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TCAD vs. Compact Models

 Technology CAD (TCAD) is a simulation environment

for accurately simulating device behavior: VeI
. o _ too slow and memory
* Provide a process “recipe” and device layout hungry to be used for
* Produce IV or CV curves through device simulator circuit simulation!

» Used to predict device and process physics
« Takes 1hr-1day per IV curve and 100s MB RAM per transistor
« Compact models (a.k.a. SPICE models or ECAD) are
simple models used for circuit simulation

* Provide a set of equations that SPICE uses to

calculate IV or CV curves SPICE uses compact

models for calculatin
« Should take <100us per IV curve e R :

and a few KB per transistor
« Usually extracted empirically from measurements




Switch Model

* The most simple MOSFET model is the Switch Model.
Ves >VT R

o o so—% —A\/\/\—ob
A

> Vs V
v, > Vps

The Switch
6 Model

© Acam Teman,



The Piece-Wise Linear Model

 As we know, when the channel pinches off,

the current saturates.

* This can be depicted with the simple
Piece-Wise Linear Switch Model

The Piece-
Wise Linear

I DSAT

IDS

A

<— linear

saturation —

)VDS

© Acdam Teman, ”



Adding Channel Length Modulation

 Channel Length Modulation modeled as a finite output
resistance, causes a saturation current dependence on V.

|
KS Channel
Ips
—g—e D

I DSAT

®

VD S | DSAT

1/ Alpsat

Y
-1/2 V.- > Vs

The Piece-
Wise Linear © Acdam Teman,




Square Law (Shockley) Model

* To get a more accurate model, we already are familiar with the
Shockley or Square Law Model.

 Current is just charge times velocity, so at any point, X, along the channel:
5 (x)=—v(x)Q(x)Wdx
« We found that charge can be approximated as:
Q (X) =—Co |:VGS —Ves (X) -Vi ]

 And the velocity is the mobility times the electrical field:

v(x):_ﬂE(x):yn‘;_\x’

The Square
Law Model
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Square Law (Shockley) Model

 And integrating from source to drain, we get
= j | dx = j 1.C W (Ve =V =V, )dV = 1£.C,, V%VDS (VGS ~V, —%VDSJ

* At pinch-off (V=Vs-V5), the voltage over the channel is constant, so we get:

Y (Ves -V, )

| =u C
DsAaT — Hn'“ox oL

* This is where the “Square-Law” name comes from.

The Square
Law Model




Square Law (Shockley) Model

Ios

A

Vps=Vpp

e VGS

The Square
11 Law Model

I DSAT

I DS

W
| . =uC., —
DS :unoxL

|:(VGS _VT )VDSeff B

2
DSeff

(1+ AVps )

© Acdam Teman, ”




The Velocity Saturation Model

* However, when looking at a short channel device,
we see a linear dependence on V...

Ips

* This can be attributed to Velocity Saturation. A
V

~10°> M
Vsat ~ 10 A

¢=V/L -

12 oo © Acdam Teman,
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The Velocity Saturation Model

Vv

A good approximation of the mobility curve is:

s

V= 1+%m

L Vsat

* For continuity:

fcrit o

* After integration, we get:

5 < gcrit

5 > écrit

- ZVSBI

IDS:

14,Co,

W

1+

VDS
gcrit L

L

The V-Sat
Model

© Acam Teman,



The Velocity Saturation Model

* This is hard to use, but we can reach an important conclusion.

» We found that: uC,. W Vs
IDS — \V (VGS _VT )VDS _
DS L 2

1+ é:crit L | i
« And we know that for a velocity saturated device:
lps =WC,, (VGS —Vpsar = V4 )V

sat

 Equating, we get:

V = (VGS —Vr )é:crit . Vosar (el >>Ver ) =Vgs =V = pinchoff
> (VGS —V; )"‘ Cerit -

VDSAT (gcrit L << VGT ) — gcrit L — Vel sat

The V-Sat
Model



The Unified Model for Hand Analysis

* A few simple estimations will make the V-Sat model more user-friendly:
« The mobility is piecewise linear, saturating at ¢>¢_;/2

Vpsat IS plecewise linear, saturating at Vpo.=¢.i:L/2, when V>&,.L/2

<
;.:; i Vo= 10° 5 Actual Vet
Constant velocity 'i-:.- | /2
| | .
§/27 Vsarl £ (V/um) =L/ Ves-Vr (V)

The Unified
15 Model

© Acdam Teman, ”
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The Unified Model for Hand Analysis

* This brings us to the Unified Model:

W

| os = 14,C,, r (VGS —V; )VDSeff B

VDSeff

2

2

(1+ AV )

VDSeff = min (VGS _VT ) VDS ) VDSAT )

gcri L —
VDSAT — 2t fcrit [

2V

sat

© Acdam Teman, ”



2
Advanced MOS
Models

Advanced MOS Models

Q:’S'Q“ence

O

Cc— S . .
O== n “CS $ '\Ia Bar-Ilan University
17 Emerging Nanoscaled ?‘G, |')'N—1:l NU'0ONJIXR

Integrated Circuits and Systems Labs



VT* Model

» Sometimes we want to use a really simple model.
« We can assume that if the transistor is on, it’s velocity saturated.

Vioear: Ips
lps =K, (VGS —V; )VDSAT _%} - A

— —

Vv
=Ky || Vos _(VT T %) Vosar

A'd
*
Vr

| 0 Vg <V
s — « «
° kn (VGS _VT )VDSAT VGS >VT




The Alpha Power Law Model

« Sakurai found that by changing the exponent of the square law, a better fit

can be found with simple calculations. W

| osar (0‘) = 14,C,, Z(VGS —V; )a

s .ShOCkley (a=2) VGS= -’il , Alpha (C(:].B) . VGS<
IDO}=— I | sv 100}~ 4 sv
Measured < > o] Measured ;
s VGS-ID L] ° o VGES-ID
& VDS-ID o 7 * VDS-ID
T = MNew Model
= Shockley Model J 3
N VGSID e feeses EELETEARS bt E 5 |- VvGSiD 24V
— VDSiD , O = |— VDS-ID
i ....... 1‘JI'.. ------ 1 v .E 1
'.5. 1 / L=1um a 1 »
[} We=10um 1 v = F'f
sepes l"_l"": """""" 2V sean .“g lllll Eanaas s K
¢ "‘.' vBs=uv °+'F‘ ?Bsﬂv
- 2v & L=tum W=10um
ﬁ -.1. ‘‘‘‘‘‘‘‘‘‘‘‘‘‘ El 0 5 v --E._.‘.... 1,.‘.
0 1 2 a VDo 4 5 0 1 2 3 vDD 4 5

Lo Jm Teman, ”
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BSIM and Newer Models

« BSIM (Berkeley Short-channel IGFET Model) is the primary compact model family
used for SPICE simulation for the last three decades.

* These model use hundreds of parameters BSIM Family of Compact Model
to achieve a good fit. 1990 1995 2000 2005 2010 2015 >
 BSIM4 is the main model for bulk CMOS i o —
BSIM4
« Takes into account most physical effects , e—

as well as many fitting parameters.
« The Compact Model Coalition (CMC) chooses,
maintains and promotes new models

« Additional models include EKV, PSP, and
models for non-MOS devices.

\

BSIM-CMG and IM

L
T‘,-k [} o . ‘
* G i
4 Tn

BSIM and

more
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Energy Band Diagrams

* To understand the threshold voltage and other secondary effects of the MOS
device, we often use energy band diagrams.

* The first approach is looking in from the gate:

AleV

P-Silicon body
. -
e
<
Vel
<

Gate Si

22 . E
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Energy Band Diagrams

 The second approach is looking from the source to the drain.

1
_ - Long Channel

/ gs=0V

vg=ov| /
N* Source Vd

N* Drain




Threshold Voltage - Basic Theory

* The basic definition of threshold voltage is

the gate voltage (V) required to invert the channel
EC
Vip=@ys =20, - Rox — e — 2 2 /.——-lv__ __\l/_ - &
Cox Cox Cox W ?i,/' CA\:QQB ' ‘gf
v, = qV, ' v
Qdep — \/quAgsi ‘_ZCDF‘ Ec,Ef ) * t / ¢
(DF = _¢T |I’]M ¢T = k—T
4 . e Ol S

o4 Basic Theory

© Acam Teman,



Body Effect

 The appearance of a voltage difference between the
source and body (V<g) is known as “The Body Effect” i A

* This can be modeled by the additional N
charge that needs to be depleted. 1

Qdep = \/ZqNAgsi (‘_ZCDF +VSB‘)

08}

0.75F

> -
-~ 0.85p

—_—

Vo =V +y(\/\—2c1>F V| —\/\—2®F\)
VTO E(DMS—Z(DF _Qox _QdepO 7/: \/zngINA 045}
(0).4 oX COX -2.5 -2 -1.5 VE: " -1 -0.5 o

Classic Body
25 Effect




Modern Body Effect

« A different approach is to look at the capacitive voltage divider between the
gate and bOdy (CGB) Qinv = _Coxe (VGS _Vcs _VTO ) T Cdep (VSB +VCS )

V
g
| =—Cpe (VGS —NVes _VTO)
Gate V
c nagy e g, STo 1e
oxe _|_ # TOXC C W
v 00000B00 oxe 2l —— Coxe
s — N VS
®S ¢ C
gs :: Cdep
Cdep - W B
d max Vi

26

Modern Body
Effect
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Modern Body Effect

* This can be shown to redefine \V; as:

C
VT(VSB) :VTO | C

* In modern technologies, C,/C,. is a constant,
so V5 is linearly dependent on Vgg!

Modern Body
Effect

dep V
SB

OXe

© Acam Teman,



Poly Depletion and Channel Depth

channel
The threshold voltage is affected by two additional / electrons
factors that we have disregarded until now: Y F{/f
« Polysilicon Depletion ength

! .- : : . Ef
« Since polysilicon is, itself, a semiconductor,

the depletion layer into the poly effectively
Increases the oxide thickness. %ty doped p-type Si

poly-Si gate metal
* Channel Depth Axide

« Since the channel is not a 2-dimensional
line along the surface, the oxide thickness
IS essentially increased.

Modern Body
28 Effect

3T
n214 20 =14 —oc
oxe Wd max




Hot Carrier Effects

* Electrons can get so fast that they can tunnel into the gate oxide

and increase the threshold voltage. Q Qe, O
VTO =Dy _ZCDF - COX [ Cd p _C_I

OX OX OX

* This is a reliability issue as it happens over time.
16.0m

Sclid: Fresh Stress lime=100 minutes L ]
| Dot Degraded e [
- L=0.3um, T, =424
12.0m b Stress V=43V, Measurarment V=2 5V
(Al Ly =14%, (a1 =2.4% Source
______ ﬂ, F -
< s8.0m} e = :

L=D.6um, T, ~140A,
Stress V=77V, Measurement V =5V

4.0m | | < | (AL 1 =14.2%, (Al S 1) =12%

29
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V+ Roll Off (Short Channel Effect)

* As channel length is reduced, effective artier long channel
channel length is reduced by depletion regions. ﬁ\
 Atrapezoid is created under the gate, dividing ~ \\ =\ Vs

the channel into the region controlled by the P

gates and by thedrain. . WWZWE;WQ‘] oy

0.00 | j e ! T
* In essence, | ' j v N
-0.05 } i i Y ,
. < 65nm technology. i / [
V isreduced. = | . A—r—
T £ -0.10} t,,.=1.2nm ] vl N
= 045l V=1V | - R
.% - m Vds =50mV ] A
= -0.20 e Vds =1.0V
L
0.01 0.1 1

Lg (um) K. Goto et al., IEDM 2003

m © Acam Teman,




DIBL (Drain Induced Barrier Lowering)

* In short channels, the barrier of the channel is
essentially lowered, as the drain causes the energy
band to drop closer to the source.

* This is exponentially dependent on V..

VT;

VT :VT,Iong — (VDS + 04) long channel

Lo
Low Vp¢ threshold Coxe
\ s Vd5= Vds:O
Vd5=Vdd Vd5=vdd

short channel

—-
Vos

31 » © Acdam Teman, °




Roll Off / DIBL combined

V, roll-off (V ~0V)

DIBL+V, roll-off
{Uds =Udd}

Leﬁ

Source: Chris Kim, U. Minn

' Classic Body Modern Body :
P e — - M \Teman, ©




Reverse Short Channel Effect (RSCE)

* V- actually increases at channel lengths a bit higher than minimum...

r _
S Subthreshold (RSCE only) >1.4 K‘w
- 1.2
& ‘ E 11 vbb=1.2v
> 3 1]
E E o | voD=12v

0 3 I
¥ |Superthreshold (SCE+RSCE) Z 5 ﬂmhat 0.55um ‘
ﬁ a VDD=0.2V Min. Tdnlllr at ﬂ.35|.||'|1

0 0.2 0.4 0.6 0.8 1

Channel Length (um) Channel Length (um)

nm Teman, ”
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How 1o Measure VT

* There are various ways to measure V-
* One classic way takes a small V; and sweeps V.

Iy =K |:(VGS — V7 Vs _%s/} oc Vs = Vg

* So we can find the V¢ at which the linear part
crosses |,.=0.

los




How 1o Measure VT

* One of the more common ways is to find the V¢ at which 1,.=100 nA x W/L.

* For V), setalow Vg (V5s=50mV) Iog
* For ;. seta high Vg (Vps=Vpp)

15=0.1X(W/L) [nA]




Note about Simulation

* The first step of all Spice (Spectre) simulations is a DC Operating Point
calculation.
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Simulation tip: OP and MP in Spectre

« So we saw that the threshold voltage is dependent on the operating point.
* How do you know what the the V- of a transistor is in a given simulation?
* To find V-, use the “MP” option.

* Tofind V1 i, V1 gat V1 gms Use the “OP” option.

* How would you go about plotting roll-off (SCE) and RSCE?



The Computer Hall of Fame

« We generally consider the ENIAC to be the first computer,
but the official first fully electronic computer was the

ACE

« Atansoff-Berry Computer
Conceived in 1937, operational in 1942

 Built at lowa State University by Prof. John Atansoff
and his student Clifford Berry.

* Not programmable nor Turing-complete, but included
binary arithmetic and electronic switching elements.

« A patent dispute over the first electronic computer was

settled in 1973, when the patent of the ENIAC was
iInvalidated.

Source wikpeaa
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Simulating Variation

Process Corners and Monte Carlo Simulation
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Reminder: Impact of Process Variations

2.5
9. Good PMOS
Bad NMOS .
How do we take this
> s | into consideration
3 = Nominal during simulation?
~ | BadPMO ‘
Good NMOS
05+
0 T
0 0.5 25

Source: Rabaey, et. al.



Remove the Rust: Probability Basics

* Properties of Random Variables

« The probability distribution function (PDF) f(x) specifies the probability that a
value of a continuous random variable X falls in a particular interval:

f (x)dx

* The cumulative distribution function (CDF) F(x) specifies the probability that X
IS less than some value x:

Pla<X <b]=["

a

F(x)=P[X <x]=[" flu)du  F(x)=5F(x)
« The mean (1) and variance (¢?) are defined as:
u(X)=X=E[X]=[" xf(x)dx 02(x):E[(x_>?ﬂ:jjo(x_>z)2f(x)dx

41



Remove the Rust: Probability Basics

 Normal Random Variables

« A normal (Gaussian) random variable, shifted to have a zero mean (u=0) and a
normalized standard variation (¢%=1) has:

f (x)= %e_;xz F (x)= %{Herf (%ﬂ

1-0':_(’() F(x) 1-F(x)
0.8413 1.59 x 107!

0.8 - 0.9772 2.28 x 1072
0.998650 1.35x 1073

< 0.9999683 3.17 x 107

04l 0.999999713 2.87 x 1077
0.999999999013 9.87 x 10710

0.2 1 6

0 X O-

I in a billion

2 "3 2 4 0o 1 2 3



Global Variation Modeling: Process Corners

* Global Variation assumption:

* |f a certain process step is skewed, the entire chip is affected equivalently.
« We will define “corner cases” of fabrication, i.e., 3o from the mean.
 We also assume the voltage and temperature are globally affected.

* Devices are modeled for fast, slow and nominal corners.
« Changesin V., W, L, t_, .
* Devices are tested at various temperatures
« Temperature affects mobility and V.
« Typically 0°C — 85°C or -40°C — 125°C
* Devices are tested at various supply voltages

« Higher voltages cause increased currents

pMDS fast

slowy

slow fast
» Typically £10%V, nMoS



Process Corners

« What are the PVT (=Process, Voltage, Temperature)
settings for each simulation corner?

Corner V; L s

Fast 1 1

Typical X X X X X

MR BR AR NE A




What about Local Variation?

* Often there are too many parameters to think about Vin=0.18¥
and setting a specific corner case is insufficient.
* For example: Pelgrom’s Law DJJaoms 1
V., variance Is inversely proportional y
to transistor area K
o(Vy) =

\/W L Vth=0.56V

i () a) e e e oo -

Source: Asenov, IEEE TED 1998

How do we
deal with this?

o —— )\

65nm CMOS NAND cell Intel 65nm 6T SRAM cell

4 Source: Stanford, EE380



Monte Carlo Simulation

 The basic approach is to “roll the dice” for each
parameter and run a simulation.
 These are called Monte Carlo Statistical Simulations.

7 o, (Local)

: o, (Global)

.................

* The result is a distribution plot of design constraints, PMOS

e.g., delay or noise margin

* Both Global and Local Variations can be
taken into consideration.

Speed Distribution

0.300

Delay

Local Global

0.200 A

Distribution

0.100 o

0.000 4

+30 ” -30 oba . 1
Global Global Delay vth



Simulation questions

* How do we plot threshold voltage variation?
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Leakage in Nanoscaled Transistors

* Transistors that are supposed to be off actually leak!

|
- DS

P1
oV
— 1 s
\/kl(f _il.)
// \\
N\
il
VDD ’
N1

49

> Vs
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Main Types of Leakage

Polysilicon Gate

Oxide

subthreshold

Punchthrough

P-substrate

oC eVGS T Igate o Ve }t/ox loioL < Vie



Subthreshold Leakage

* When V<V, there is still a finite carrier
concentration at the surface:

Ps Vs —Vr
nsoceéf =1, oce Vo

 As we saw with the body effect, due to bulk to channel
capacitance, the surface voltage isn’t only controlled

by the gate:
C

=

S

nN=1+

dep

oxe

Cdep

_C +C

Subthreshold
51 Leakage

dep



Subthreshold Leakage

* Let’'s make things easier:
W VGS_VV
- Remember that: I s (Sub) :Constf-e pi

+ And we now defined the threshold |/ -y} =100n AWV
voltage according to current: L

0
— Const PV | eﬁ’jr — Const wW_ 1OOnAVl

Ves=Vr L L L

* So the boundary
| . (sub
condition requires: os (SUb)

A W Ves—Vr
And we can now calculate 1, [nA]=100" e pa
subthreshold current as:

Subthreshold
52 Leakage




Subthreshold Leakage

* An even easier way is to look at the plot of log(l5)=f(Vss):
* The slope of this curve is called the “Subthreshold Slope”

* The inverse of this slope is known as the Log (I4)
“Subthreshold Swing” (S): t
KT (., Ce
S=lIn (10)F(1—|— Cd P j =2.3-N-¢; 100xW/L(nA)

Ves—Vr Gs VT
Isub[nA]:loOV%e oo _100WV.90" %

* And | ¢, which is defined as W, v/
the current when V=0 is:  lof [nA]= 100f10 °

Subthreshold
53 Leakage

Y



Subthreshold Leakage

* So subthreshold leakage is:

* Exponentially dependent on V.

» Exponentially dependent on V.

* S is the subthreshold swing coefficient.
* Optimally, S,,,=60 mV/dec

* Realistically S =100 mV/dec

S=n¢ In10>0.06

Subthreshold
54 Leakage

nN=1+

C

dep

oXxe

I (A

10

10 |

10 |

10° }

0™

Linear

/ Quadratic

o / Exponential
10"} /

1'.'.-]-'

=

0.5 1 1.5 2

2.5



Subthreshold Leakage

Example:

» We want to design a transistor with:
Ion > 104 S = 60m_v
| o dec

* What is the minimum V-?

Subthreshold
55 Leakage

10

10 |

10 |

I (A

10}

A0
10 } 4

10"

Linear
.-"...-F-F--F-‘-
/" Quadratic
.'-r!ll- Q
.lll-
f
#f Exponential
/ :
1‘. T 1 2 M "
0.5 1 1.5 2

‘H'GEL‘H'I

@ Adam Teman, ”
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Impact of DIBL

 DIBL causes an additional exponential increase
in subthreshold leakage with V..

H000
Anxxx - PMOS NMOS Vs —Vr —Vps NVps
E l(x)u ;—"'"—m.h M__,»‘-""—“"“_‘_J n¢.|— ¢r n¢.|_
= joof I b:IOe X(l—e )Xe
< : Su
= 10
=
g 1f
™~ 0.1 £ 90nm technology.
~E Gate length: 45nm
001 E (V) = 0.05, 1.2\
()_(x)l:lllll|11||11|1|111 NEERE RN NN RN AN

1 | | 1 1
-12 -09 -06 -03 0 0.3 0.6 0.9 1.2

Subthreshold
56 Leakage

8Y  Intel, T. Ghani et al., IEDM 2003



Subthreshold Dependence on Temperature

* This is rather complex, as mobility degrades with temperature and other device
values (such as flatband voltage) are temperature dependent.

* Altogether, subthreshold leakage rises
exponentially with temperature®. 10°5T

] 1

125 °C

VGS—VV% _ 0
n =<
ISUb (X: e I-]-:. -“-:l—?-
3 . 4
¢TEkV = 10
q 1{]9
10 ! '
1077, 05 1 15

Without considering temperature inversion Vs [V)

57 Leakage 2 Adam Teman, "



Temperature Inversion

* Classic approach to temperature effect on delay:

) 1
|oc V. 2T 1
1_¢ —>tyocT oc ¢ ot =T
pu—T t oV x
oC So speed decreases pd T So speed actually
with temperature Increases with
e BUT! temperature!

* V; decreases by as much as -3mV/°C

* The point of temperature inversion is the voltage at which speed
iIncreases with temperature (~V,=1V)!

Subthreshold
58 Leakage
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Gate Leakage

 Two mechanisms:

 Direct tunneling (dominant)
« Fowler Nordheim tunneling

— AE 2 e_%ox

- Exponentially Dependent on: |

5

gate =3

« Gate Voltage (V) V. _V g
 Oxide Thickness (t,,). E. = DD T £

L

* Non-dependent on temperature. ox S

* Much stronger in nMOS than pMOS -
. . 002040608 1 12141618 2
(higher barrier for holes) Applied voltage [v]

* Minimum t_ =1.2nm!!!

Gate Leakage
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Gate Induced Drain Leakage

 GIDL current flows from the drain to the substrate.

« Caused by high electric field under the gate/drain
overlap, causing e-h pair creation.

 Main phenomena is Band-to-Band Tunneling

logi, Vs = 1.1V

@ Adam Teman, ”
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Diode Leakage

 J.=10-100pA/um? @25°C for 0.25pm CMOS.

* J; doubles for every 9°C

* Much smaller than other leakages in deep sub-micron.

I, =J. xA

« But a bigger factor in low subthreshold leakage

processes, like FINFET.

Diode Leakage

Breakdown
Voltage
I

y

Current

Forward
Region

Reverse
Leakage
Current

Reverse
Region

Forward
Voltage

Voltage

Typical Diode Voltage/Current Curve




Punchthrough

* As \/,; grows, so does the drain depletion region,
and the channel length decreases.

* [n severe cases, the source and drain are connected

causing non-controllable leakage current. L RVA
R
______ w7 [ Wy
L ++VD
-
! |

——————————————

n
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Polysilicon Gate

Leakage Summary
 Subthreshold Leakage:

* 150 when V<V, due to weak inversion.
* Grows with Vg, Vs, lower V-

 Gate Leakage:

Oxide

subthreshold

iy
o
)

Punchthrough

* 15>0 due to direct tunneling through the oxide. ey |
» Grows with Vg, t., B o :
» Gate Induced Drain Leakage (GIDL): e
- 1,5>0 due to high electric field In N e
the GD overlap region (Vp). Ei |
* Reverse Biased Diode Leakage

0.5 0 0.5 1 1.5
L]

* |, Ips due to diffusion and thermal generatio'h

* Punchthrough:
- |, due to drain and source depletion layers touching.

h
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Process Corners - Revisited

But what about
Temperature Inversion?e

 Should we now redefine the PVT settings?

Corner Vi L Vpp T

Fas’.r l l t l
Slow t t t l t
Max Leakage @ @ @ﬁ ﬁ ﬁ
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