
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 3:
Timing Analysis

Semester A, 2016-17

Lecturer: Dr. Adam Teman

20 November 2016

mailto:adam.teman@biu.ac.il

Sequential Clocking

1

Sequential Clocking

2

Static Timing

Analysis

3

Design Constraints

4

Timing Reports

Synchronous Design - Reminder
• The majority of digital designs are Synchronous

and constructed with Sequential Elements.
• Synchronous design eliminates races

(like a traffic light).

• Pipelining increases throughput.

• We will assume that all sequentials are

Edge-Triggered, using D-Flip Flops as registers.

• D-Flip Flops have three critical timing parameters:
• tcq – clock to output: essentially a propagation delay

• tsetup – setup time: the time the data needs to arrive before the clock

• thold – hold time: the time the data has to be stable after the clock

Timing Parameters - tcq
• tcq is the time from the clock edge until the data

appears at the output.

• The tcq for rising and falling outputs is different.

D

Q

clk

tcqLH tcqLHtcqHL

Timing Parameters - tsetup
• tsetup - Setup time is the time the data has to arrive before the clock

to ensure correct sampling.

BAD!Good!

tsu tsu tsu

D

clk

Q

Good!

Timing Parameters - thold
• thold - Hold time is the time the data has to be stable after the clock

to ensure correct sampling.

BAD!Good!

thold

D

clk

Q

Good!

thold thold

• There are two main problems that can arise in synchronous logic:
• Max Delay: The data doesn’t have enough time to pass

from one register to the next before the next clock edge.

• Min Delay: The data path is so short that it passes through
several registers during the same clock cycle.

• Max delay violations are a result of a slow data path,
including the registers’ tsu, therefore it is often called
the “Setup” path.

• Min delay violations are a result of a short data path,
causing the data to change before the thold has passed,
therefore it is often called the “Hold” path.

Timing Constraints

Setup (Max) Constraint
• Let’s see what makes up our clock cycle:

• After the clock rises, it takes tcq for the data to propagate to point A.

• Then the data goes through the delay of the logic to get to point B.

• The data has to arrive at point B, tsu before the next clock.

• In general, our timing path is a race:
• Between the Data Arrival, starting with the launching clock edge.

• And the Data Capture, one clock period later.

D

clk

A

tcq

D Q D QLogic

clk

A B

tsuB

Setup (Max) Constraint

logicCQ SUT t t t

skew logic marginCQ SUT t t t

Adding in clock skew and other guardbands:

positive clock skew

Launch Path

Capture Path

margin

Hold (Min) Constraint
• Hold problems occur due to the logic changing before thold has passed.

• This is not a function of cycle time – it is relative to a single clock edge!

• Let’s see how this can happen:
• The clock rises and the data at A changes after tcq.

• The data at B changes tpd(logic) later.

• Since the data at B had to stay stable for thold after the clock (for the second

register), the change at B has to be at least thold after the clock edge.

D

clk

A

tcq

D Q D QLogic

clk

A B

thold
B

Hold (Min) Constraint

logicCQ holdt t t
Adding in clock skew and other guardbands:

positive clock skew

margin

Launch Path

Capture Path
triggered on same clock edge!

logic margin skewCQ holdt t t

Summary

• For Setup constraints, the data has to propagate fast
enough to be captured by the next clock edge:
• This sets our maximum frequency.

• If we have setup failures, we can
always just slow down the clock.

• For Hold constrains, the data path delay has to
be long enough so it isn’t accidentally captured
by the same clock edge:
• This is independent of clock period.

• If there is a hold failure,
you can throw your chip away!

skew logic marginCQ SUT t t t

logic margin skewCQ holdt t t

launch capturet T t

launch capturet t

Static Timing Analysis
Or why and how to calculate slack.

This section is heavily based on Rob Rutenbar’s “From Logic to Layout”,

Lecture 12 from 2013. For a better and more detailed explanation, do

yourself a favor and go see the original!

1

Sequential Clocking

2

Static Timing

Analysis

3

Design Constraints

4

Timing Reports

Static Timing Analysis (STA)
• STA checks the worst case propagation of all possible vectors for min/max delays.

• Advantages:
• Much faster than timing-driven, gate-level simulation
• Exhaustive, i.e., every (constrained) timing path is checked.
• Vector generation NOT required

• Disadvantages:
• Proper circuit functionality is NOT checked
• Must define timing requirements/exceptions

(garbage in garbage out!)

• Limitations:
• Only useful for synchronous design
• Cannot analyze combinatorial feedback loops

• e.g., a flip-flop created out of basic logic gates

• Cannot analyze asynchronous timing issues
• such as clock domain crossing

• Will not check for glitching effects on asynchronous pins
• Combinatorial logic driving asynch (set/reset) pins of sequential elements will not be checked for glitching

Timing Paths
• A path is a route from a Startpoint to an Endpoint.

• Startpoint, a.k.a Primary Inputs (PI)
• Clock pins of the flip flops

• Input ports

• Endpoints, a.k.a Primary Outputs (PO)
• Input pins of the flip flops

(except the clock pins)

• Output ports

• Memories / Hard macros

• There can be:
• Many paths going to any one endpoint

• Many paths for each start-point and end-point combination

Clk

D Q A

B

Ci

S

Co

Clk

D Q

Clk

D Q

Clk

D Q

Clk

D Q

Static Timing Analysis
• Four categories of timing paths

• Register to Register (reg2reg)

• Register to Output (reg2out)

• Input to Register (in2reg)

• Input to Output (in2out)

Goals of Static Timing Analysis

• Verify max delay and min delay constraints are met for all paths in a design.
• Start with a Gate-Level Netlist.

• Timing Models are provided for every gate in the library.

• Static Timing Analysis needs to report if any path violates the max/min delay

constraints.

• But is this enough?
• No!

• We want to know all the paths that violate the timing constraints.

• In fact, we want to know the timing of all paths reported in order of length.

• And we want to know where the problems are so we can go about fixing them.

• Let’s see the basic idea of how this can be done.

17

Some basic assumptions

• Our design is synchronous
• In addition, we will only be showing how to deal with combinational elements

and max delay constraints.

• We will assume a pin-to-pin delay model
• In other words, each gate has a single, constant delay from input to output.

• In the real world, gate delay is affected by many factors, such as gate type,
loading, waveform shape, transition direction, particular pin, and random
variation.

• We will see how a real design gets all this data in the next lecture.

• We will take a topological approach
• In other words, we disregard the logical functionality of the gates and therefore,

consider all paths, though some of them cannot logically happen.

• More on this later…

18

Simple path representation

• Let’s say we have the following circuit:

• And the timing model of our AND gate is:

• We will build a graph:
• Vertices: Wires, 1 per gate output and 1 for

each PI and PO.

• Edges: Gates, input pin to output pin,

1 edge per input with a delay for each edge.

• Finally, add Source/Sink Nodes:
• 0-weight edge to each PI and from each PO.

• That way all paths start and end at a single node.

19

a
b

d

c

e

2

2

a

b
d

c
e

2

2

2

2

a

b

d

c
e2

2
2

2
0

SNKSRC

0

0

0

Node oriented timing analysis

• If we would enumerate every path, we would quickly get exponential explosion

in the number of paths.

• Instead, we will use node-oriented timing analysis
• For each node, find the worst delay to the node along any path.

• For this, we need to define two important values:
• Arrival Time at a node (AT): the longest path from the source to the node.

• Required Arrival Time at node (RAT): the latest time the signal is allowed to

leave the node to make it to the sink in time.

20

Slack at node n is defined as:

Slack(n) = RAT(n) –AT(n)

How do we compute ATs and RATs?

• Recursively!
• The Arrival Time at a node is just the maximum of the ATs at the predecessor

nodes plus the delay from that node.

• The Required Arrival Time to a node is just the minimum of the RATs at the

successor nodes minus the delay to that node.

21

pred

0 SRC
AT

max AT , SRC
p n

n
n

p p n n

succ

SNK
RAT

max RAT , SNK
s n

T n
n

s n s n

So let’s try to understand AT, RAT, and Slack

22

Launch CaptureClock cycle time (T)

AT(n)

AT: longest

logic delay

after launch

of clock

RAT(n)

RAT: longest logic

delay to the capture

edge of the clock

(dependent on

cycle time)

Slack

Clock cycle time (T)

Slack

AT(n)

RAT(n)

If the signal arrives too late, we

get negative slack, which means

there is a timing violation.

Now let’s see an example

• Just look at this path and try to find the worst path.
• Does it meet a cycle time of T=12 ?

• Now let’s fill in the RAT, AT, and SLACK of each node and:
• Quickly find out if we meet timing

• Figure out what the worst path is

23

a 1 d

b
c

5
4

1

2

f

3 g

e

4
3

2
1

j

k

n

h
5

3
2

Now let’s see an example

• We’ll start by representing it as a

directed acyclic graph (DAG)

• Next, we’ll compute ATs from SRC to SNK

24

SRC SNK

a

b

c

d g j

f

e

h

k

n

0

0

0

0

0

0

2

1

4

1 3 2

15

3
4

3 5

2

0

0

0

0

1 4

6

2

7

12

15

15

10

Now let’s see an example

• And now RAT from SNK to SRC

25

SRC SNK

a

b

c

d g j

f

e

h

k

n

0

0

0

0

0

0

2

1

4

1 3 2

15

3
4

3 5

2

0 -3

0 -3

0 -1

0 2

1 -2 4 10

6 3

2 4

7 12

12 12

15 12

15 12

10 7

Now let’s see an example

• And finally, we can calculate the slack.

• And guess what – we found the critical path!

26

SRC SNK

a

b

c

d g j

f

e

h

k

n

0

0

0

0

0

0

2

1

4

1 3 2

15

3
4

3 5

2

0 -3 -3

0 -3 -3

0 -1 -1

0 2 2

1 -2 -3 4 10 6

6 3 -3

2 4 2

7 12 5

12 12 0

15 12 -3

15 12 -3

10 7 -3

False Paths
• We saw how to find the RAT, AT and Slack at every node.

• All of this can be done very efficiently and be adapted for min timing,

sequential elements, latch-based timing, etc.

• Even better, we can quickly report the order of the critical paths.

• However, this was all done topologically (i.e., without looking at logic).
• Let’s see why this is a problem

27

a

b

c

d

e

f

g

h

8

1

2

2

1
i

8

1 j

1

2

2

a

b

c

d

e

g

h

8

1

2

2

1

8

1

1

2

2

0

1

0

1

This is called a “False Path”

Design Constraints

1

Sequential Clocking

2

Static Timing

Analysis

3

Design Constraints

4

Timing Reports

Timing Constraints

• “Stupid Question”:
• How does the STA tool know what the required clock period is?

• Obvious Answer…
• We have to tell it!

• We have to define constraints for the design.

• This is usually done using the

Synopsys Design Constraints (SDC) syntax,

which is a superset of TCL.

• Three main categories of timing constraints:
• Clock definitions

• Modeling the world external to the chip

• Timing exceptions

Collections

• So you think you know TCL, right?

• Well EDA tools sometimes use a different data

structure called a “collection”

• A collection is similar to a TCL list, but:

• The value of a collection is not a string, but rather a pointer, and we need to

use special functions to access its values.

• For example, if you were to run foreach on a collection, it would just have one

element (the pointer to the collection). Instead, use foreach_in_collection.

• I won’t go into the specifics here (see SynopsysCommandsReference), but

these are some of the collection accessing functions:

foreach_in_collection
index_collection
sizeof_collection
sort_collection

filter_collection
add_to_collection
compare_collections

copy_collection
get_object_name
remove_from_collection

SDC helper functions

• Before starting with constraints, let’s look at some very useful built in commands:
• Note that all of these return collections and not TCL lists!

• These will only work after design elaboration!

• “get” commands:
• [get_ports string] – returns all ports that match string.

• [get_pins string] – returns all cell/macro pins that match string.

• [get_nets string] – returns all nets that match string.

• Note that adding the –hier option will search hierarchically through the design.

• “all” commands:
• [all_inputs] – returns all the primary inputs (ports) of the block.

• [all_outputs] – returns all the primary outputs (ports) of the block.

• [all_registers] – returns all the registers in the block.

Clock Definitions

• To start, we must define a clock:
• Where does the clock come from? (i.e., input port, output of PLL, etc.)

• What is the clock period? (=operating frequency)

• What is the duty-cycle of the clock?

• Can there be more than one clock in a design?
• Yes, but be careful about clock domain crossings! (…more later)

• If a clock is produced by a clock divider, define a “generated clock”:

create_clock –period 20 –name my_clock [get_ports clk]

create_generated_clock –name gen_clock \
-source [get_ports clk] –divide_by 2 [get_pins FF1/Q]

Clock Definitions (2)

• But during synthesis, we assume the clock is ideal, so:

• However, for realistic timing, it should have some transition:

• And we may want to add some jitter, so:

• Finally, after building a clock tree, we do not want

the clock to be ideal anymore, so:

set_ideal_network [get_ports clk]

set_clock_uncertainty 0.2 [get_clocks my_clock]

set_clock_transition 0.2 [get_clocks my_clock]

set_propagated_clock [get_clocks my_clock]

I/O Constraints

• Now that the clock is defined, reg2reg paths are sufficiently constrained.

However, what about in2reg, reg2out, and in2out paths?
• First, what clock toggles an I/O port?

• And what about the time needed outside the chip?

• A virtual clock is good practice for constraining I/O:
• Define a clock with the main clock period, but without a source port.

This is a “virtual clock”.

• Now define I/O constraints according to the virtual clock.
• Input and output delays model the length of the path outside the block:

create_clock –period 10 –name off_chip_clk

set_input_delay 0.8 –clock off_chip_clock \
[remove_from_collection [all_inputs] [get_ports clk]]

set_output_delay 2.5 –clock off_chip_clk [all_outputs]

I/O Constraint (2)

• An alternative approach is to define max delays to/from I/Os:

• Additionally, we must model the transitions on the inputs:

• And capacitance of the outputs:

set_max_delay 5 \
–from [remove_from_collection [all_inputs] [get_ports clk]]

set_max_delay 5 –to [all_outputs]

set_driving_cell –cell [get_lib_cells INV4] –pin Z \
[remove_from_collection [all_inputs] [get_ports clk]]

set_load 1 [all_outputs]

I/O Constraint (3)

• Graphically, we can summarize the I/O constraints, as follows:

Input and

Output Delays

Input drive and

output cap modeling

Timing Exceptions

• There are several cases when we need to define exceptions that should be

treated differently by STA.

• For example, looking into the topology

of the network we saw earlier:

• In this case, we would define a false path:

set_false_path –through [get_pins mux1/I0] –through [get_pins mux2/I0]
set_false_path –through [get_pins mux1/I1] –through [get_pins mux2/I1]

a

b

c

d

e

g

h

8

1

2

2

1

8

1

1

2

2

0

1

0

1

Timing Exceptions (2)

• Another common case of a false path is a clock

domain crossing through a synchronizer:

• Alternatively, this can be defined with:

• If an equal-phase (divided) slow clock is sending data to a

faster clock, a multi-cycle path may be appropriate:

set_false_path –from F1/CP –to F2/D

set_clock_groups –logically_exclusive \
–group [get_clocks C1] –group [get_clocks C2]

set_multicycle_path –setup –from F1/CP –to F1/D 2
set_multicycle_path –hold –from F1/CP –to F1/D 1

Case Analysis

• A common case for designs is that some value should be assumed constant
• For example, setting a register for a certain operating mode.

• In such cases, many timing paths are false
• For example, if the constant sets a multiplexer selector.

• Or a ‘0’ is driven to one of the inputs of an AND gate.

• To propagate these constants through the design and disable irrelevant timing
arcs, a set_case_analysis constraint is used:

39

set_case_analysis 0 [get_ports TEST_MODE]

Design Rule Violations (DRV)

• You can set specific design rules that should be met, for example:
• Maximum transition through a net.

• Maximum Capacitive load of a net.

• Maximum fanout of a gate.

set_max_transition 0.1

set_max_capacitance 0.1

set_max_fanout 20

Yield-driven and Advanced STA

• There are many more concepts, approaches, and terminologies

used in timing analysis for high-yield signoff:
• On-chip Variation (OCV)

• Advanced On-Chip Variation (AOCV)

• Signal Integrity (SI)

• and more and more…*

• We will end with the basics now and get back to this

towards the end of the course.

41

* Between the time I wrote this slide and presented it to you, each

EDA vendor has presented another method for timing closure that

you just must know about and have to use .

Constraint Checking and
Timing Reports

42

1

Sequential Clocking

2

Static Timing

Analysis

3

Design Constraints

4

Timing Reports

Check Types

• Throughout this lecture, we have

discussed the two primary timing checks:
• Setup (max) Delay

• Hold (min) Delay

• However, in practice, there are other

categories of timing checks that you will

encounter:
• Recovery

• Removal

• Clock Gating

• Min Pulse Width

• Data-to-Data

Recovery, Removal and MPW

• Recovery Check
• The minimum time that an asynchronous control

input pin must be stable after being deasserted and

before the next clock transition (active-edge)

• Removal Check
• The minimum time that an asynchronous control

input pin must be stable before being deasserted and

after the previous clock transition (active edge)

• Minimum Clock Pulse Width (MPW)
• The amount of time after the rising/falling edge of a

clock that the clock signal must remain stable.

44

Clock Gating Check

• Clock gating occurrences are any signals on the clock path

that block (gate) the clock from propagating.

• The enable path of the clock gate must arrive enough time before the clock

itself to ensure glitch-free functionality (and similarly hold after the edge).

45

Ex. 1: Gating signal should only change

when the clock is in the low state

Ex. 2: Gating signal should only change

when the clock is in high low state

Analysis Coverage

• Use report_analysis_coverage and check_timing
to ensure that you have fully constrained your design.

46

Report Timing - Terminology

47

Report Timing - Structure

48

Report Timing - Structure

49

Data Required Section

Data Arrival Section

Slack

Example Hold Timing Report

50

Path Groups

• By default, all timing paths will be

separated into standard path groups:
• Reg2Reg

• In2Reg

• Reg2Out

• In2Out

• Clock Gating

• You can also define your own path groups

to easily report them separately and/or to

optimize them independently.

51

Path Groups – Interface Timing Report

• For example, let’s look at a Reg2Out path timing report:

52

Report Timing Syntax

• The syntax for the Innovus (Encounter) report_timing command is
partially:

53

report_timing [-clock_from edge_from] [-clock_to clk_signame_list]
[-early | -late] [-net]
[-check_type {setup | hold | clock_gating_setup | recovery | removal}]
[-max_paths integer] | [-nworst integer]
[{-from | -from_rise | -from_fall} pin_list]
[{-through | -through_rise | -through_fall} pin_list]
[{-not_through | -not_rise_through | -not_fall_through} object_list]
[{-to | -to_rise | -to_fall} pin_list]
[-point_to_point]
[-path_group groupname_list]
[-path_type {end | summary | full | full_clock}]
[-max_slack float] [-min_slack float]
-unconstrained [-view { viewName }] [-format column_list] [-collection]
[-machine_readable | -tcl_list]

Report Timing Syntax

• The Innovus (Encounter) report_timing format options are:
• adjustment, annotation, arc, arrival, cell, delay, direction, edge,
fanin, fanout, incr_delay, instance, instance_location, load,
aocv_derate, net, phase, pin, hpin, pin_location, pin_load,
wire_load, required, retime_delay, retime_incr_delay, retime_slew,
slew, stolen, stage_count, timing_point, power_domain, user_derate,
total_derate, and aocv_weight

• For example:

54

report_timing –check_type setup \
–path_group Clock –path_type full_clock –max_paths 50 –net \
-format {hpin cell delay required arrival required edge} \
> timing_report.rpt

References

• Gil Rahav, BGU

• Gangadharan, Churiwala “Constraining Designs for Synthesis and Timing

Analysis: A Practical Guide to Synopsys Design Constraints (SDC)”, Springer,

2013

• Synopsys SourceLink (+Synthesis Quick Reference)

• Cadence Support (+Genus and Innovus Text Command References)

55

