));
0A211D1 U11 (.A1(in[@]),.A2(n5),.B(rstn),.C(n8),.Z(N6));
0A211D1 U12 (.A1(in[1]),.A2(n5),.B(rstn),.C(n6),.Z(N7));
EXNOR2D1 U13 (.Al(out[1]),.A2(out[0]),.Z(n7));

endmodule




What is Logic Synthesis?

* Given: Finite-State Machine F(X, Y, Z, 4, 9)
where:
« X! Input alphabet
« Y: Output alphabet
« Z: Set of internal states
e . X xZ=>Z (nextstate function)
« 0. XxZ=2>Y (output function)

* Target: Circuit C(G, W) where:
« G: set of circuit components

G = {Boolean gates, flip-flops, etc.}
« W: set of wires connecting G

s




Motivation

« Why perform logic synthesis?
« Automatically manages many details of the design process:
* Fewer bugs
* Improves productivity

« Abstracts the design data (HDL description) from any particular implementation technology

« Designs can be re-synthesized targeting different chip technologies;
« E.g.: firstimplement in FPGA then later in ASIC

* |In some cases, leads to a more optimal design than could be achieved by
manual means (e.g.: logic optimization)

* Why not logic synthesis?

 May lead to less than optimal designs in some cases



Simple Example

module foo (a,b,s0,sl,f);
input [3:0] a;
input [3:0] b;
input s0,s1;
output [3:0] f;
reg f;

endmodule




Goals of Logic Synthesis

* Minimize area
 |n terms of literal count, cell count, register count, etc.

* Minimize power
* In terms of switching activity in individual gates,
deactivated circuit blocks, etc.

« Maximize performance
* |In terms of maximal clock frequency of synchronous
systems, throughput for asynchronous systems
» Any combination of the above

« Combined with different weights

« Formulated as a constraint problem
* “Minimize area for a clock speed > 300MHZz"

* More global objectives

« Feedback from layout
« Actual physical sizes, delays, placement and routing



How does it work?

Variety of general and ad-hoc (special case) methods:

* Instantiation:
* Maintains a library of primitive modules (AND, OR, etc.) and user defined modules

“Macro expansion”/substitution:

« Alarge set of language operators (+, -, Boolean operators, etc.)
and constructs (if-else, case) expand into special circuits

Inference:

» Special patterns are detected in the language description and treated specially
(e.g.,: inferring memory blocks from variable declaration and read/write statements, FSM detection
and generation from always@(posedge clk) blocks)

Logic optimization:
» Boolean operations are grouped and optimized with logic minimization techniques

Structural reorganization:

« Advanced technigques including sharing of operators, and retiming of circuits (moving FFs), and
others



Basic Synthesis Flow

 Syntax Analysis:
« Read in HDL files and check for syntax errors.

read hdl -verilog sourceCode/toplevel.v

* Library Definition:

 Provide standard cells and IP Libraries.

read libs “/design/data/my_ fab/digital/lib/TT1V25C.1lib”

- Elaboration and Binding:
« Convert RTL into Boolean structure.
 State reduction, encoding, register infering.
« Bind all leaf cells to provided libraries.

elaborate toplevel

« Constraint Definition:
« Define clock frequency and other design constraints.

read sdc sdc/constraints.sdc

Syntax Analysis

v

Library Definition

v

Elaboration and
L Binding )

v

[ Constraint Definition J




Basic Synthesis Flow

 Pre-mapping Optimization:
« Map to generic cells and perform additional heuristics.

Syntax Analysis

v

Library Definition

syn_generic

» Technology Mapping:

« Map generic logic to technology libraries.

v

Elaboration and

syn_map

 Post-mapping Optimization:
* |terate over design, changing gate sizes, Boolean literals,
architectural approaches to try and meet constraints.

syn_opt

L Binding

v

Constraint Definition

v

Pre-mapping
| Optimization

v

Technology Mapping

* Report and export

« Report final results with an emphasis on timing reports.

report timing -num paths 10 > reports/timing reports.rpt

« Export netlist and other results for further use.

write_hdl > export/netlist.v

\\

v

Post-mapping
Optimization

-

v

Report and export
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Compilation

Compilation

...but aren’t we talking about synthesis?
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Compilation in the synthesis flow

- Before starting to synthesize,
we need to check the syntax for correctness.

 Synthesis vs. Compilation:
« Compiler
* Recognizes all possible constructs in a formally defined program language

» Translates them to a machine language representation
of execution process

e Synthesis ko e &
* Recognizes a target dependent subset of a hardware Complier
description language Assembly Landie.)
« Maps to collection of concrete hardware resources Assembler

1000

* [terative tool in the design flow TR = —

Program (MIPS)

Control Signal
Specification

13

Library

Definition

Syntax
Analysis

v

([ Elaboration )

__and Binding |
v

([ Pre-mapping
L Optimization |

v

Constraint
Definition

v

([ Technology )

Mapping
v

( Post-mapping )
L Optimization |

v

export

([ Reportand )

temp = v[k];
VIK] = v[k+1];
v[k+1] = temp;

lw $to,
Iw $t1,
swt1,
sw$t0,

1001 1100

1000 0000

1 1100 0110 1010
A i 0101
Machinednterptetation

1010 1111 0101 1000

1000

1001

0($2)
4($2)
0($2)
4($2)
0110 1010 1111 0101
0000 1001 1100 011c
1111 0101 1000 0000
1001 1100 0110 1010 111




Compilation with NC-Verilog (o

v
Elaboration |

. and Binding |
2

* To compile your Verilog code for syntax checking, (Frememra
use the NC-Verilog tool: T

Definition |
v
([ Technology )

ncvlog <filename.v>

. . . . . . (___Mapping

* This will quickly run compilation on your Verilog source code =T

and point you to syntax errors. _Optimization _

. | ([ Reportand )
 Alternatively, use the irun super command: __ export

irun -compile <filename.v>
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It's all about the standard cells...

* The library definition stage tells the synthesizer where to look for

leaf cells for binding and the target library for technology mapping.

« We can provide a list of paths to search for libraries in:
set db init 1lib search_path “/design/data/my fab/digital/lib/”

« And we have to provide the name of a specific library,
usually characterized for a single corner:

read_libs “TT1V25C.1ib”

» We also need to provide .1ib files for IPs,
such as memory macros, 1/Os, and others.

Make sure you understand all the warnings about the libs that the

synthesizer spits out, even though you probably can’t fix them.

[ Syntax ]
Analysis

Library
Definition

([ Elaboration )
. and Binding |
v

([ Pre-mapping

L Optimization |
v
([ Constraint |

. Definition )
v
([ Technology )

Mapping
2

( Post-mapping )

L Optimization |
v
([ Reportand )

export




[ Syntax ]
Analysis

Library
Definition

([ Elaboration )

But what is a library?

« A standard cell library is a collection of well defined and appropriately (" Pre-mapping |
L Optlmizatlon )

characterized logic gates that can be used to implement a digital design. ==

. Definition )
L 2

« Similar to LEGO, standard cells must meet predefined specifications to  (eefnoiosy >

Mapping
v

be flawlessly manipulated by synthesis, place, and route algorithms. e

L Optimization |

* Therefore, a standard cell library is
delivered with a collection of files
that provide all the information needed
by the various EDA tools.

17
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Example

* NAND standard cell layout
* Pay attention to:

Cell height
Cell width
Voltage rails
Well definition
Pin Placement
PR Boundary
Metal layers

ldeally, Standard Cells should

be routed entirely in M1 |

Cell Height

[ Syntax ]
Analysis

Library
Definition

([ Elaboration )
. and Binding |
v

([ Pre-mapping

L Optimization |
v
([ Constraint |

. Definition )
v
([ Technology )

Mapping
v

( Post-mapping )

L Optimization |
v
([ Reportand )

export




[ s
What cells are in a standard cell library?

Elaboration |
« Combinational logic cells (NAND, NOR, INV, etc.): = Binding |
» Variety of drive strengths for all cells. AND

« Complex cells (AOI, OAI, etc.)
* Fan-In<=4

[ Pre-mapping |
Optimization |
v

Constraint

Defigition
. ECO Cells OR =
« Buffers/Inverters AND-OR [ Rostmapang |
» Larger variety of drive strengths. NOT INVERT Reportand
- “Clock cells” with balanced rise and fall delays. (AQI) __ export

YU

» Delay cells
* Level Shifters

- Sequential Cells: —D Q—
« Many types of flip flops: pos/negedge, set/reset, Q/QB, enable

 Latches D

 Integrated Clock Gating cells

« Scan enabled cells for ATPG.
 Physical Cells:

19 » Fillers, Tap cells, Antennas, DeCaps, EndCaps, Tie Cells
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Multiple Drive Strengths and VTs

ﬂ-—u.zs um
» Multiple Drive Strength P
- Each cell will have various sized output stages. IN—@ sun IR o7
« Larger output stage =>
better at driving fanouts/loads. -3 un &+ out
- Smaller drive strength > 1 1
less area, leakage, input cap. i i
« Often called X2, X3, or D2, D3, etc. GND GND

+ Multiple Threshold (MT-CMOS)

* Asingle additional mask can provide more or less doping

Larger gate lengths
_— Transistor gate length variations
_ offer more fine-grained tradeoffs
g wen between leakage and delay
&
1500

In a transistor channel, shifting the threshold voltage.
« Most libraries provide equivalent cells with
three or more VTs: SVT, HVT, LVT
This enables tradeoff between speed vs. leakage.
 All threshold varieties have same footprint and therefore

can be swapped without any placement/routing iterations.

o
-

“1X" NMOS (W/L = 6) 2X"NMOS (WL = 12)

[ Syntax ]
Analysis

Library
Definition

([ Elaboration )
__and Binding |
v

([ Pre-mapping
L Optimization )
([ Constraint
Definition
4 ' \
Technology
Map'ping

( Post-mapping )

L Optimization |
v
([ Reportand )

export

. LVt
\ \

\
. SVt
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Clock Cells

 General standard cells are optimized for speed.
« That doesn’'t mean they're balanced...

: (L,
o mint , = mln( bLH P j;?tp,m =t
- This isn’t good for clock nets... 2

« Unbalanced rising/falling delays will result in unwanted skew.
« Special “clock cells” are designed with balanced rising/falling delays to

minimize skew.

* These cells are usually less optimal for data and so should not be used.

* In general, only buffers/inverters should be used on clock nets

« But sometimes, we need gating logic. Latch
 Special cells, such as integrated clock gates, Enable I__G 1

provide logic for the clock networks.
clk in ) clk out

Syntax ]
Analysis

Library
Definition

([ Elaboration )
__and Binding |
v

([ Pre-mapping
L Optimization |

v

([ Constraint |
. Definition )

v

([ Technology )

Mapping
v

( Post-mapping )
L Optimization |

v

([ Reportand )

export




[ Syntax ]
Analysis

° D Flip-Flop -
Sequentials 5
( Elaboration )
__and Binding |
* Flip Flops and Latches, including en (Premapng
« Positive/Negative Edge Triggered > clk ST
. Definition )
« Synchronous/Asynchronous Reset/Set R
« Q/QB Outputs rst -~ Magpna__
¢ Enable . Optimizggong,
e Scan e
* eftc., etc. b -

SE
CLK —




Level Shifters

* Level shifter cells are placed between voltage domains to pass
signals from one voltage to another.

Syntax ]
Analysis

Library
Definition

([ Elaboration )
__and Binding |
v

([ Pre-mapping
L Optimization |

v

([ Constraint |
. Definition )

v

([ Technology )

Mapping
v

( Post-mapping )
L Optimization |

v

([ Reportand )

export

VDDH
* HL (high-to-low) shifter mll
. Requires only one voltage ™ (> OUH
 Single height cell =l
VSS

 LH (low-to-high) shifter
. Needs 2 voltages l]F

 Often double height S ﬁ
INL
VDDL#>¢ HFW

23



Standard cells [ Syntax ]

Filler and Tap Cells ]~

Library
Definition

N AN R : il |<+cellrows [ Elaboration |
* Filler cells Must be inserted in empty areasinrows — 17 1 17 77 - Pd:}p"pz
 Ensure well and diffusion mask continuity b D _Optimization _
» Ensure density rules on bottom layers | Filler cells | =3
* Provide dummy poly for scaled technologies « ; : __SteRows , Tech;o_mgy ~
« Sometimes, special cells are needed at thg™ W * : /E“”“"“’*; POZ?EZ‘”Qm \
boundaries of rows - “End Caps” L . ! _optmizaton
« Other fillers may include MOSCAPs (Reportand |
between VDD and GND for voltage stability - “DeCAP cells” ~ StndardFiLLTIE —
» Well Taps needed to ensure local body voltage T/ by cetauts
 Eliminate latch-up W e
« NoO need to tap every single cell VSS‘ voo e
« Back or forward biasing for performance/leakage optimization B v ana v
* N-well voltage different from VDD ./
« Substrate or P-well (triple well process) voltage different from VSS s

« Bias voltage routed as signal pin or special power net



[ Syntax ]
Analysis

Engineering Change Order (ECO) CellsEES

* An Engineering Change Order (ECO) is a very late change in the design.

« ECOs usually are done after place and route.
* However, re-spins of a chip are often done without
recreating all-masks. This is known as a “Metal-Fix".

« ECOs usually require small changes in logic.

 How can we do this after placement?
* Or worse — after tapeout???

* Solution — Spare (Bonus) Cells!

« Cells without functionality
» Cells are added during design (fill)
* |n case of problems (after processing) new metal
and via mask - cells get their wanted functionality
« Cell combinations can create more complex functions

» Ex. AND,NAND,NOR,XOR,FF,MUX,INV,..
 Special standard cells are used to differentiate from real cells.

25
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[

Syntax ]
Analysis

Library

Definition

My favorite word... ABSTRACTION!

([ Elaboration )
__and Binding |
v

* So, what is a cell?

([ Pre-mapping
L Optimization |

v

* | guess that the detailed layout is sufficient to know (guess)

([ Constraint

Definition

v

anything and everything about a standard cell.

([ Technology )

« Or it would be easier, if we got the whole

Mapping
v

( Post-mapping )
L Optimization |

Open Access database of the cell...

v

([ Reportand )

export

 But do we really need to know everything?

« For example, does logic simulation need to know
If your inverter is CMOS or Pseudo-NMOS?

* And does a logic synthesizer need to know
what type of transistors you used?

* No!
« To make life (and calculations) simpler, we will abstract away this info.
« Each tool will get only the data it really needs.



27

What files are in a standard cell library?

 Behavioral Views:
 Verilog (or Vital) description used for simulation,
logic equivalence.
* Physical Views:
« Layout of the cells (GDSII format) for DRC, LVS, Custom Layout.
» Abstract of the cells (LEF format) for P&R, RC extraction.
* Transistor Level:
 Spice/Spectre netlist for LVS, transistor-level simulation.
« Often provided both with parasitics (post-layout) and without.
* Timing/Power:
* Liberty files with characterization of timing and power for STA.

« Power Grid Views:
* Needed for IR Drop analysis.

* Others:
« Symbols for displaying the cells in various tools.
 OA Libraries for easy integration with Virtuoso.

Behavioral (.v)

Abstract (.lef)

Layout (.gds)

Spice (.spi, .cdl)

Timing (.lib)

Open Access (.0q)

Syntax

[ Analysis ]

Library

Definition

([ Elaboration )
. and Binding |
v

([ Pre-mapping
L Optimlzation )
([ Constraint
Definition

v
([ Technology )

Mapping
2

( Post-mapping )

L Optimization |
v
([ Reportand )

( ( (

export




LEF

[

Syntax
Analysis

)

Library
Definition

Elaboration

and Binding
v

\

Pre-mapping
Optimization

J

v

Constraint
Definition

J

v

Library Exchange Format (LEF),

Technology
Mapping
v

\

([ Post-mapping

Optimization

J

v

\

Report and
export

J
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Library Exchange Format (LEF)

* Abstract description of the layout for P&R
 Readable ASCII Format.
» Contains detailed PIN information for
connecting.
 Does not include front-end of the line
(poly, diffusion, etc.) data.

» Abstract views only contain the following:
« Qutline of the cell (size and shape)
* Pin locations and layer (usually on M1)
 Metal blockages

(Areas in a cell where metal of a certain
layer is being used, but is not a pin)

_~Pins

Y

Abstract View

I NAND 1




o )

Analysis
[ ) Library
Ibrary Exchange Forma
LEF ( Elaboration )
. and Binding
v
AbStraCt Ph SiEEI MACRO IV ([ Pre-mapping
y CLASS CORE ; . Optimization )
. v
/GE" SIZE FOREEIGH IV 0.000 0.000 ; (" Constraint
ORIGIMN 0.00 0.00 ; . Definition )
- - - v
SIZE 3.00 BY 12.00 ;
I _ ' Technology
Terminals SYMMETRY x y | s
. - SITE CORE ; s y
with physical ... Postmapping
| t DIRECTION INPUT - __Optimization |
acemen CRECTION INEUT ; —
p ANTEMNASIZE 1.4 ; Report and
PORT g export J
LAYEE metall ;

RECT 0.30 53.00 1.00 3.30

END
END A

Obstructions

LAYER metall
EECT B30 6.30 2.860 20

EECT 0.40 4.90 1.00

]

. 60

Li



[ Syntax ]
Analysis

Library
Definition

Technology LEF

Elaboration |
[ and Binding )
 Technology LEF Files contain (simplified) information about (Pre-mapping )
the technology for use by the placer and router: [szre core —
CLASS CORE;
* Layers SIZE 9.2 X 12.0; ::
« Name, such as M1, M2, etc. END CORE
* Layer type, such as routing, cut (via) LAVER MET1 g:
* Electrical properties (R, C) ;\I/_F;(E:HRgU;ING ; »
« Design Rules WIDTH 1.2 l
« Antenna data SPACING 1.4 ;
o ; ; ; DIRECTION HORIZONTAL ;
Preferred routlng_dlrectlon | ESTSTALER GRS R ¢
« SITE (x and y grid of the library) CAPACITANCE CPERSQDIST .46E-04 ;
 CORE sites are minimum standard cell size END METL
« Can have site for double height cells! LAYER VIA
4 ' TYPE CUT ;
_IOs hgvg_speual SITE. ND V1A
* Via definitions
* Units Additional files provide parasitic extraction rules. These can be
« Grids for layout and routing basic (“cap tables”) or more detailed (*QRC techfile). These

may be provided as part of the PDK.



VDD [ Syntax ]

. ; ; ; ; ; Analysis
Technology LEF Wfi*}& 5o oo T
N} _andt Binding |
* Cell h9|ght Is measured in Tracks -------- ----------- . Fc’)rst-im:atzr;rt)iigg
 ATrack is one M1 pitch H B —Gonstramt )
« E.g.,An8-Track Cell has room for W[ «W—» Jdp T::,:,::,zgy 1
8 horizontal M1 wires. s __Mapping
+ The more tracks, the wider the 0 T N — (oo
transistors, the faster the cells. [ T O O T T ek
« 7-8 low-track libraries for area wl v

efficiency
e 11-12 tall-track libraries for
performance, but have high leakage

« 9-10 standard-track libraries for a
reasonable area-performance tradeoff

(# tracks)




[ Syntax ]
Analysis

Library
Definition

Technology LEF

el Er

* Cells must fit into a predefined grid i [ Dl |
 The minimum Height X Width Constraint

is called a SITE. : TDG:Q“I'C’” \
. .. echnology

« Must be a multiple of the minimum PR __Mapping

X-grid unit and row height. " (Postmapoing

« Cells can be double-height, for example. === Reportand )

Horizontal =gl

* Pins should coincide with routing tracks

* This enables easy connection of higher
metals to the cell. ——

Vertical
Grid

SITE CORE
CLASS CORE;
SYMMETRY X Y,
SIZE 0.2 X 12.0;
END CORE




The Chip Hall of Fame

* After checking out two Intel chips, we better not forget

Acorn Computers
ARMI1 Processor

« Racking up Kahoot points on your smartphone?
Then you probably should pay tribute to the granddaddy of that chip inside.

* Release date: April 1985 Manufactured by VLSI Technology
 Transistor Count: 25,000 Process: 3 um CMOS

« 32-bit ARMv1 architecture

* ARM stands for “Acorn RISC Machine”

* The reference design was written in 808 lines of BASIC!

* Never sold as a commercial product, but as a co-processor for BBC Micro.

2017 Inductee to the |IEEE Chip Hall of Fame



Liberty

[ Syntax ]
Analysis

Library
Definition

Elaboration
__and Binding )
v

( Pre-mapping )

. Optimization |
2

Constraint

Liberty Timing Models (.lib) =

|

[ Post-mapping

| Optimization |
2

Report and
L export )

O C,&”—“"’”Ce
O== n “C s $ Bar-llan University
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[ Syntax ]
Analysis

Library
Definition

([ Elaboration )

Liberty (.lib): Infroduction

* How do we know the delay through a gate in a logic path? (Pre-mapping )

L Optimization |
v

« Running SPICE is way too complex. (Constraint

. . . . . : ___ Definiti )

 |nstead, create a timing model that will simplify the calculation. , Te:hgo,zgy ~

Mapping
2

¢ GOa|: ( Post-mapping )
. . L Optimization |
* For every timing arc, calculate:

v

: tpd ([ Reportand )
* Propagation Delay (t,,) ___export
« Qutput transition (t, te) ~

 Based on: I—>C = :
* Input net transition (t,;., t:;) 1 f

 Output Load Capacitance (C,,.4)

Note that every .1ib will provide timing/power/noise information for a

single corner, i.e., process, voltage, temperature, RCX, etc.
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Liberty (.lib): General

* Timing data of standard cells is

provided in the Liberty format.
* Library:
 General information common to
all cells in the library.

« For example, operating conditions,
wire load models, look-up tables

e Cell:

» Specific information about each
standard cell.

» For example, function, area.
* Pin:
« Timing, power, capacitance,
leakage, functionality, etc.

characteristics of
each pin in each cell.

[ Syntax
Analysis

)

Library
Definition

library (nameoflibrary) {

. /* Library level simple and complex attributes */

([ Elaboration )
__and Binding |
v

([ Pre-mapping

/* Cell definitions */
cell (cell name) {
. /* cell level simple attributes */

L Optimization |

~\

v

Constraint
Definition

v

/* pin groups within the cell */
pin(pin_name) {
. /* pin level simple attributes */

/* timing group within the pin level */
timing(){

Mapping
v

([ Technology )

( Post-mapping )
L Optimization |

v

. /* timing level simple attributes */ } . export

. /* additional timing groups */

} /* end of pin */

Technology Library

Reportand |

brary Alrituies
Enrgironmental Oeadripticns

... /* more pin descriptions */
} /* end of cell */
... /* more cells */

} /* end of library */

Diefaidt Atiribales
Mo Ipsratng Condicns

Cell Descriptions

L-nll Altnbusers
Sanuential Funclians
Bus Descriptions

| Dot Airibbers

B Pin Alinbanas

Pin
Pin Alinbites.
Combmational Funcion
Timing




0.5 ns

* Non-Linear Delay Model (NLDM)

* Driver model:
« Ramp voltage source
* Fixed drive resistance
* Receiver model:
* Min/max rise/fall input caps

* Very fast

Cell Delay= 23ns IK

Output Load (pF)

[ Syntax ]
Analysis

Library
Definition

.005

.10

A5

0.0 A

15

2

.25

0.045 pF

3

.38

1.0

.25

Fram Library

Input Trans (ns)

From Wire Load Model

4

.55

75

([ Elaboration )
__and Binding |
v

([ Pre-mapping

L Optimization |
v
Constraint

Definition

Cell Delay (ns)

v
( Technology

}

lu table template(delay template 5x5) {
variable 1 : input_net_transition;
variable 2 : total output net capacitance;
index_1 ("1000.0, 1001.0, 1002.0, 1003.0, 1004.0");
index 2 ("1000.0, 1001.0, 1002.0, 1003.0, 1004.0");

« Doesn’t model cap variation during transition.

* Loses accuracy beyond 130nm

/tpd\\ tpd :f (tinput ’ CIoad )

Bt

cell (INVX1) {
pin(Y) {
timing() {
cell rise(delay template 5x5) {
values ( \

'0.147955, 0.218038, 0.359898, 0.922746, 1.76604", \
"0.224384, 0.292903, 0.430394, 0.991288, 1.83116", \
"0.365378, 0.448722, 0.584275, 1.13597, 1.97017", \
"0.462096, 0.551586, 0.70164, 1.24437, 2.08131", \
"0.756459, 0.874246, 1.05713, 1.62898, 2.44989"); }




[ Syntax ]
Analysis

Library
Definition

Liberty (.lib): Timing Models

* Non-Linear Delay Model (NLDM)

- v
* Delay CaICU|at|On Cell Fall Constraint
: . : Definition
Interpolation o 106 182 05 — v —
0.01 002 0.1&6 030 Tﬁ:ggalr?ggy
v
0.5 ( Post-mapping )

39

Fall delay = 0.178ns
Rise delay = 0.261ns
Fall transition = 0.147ns
Rise transition = ...

([ Elaboration )

. and Binding |
2

([ Pre-mapping
L Optimization |

0.147ns

L Optimization |

20 ) v \
Report and
Cell Rise eXport
CaghTr 05 |02 05
0.01 0.03 0.18 033
0.5 0.66
20 @ 132
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Liberty (.lib): Timing Models

* Current Source Models (CCS, ECSM)

Model a cell's nonlinear output
behavior as a current source

Driver model:
* Nonlinear current source

Receiver model:

« Changing capacitance

Requires many more values
Requires a bit more calculation
Essential under 130nm

Within 2% of SPICE.

\

</

Is C ]

Driver model

i(t,v)

Nonlinear
Current
Source

[Q

== Driver

Courtesy: Synopsys

Receiver model

Courtesy: Cadence
C1, C2 vary with
v Input slew
v Output load
v Rise vs. fall

v’ State of cell




Liberty (.lib): Timing Models

* NLDM vs CCS/ECSM

Courtesy: Synopsys

Pin Capacitance
input
slew

T
0.7

cinp
(single value)

output cap

Cell Delay / Slew Tables
input

slew
0.7 ) 3.31| 3.61| 3.98| 412| 532
0.5 272| 342| 3.43| 3.82| 425

0.2 254| 272 3_11
1.75| 1.99 2_31
023 .047 .065 .078 .091

output cap

Receiver Model
input

slew
07 c1,c2| c1,c2| c1,c2| c1,c2

{) - 2

023 .047 .065 .078 .091

output cap

Driver Model
input

slew
0.7

output cap

[ Syntax
Analysis

)

Library
Definition

Elaboration

_and Binding
v

L Optimization

([ Pre-mapping

J

v

Constraint
| Definition

v

Technology
L Mapping
v

L Optimization

( Post-mapping )

J

v

Report and
! export

J




o )

Liberty (.lib): Wire Load Models

Elaboration

* How do you estimate the parasitics (RC) of a net
before placement and routing?

* Wire Load Models estimate the parasitics based on the fanout of a net.

Net Resistance | Capacitance
Fanout K pF
(1) @ 0.0031
L —-
2 0.01295 0.00812
3 0.02092 0.01312
4 0.02888 0.01811

000312 pF

T
RS

http://www.vlsi-expert.com/
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From Library

__and Binding |
v

([ Pre-mapping

Optimization |

v

Constraint
Definition

v

Technology |
Mapping
v

library (myLib) {
wire_load(“WLM1”)

resistance: 0.0006 ; // R per unit length
capacitance: 0.0001 ; // C per unit length

area
slope : 1.5 ; // Used for
fanout_length(1, 0.002) ;
fanout_length(2, 0.006) ;
fanout_length(3, 0.009) ;
fanout_length(4, 0.015) ;
fanout_length(5, 0.020) ;
fanout_length(6, 0.028) ;

}
} /* end of library */

linear

//
//
//
//
//
//

for
for
for
for
for
for

: 0.1 ; // Area per unit length

extrapolation

fo=1,
fo=2,
fo=3,
fo=4,
fo=5,
fo=6,

Lwire=0.
Lwire=0.
Lwire=0.
Lwire=0.
Lwire=0.
Lwire=0.

002
006
009
015
020
028

( Post-mapping )

Optimization |

v

Report and
export
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Physical-Aware Synthesis

* Due to the lack of accuracy, wireload models lead to very poor correlation |

between synthesis and post-layout in nanometer technologies.

* Instead, use physical information during synthesis
« Synopsys calls this “Topographical Mode”
« Cadence calls this “Physical Synthesis”

[ Syntax ]
Analysis

Library
Definition

([ Elaboration )
__and Binding |
v

Pre-mapping |

L Optimization |
v
([ Constraint |

. Definition )
v
([ Technology )

Mapping
v

( Post-mapping )

L Optimization |
v
([ Reportand )

export

 Physical-Aware Synthesis basically runs placement inside the synthesizer to

obtain more accurate parasitic estimation:
« Without a floorplan, just using .lef files
 After first iterations, import a floorplan .def to the synthesizer.

syn_opt -physical




Other

(=)

Analysis
Library
Definition

Elaboration
__and Binding )
v

( Pre-mapping )

. Optimization |
v
Constraint

Other Contents of SC Library ==

|

[ Post-mapping

. Optimization |
v
Report and

L export )

O C,&”—“"’”Ce
O== n “C s $ Bar-llan University
Emerging Nanoscaled |')'N—1:l NU'012"JIN

Integrated Circuits and Systems Labs




Other contents of SC Library

« Many other files and formats may be provided as part of a
standard cell library:

* GDS

* Verilog

e ATPG

 Power Grid Models
* OA Databases

* Spice Models
. etc.
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[ Syntax ]
Analysis

Library
Definition

([ Elaboration )
. and Binding |
v

([ Pre-mapping

L Optimization |
v
([ Constraint |

. Definition )
v
([ Technology )

Mapping
2

( Post-mapping )

L Optimization |
v
([ Reportand )

export




Documentation and Datasheets

* So, are we just supposed to look through and see what the vendor
decided to provide us with?

 Yes!

« However they probably supplied some PDFs describing the library.
« And usually there are data sheets with numbers for each corner.

INT Table 9.12. NAND Electrical Parameters and Areas
. QN

: _Gperaﬁng Conditions: VDD=1.2 ¥V DC, Temp=25 Deg.C,

IMm Operating Frequency: Freq=300 MHz,

Capacitive Standard Load: Csl=13fF

. . Power
Figure 9.6. Logic Symbol of NAND Cell Name

Leakage
Cload Prop Delay (Ava) | \ypp=1.32v DC,

Temp=25 Dec.C)
ps nwy

Table 9.11. NAND Truth Table (n=2,3 4

NAMDZ1
NAMDZX2 9.2160
MAMD3XA 11.9805
NAMD3X2 12.9024
NAMD4 X0 8.2944
NAMD4X1

5.5296

12.9024

46 www.Vlsi.ce.titech.ac.jp/kunieda/lecture

L Optimization |

([ Reportand )

[ Syntax ]
Analysis

Library
Definition

([ Elaboration )
__and Binding |
v

([ Pre-mapping

L Optimization |
v

([ Constraint |
Definition
4 ' \
Technology
Map'ping

( Post-mapping )

v

export




And what about other IPs?

« All IPs will be provided as a library, including most of the views a
standard cell library will have.

 These are required for integration of the hard macros in the standard
design flow (simulation, synthesis, P&R, verification, etc.)

* Memories (SRAMs) are a special case, as they usually come with a
memory compiler that generates the particular memory cut the
designer requires.
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[ Syntax ]
Analysis

Library
Definition

([ Elaboration )
__and Binding |
v

([ Pre-mapping

L Optimization |
v

([ Constraint

. Definition )
( ' )\
Technology

Mapping
v

( Post-mapping )

L Optimization |
v
([ Reportand )

export




