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Synchronous Design - Reminder
• The majority of digital designs are Synchronous 

and constructed with Sequential Elements.
• Synchronous design eliminates races 

(like a traffic light).

• Pipelining increases throughput.

• We will assume that all sequentials are 

Edge-Triggered, using D-Flip Flops as registers.

• D-Flip Flops have three critical timing parameters:
• tcq – clock to output: essentially a propagation delay

• tsetup – setup time: the time the data needs to arrive before the clock

• thold – hold time: the time the data has to be stable after the clock



Timing Parameters - tcq
• tcq is the time from the clock edge until the data

appears at the output. 

• The tcq for rising and falling outputs is different.
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Timing Parameters - tsetup
• tsetup - Setup time is the time the data has to arrive before the clock 

to ensure correct sampling. 

BAD!Good!
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Timing Parameters - thold
• thold - Hold time is the time the data has to be stable after the clock 

to ensure correct sampling. 

BAD!Good!
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• There are two main problems that can arise in synchronous logic:
• Max Delay: The data doesn’t have enough time to pass 

from one register to the next before the next clock edge.

• Min Delay: The data path is so short that it passes through 
several registers during the same clock cycle.

• Max delay violations are a result of a slow data path, 
including the registers’ tsu, therefore it is often called 
the “Setup” path.

• Min delay violations are a result of a short data path, 
causing the data to change before the thold has passed, 
therefore it is often called the “Hold” path.

Timing Constraints



Setup (Max) Constraint
• Let’s see what makes up our clock cycle:

• After the clock rises, it takes tcq for the data to propagate to point A.

• Then the data goes through the delay of the logic to get to point B.

• The data has to arrive at point B, tsu before the next clock.

• In general, our timing path is a race:
• Between the Data Arrival, starting with the launching clock edge.

• And the Data Capture, one clock period later.
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Setup (Max) Constraint

logicCQ SUT t t t  

skew logic marginCQ SUT t t t     

Adding in clock skew and other guardbands:

positive clock skew

Launch Path

Capture Path

margin



Hold (Min) Constraint
• Hold problems occur due to the logic changing before thold has passed.

• This is not a function of cycle time – it is relative to a single clock edge!

• Let’s see how this can happen:
• The clock rises and the data at A changes after tcq.

• The data at B changes tpd(logic) later.

• Since the data at B had to stay stable for thold after the clock (for the second 

register), the change at B has to be at least thold after the clock edge.
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Hold (Min) Constraint

logicCQ holdt t t 
Adding in clock skew and other guardbands:

positive clock skew

margin

Launch Path

Capture Path
triggered on same clock edge!

logic margin skewCQ holdt t t    



Summary

• For Setup constraints, the data has to propagate fast
enough to be captured by the next clock edge:
• This sets our maximum frequency.

• If we have setup failures, we can 
always just slow down the clock.

• For Hold constrains, the data path delay has to 
be long enough so it isn’t accidentally captured 
by the same clock edge:
• This is independent of clock period.

• If there is a hold failure, 
you can throw your chip away!

skew logic marginCQ SUT t t t     

logic margin skewCQ holdt t t    

launch capturet T t 
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Static Timing Analysis
Or why and how to calculate slack.

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”, 

Lecture 12 from 2013. For a better  and more detailed explanation, do 

yourself a favor and go see the original!
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Static Timing Analysis (STA)
• STA checks the worst case propagation of all possible vectors for min/max delays.

• Advantages:
• Much faster than timing-driven, gate-level simulation
• Exhaustive, i.e., every (constrained) timing path is checked.
• Vector generation NOT required

• Disadvantages:
• Proper circuit functionality is NOT checked
• Must define timing requirements/exceptions 

(garbage in  garbage out!)

• Limitations:
• Only useful for synchronous design
• Cannot analyze combinatorial feedback loops

• e.g., a flip-flop created out of basic logic gates

• Cannot analyze asynchronous timing issues
• such as clock domain crossing

• Will not check for glitching effects on asynchronous pins
• Combinatorial logic driving asynch (set/reset) pins of sequential elements will not be checked for glitching



Timing Paths
• A path is a route from a Startpoint to an Endpoint.

• Startpoint, a.k.a Primary Inputs (PI)
• Clock pins of the flip flops 

• Input ports

• Endpoints, a.k.a Primary Outputs (PO)
• Input pins of the flip flops 

(except the clock pins)

• Output ports

• Memories / Hard macros

• There can be:
• Many paths going to any one endpoint

• Many paths for each start-point and end-point combination
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Static Timing Analysis
• Four categories of timing paths

• Register to Register (reg2reg)

• Register to Output (reg2out)

• Input to Register (in2reg)

• Input to Output (in2out)



Goals of Static Timing Analysis

• Verify max delay and min delay constraints are met for all paths in a design.
• Start with a Gate-Level Netlist.

• Timing Models are provided for every gate in the library.

• Static Timing Analysis needs to report if any path violates the max/min delay 

constraints.

• But is this enough?
• No!

• We want to know all the paths that violate the timing constraints.

• In fact, we want to know the timing of all paths reported in order of length.

• And we want to know where the problems are so we can go about fixing them.

• Let’s see the basic idea of how this can be done.
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Some basic assumptions

• Our design is synchronous
• In addition, we will only be showing how to deal with combinational elements 

and max delay constraints.

• We will assume a pin-to-pin delay model
• In other words, each gate has a single, constant delay from input to output.

• In the real world, gate delay is affected by many factors, such as gate type, 
loading, waveform shape, transition direction, particular pin, and random 
variation.

• We will see how a real design gets all this data in the next lecture.

• We will take a topological approach
• In other words, we disregard the logical functionality of the gates and therefore, 

consider all paths, though some of them cannot logically happen. 

• More on this later…
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Simple path representation

• Let’s say we have the following circuit:

• And the timing model of our AND gate is:

• We will build a graph:
• Vertices: Wires, 1 per gate output and 1 for 

each PI and PO.

• Edges: Gates, input pin to output pin,

1 edge per input with a delay for each edge.

• Finally, add Source/Sink Nodes:
• 0-weight edge to each PI and from each PO.

• That way all paths start and end at a single node.
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Node oriented timing analysis

• If we would enumerate every path, we would quickly get exponential explosion

in the number of paths.

• Instead, we will use node-oriented timing analysis
• For each node, find the worst delay to the node along any path.

• For this, we need to define two important values:
• Arrival Time at a node (AT): the longest path from the source to the node.

• Required Arrival Time at node (RAT): the latest time the signal is allowed to 

leave the node to make it to the sink in time.
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Slack at node n is defined as:

Slack(n) = RAT(n) – AT(n)



How do we compute ATs and RATs?

• Recursively!
• The Arrival Time at a node is just the maximum of the ATs at the predecessor 

nodes plus the delay from that node.

• The Required Arrival Time to a node is just the minimum of the RATs at the 

successor nodes minus the delay to that node.
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So let’s try to understand AT, RAT, and Slack
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Now let’s see an example

• Just look at this path and try to find the worst path.
• Does it meet a cycle time of T=12 ?

• Now let’s fill in the RAT, AT, and SLACK of each node and:
• Quickly find out if we meet timing

• Figure out what the worst path is
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Now let’s see an example

• We’ll start by representing it as a 

directed acyclic graph (DAG)

• Next, we’ll compute ATs from SRC to SNK
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Now let’s see an example

• And now RAT from SNK to SRC
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Now let’s see an example

• And finally, we can calculate the slack.

• And guess what – we found the critical path!
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False Paths
• We saw how to find the RAT, AT and Slack at every node.

• All of this can be done very efficiently and be adapted for min timing, 

sequential elements, latch-based timing, etc.

• Even better, we can quickly report the order of the critical paths.

• However, this was all done topologically (i.e., without looking at logic).
• Let’s see why this is a problem
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Timing Constraints

• “Stupid Question”:
• How does the STA tool know what the required clock period is?

• Obvious Answer…
• We have to tell it!

• We have to define constraints for the design.

• This is usually done using the 

Synopsys Design Constraints (SDC) syntax, 

which is a superset of TCL.

• Three main categories of timing constraints:
• Clock definitions

• Modeling the world external to the chip

• Timing exceptions



Collections

• So you think you know TCL, right?

• Well EDA tools sometimes use a different data 

structure called a “collection”

• A collection is similar to a TCL list, but:

• The value of a collection is not a string, but rather a pointer, and we need to 

use special functions to access its values.

• For example, if you were to run foreach on a collection, it would just have one 

element (the pointer to the collection). Instead, use foreach_in_collection.

• I won’t go into the specifics here (see SynopsysCommandsReference), but 

these are some of the collection accessing functions:

foreach_in_collection
index_collection
sizeof_collection
sort_collection

filter_collection
add_to_collection
compare_collections

copy_collection
get_object_name
remove_from_collection



SDC helper functions

• Before starting with constraints, let’s look at some very useful built in commands:
• Note that all of these return collections and not TCL lists!

• These will only work after design elaboration!

• “get” commands:
• [get_ports string] – returns all ports that match string.

• [get_pins string] – returns all cell/macro pins that match string.

• [get_nets string] – returns all nets that match string.

• Note that adding the –hier option will search hierarchically through the design.

• “all” commands:
• [all_inputs] – returns all the primary inputs (ports) of the block.

• [all_outputs] – returns all the primary outputs (ports) of the block.

• [all_registers] – returns all the registers in the block.



Clock Definitions

• To start, we must define a clock:
• Where does the clock come from? (i.e., input port, output of PLL, etc.)

• What is the clock period? (=operating frequency)

• What is the duty-cycle of the clock?

• Can there be more than one clock in a design?
• Yes, but be careful about clock domain crossings! (…more later)

• If a clock is produced by a clock divider, define a “generated clock”:

create_clock –period 20 –name my_clock [get_ports clk]

create_generated_clock –name gen_clock \
-source [get_ports clk] –divide_by 2 [get_pins FF1/Q]



Clock Definitions (2)

• But during synthesis, we assume the clock is ideal, so:

• However, for realistic timing, it should have some transition:

• And we may want to add some jitter, so:

• Finally, after building a clock tree, we do not want 

the clock to be ideal anymore, so:

set_ideal_network [get_ports clk]

set_clock_uncertainty 0.2 [get_clocks my_clock]

set_clock_transition 0.2 [get_clocks my_clock]

set_propagated_clock [get_clocks my_clock]



I/O Constraints

• Now that the clock is defined, reg2reg paths are sufficiently constrained. 

However, what about in2reg, reg2out, and in2out paths?
• First, what clock toggles an I/O port?

• And what about the time needed outside the chip?

• A virtual clock is good practice for constraining I/O:
• Define a clock with the main clock period, but without a source port. 

This is a “virtual clock”.

• Now define I/O constraints according to the virtual clock.
• Input and output delays model the length of the path outside the block:

create_clock –period 10 –name off_chip_clk

set_input_delay 0.8 –clock off_chip_clock \
[remove_from_collection [all_inputs] [get_ports clk]]

set_output_delay 2.5 –clock off_chip_clk [all_outputs]



I/O Constraint (2)

• An alternative approach is to define max delays to/from I/Os:

• Additionally, we must model the transitions on the inputs:

• And capacitance of the outputs:

set_max_delay 5 \
–from [remove_from_collection [all_inputs] [get_ports clk]]

set_max_delay 5 –to [all_outputs]

set_driving_cell –cell [get_lib_cells INV4] –pin Z \
[remove_from_collection [all_inputs] [get_ports clk]]

set_load 1 [all_outputs]



I/O Constraint (3)

• Graphically, we can summarize the I/O constraints, as follows:

Input and 

Output Delays

Input drive and 

output cap modeling



Timing Exceptions

• There are several cases when we need to define exceptions that should be 

treated differently by STA.

• For example, looking into the topology

of the network we saw earlier:

• In this case, we would define a false path:

set_false_path –through [get_pins mux1/I0] –through [get_pins mux2/I0] 
set_false_path –through [get_pins mux1/I1] –through [get_pins mux2/I1] 
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Timing Exceptions (2)

• Another common case of a false path is a clock 

domain crossing through a synchronizer:

• Alternatively, this can be defined with:

• If an equal-phase (divided) slow clock is sending data to a 

faster clock, a multi-cycle path may be appropriate:

set_false_path –from F1/CP –to F2/D

set_clock_groups –logically_exclusive \
–group [get_clocks C1] –group [get_clocks C2]

set_multicycle_path –setup –from F1/CP –to F1/D   2
set_multicycle_path –hold  –from F1/CP –to F1/D   1



Case Analysis

• A common case for designs is that some value should be assumed constant
• For example, setting a register for a certain operating mode.

• In such cases, many timing paths are false
• For example, if the constant sets a multiplexer selector.

• Or a ‘0’ is driven to one of the inputs of an AND gate.

• To propagate these constants through the design and disable irrelevant timing 
arcs, a set_case_analysis constraint is used:
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set_case_analysis 0 [get_ports TEST_MODE]



Design Rule Violations (DRV)

• You can set specific design rules that should be met, for example:
• Maximum transition through a net.

• Maximum Capacitive load of a net.

• Maximum fanout of a gate.

set_max_transition 0.1

set_max_capacitance 0.1

set_max_fanout 20



Yield-driven and Advanced STA

• There are many more concepts, approaches, and terminologies 

used in timing analysis for high-yield signoff:
• On-chip Variation (OCV)

• Advanced On-Chip Variation (AOCV)

• Signal Integrity (SI)

• and more and more…*

• We will end with the basics now and get back to this 

towards the end of the course.
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* Between the time I wrote this slide and presented it to you, each 

EDA vendor has presented another method for timing closure that 

you just must know about and have to use .



Constraint Checking and 
Timing Reports
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Check Types

• Throughout this lecture, we have 

discussed the two primary timing checks:
• Setup (max) Delay

• Hold (min) Delay

• However, in practice, there are other 

categories of timing checks that you will 

encounter:
• Recovery

• Removal

• Clock Gating

• Min Pulse Width

• Data-to-Data



Recovery, Removal and MPW

• Recovery Check
• The minimum time that an asynchronous control 

input pin must be stable after being deasserted and 

before the next clock transition (active-edge)

• Removal Check
• The minimum time that an asynchronous control 

input pin must be stable before being deasserted and 

after the previous clock transition (active edge)

• Minimum Clock Pulse Width (MPW)
• The amount of time after the rising/falling edge of a 

clock that the clock signal must remain stable.
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Clock Gating Check

• Clock gating occurrences are any signals on the clock path 

that block (gate) the clock from propagating. 

• The enable path of the clock gate must arrive enough time before the clock 

itself to ensure glitch-free functionality (and similarly hold after the edge).
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Ex. 1: Gating signal should only change 

when the clock is in the low state

Ex. 2: Gating signal should only change 

when the clock is in high low state



Analysis Coverage

• Use report_analysis_coverage and check_timing
to ensure that you have fully constrained your design.
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Report Timing - Terminology
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Report Timing - Structure
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Report Timing - Structure
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Example Hold Timing Report
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Path Groups

• By default, all timing paths will be 

separated into standard path groups:
• Reg2Reg

• In2Reg

• Reg2Out

• In2Out

• Clock Gating

• You can also define your own path groups 

to easily report them separately and/or to 

optimize them independently.
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Path Groups – Interface Timing Report

• For example, let’s look at a Reg2Out path timing report:
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Report Timing Syntax

• The syntax for the Innovus (Encounter) report_timing command is 
partially:
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report_timing ​ [-clock_from edge_from] [-clock_to clk_signame_list] 
[-early | -late] [-net] 
[-check_type {setup | hold | clock_gating_setup | recovery | removal} ]
[-max_paths integer] | [-nworst integer ] 
[{-from | -from_rise | -from_fall} pin_list ] 
[{-through | -through_rise | -through_fall} pin_list ] 
[{-not_through | -not_rise_through | -not_fall_through} object_list ] 
[{-to | -to_rise | -to_fall} pin_list ] 
[-point_to_point] 
[-path_group groupname_list ] 
[-path_type {end | summary | full | full_clock}] 
[-max_slack float ] [-min_slack float ] 
-unconstrained [-view { viewName }] [-format column_list ] [-collection] 
[-machine_readable | -tcl_list] 



Report Timing Syntax

• The Innovus (Encounter) report_timing format options are:
• adjustment, annotation, arc, arrival, cell, delay, direction, edge, 
fanin, fanout, incr_delay, instance, instance_location, load, 
aocv_derate, net, phase, pin, hpin, pin_location, pin_load, 
wire_load, required, retime_delay, retime_incr_delay, retime_slew, 
slew, stolen, stage_count, timing_point, power_domain, user_derate, 
total_derate, and aocv_weight

• For example:
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report_timing –check_type setup \
–path_group Clock –path_type full_clock –max_paths 50 –net \
-format {hpin cell delay required arrival required edge} \
> timing_report.rpt



References

• Gil Rahav, BGU

• Gangadharan, Churiwala “Constraining Designs for Synthesis and Timing 

Analysis: A Practical Guide to Synopsys Design Constraints (SDC)”, Springer, 

2013

• Synopsys SourceLink (+Synthesis Quick Reference)

• Cadence Support (+Genus and Innovus Text Command References)

55


