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TCAD vs. Compact Models

• Technology CAD (TCAD) is a simulation environment 

for accurately simulating device behavior:

• Provide a process “recipe” and device layout

• Produce IV or CV curves through device simulator 

• Used to predict device and process physics

• Takes 1hr-1day per IV curve and 100s MB RAM per transistor

• Compact models (a.k.a. SPICE models or ECAD) are 

simple models used for circuit simulation

• Provide a set of equations that SPICE uses to 

calculate IV or CV curves

• Should take <100us per IV curve 

and a few KB per transistor

• Usually extracted empirically from measurements

TCAD is 

too slow and memory 

hungry to be used for 

circuit simulation!

SPICE uses compact 

models for calculating 

device behavior
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Switch Model

• The most simple MOSFET model is the Switch Model.
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The Piece-Wise Linear Model

• As we know, when the channel pinches off, 

the current saturates.

• This can be depicted with the simple 

Piece-Wise Linear Switch Model
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Adding Channel Length Modulation

• Channel Length Modulation modeled as a finite output 

resistance, causes a saturation current dependence on VDS.
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Square Law (Shockley) Model

• To get a more accurate model, we already are familiar with the 

Shockley or Square Law Model.

• Current is just charge times velocity, so at any point, x, along the channel:

• We found that charge can be approximated as:

• And the velocity is the mobility times the electrical field:
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Square Law (Shockley) Model

• So we get: 

• And integrating from source to drain, we get

• At pinch-off (VDS=VGS-VT), the voltage over the channel is constant, so we get:

• This is where the “Square-Law” name comes from.
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Square Law (Shockley) Model

• Replacing VDS with VDSeff=min(VGS-VT, VDS) we get:
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The Velocity Saturation Model

• However, when looking at a short channel device, 

we see a linear dependence on VGS.

• This can be attributed to Velocity Saturation.
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The Velocity Saturation Model

• A good approximation of the mobility curve is:

• For continuity: 

• After integration, we get: 
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The Velocity Saturation Model

• This is hard to use, but we can reach an important conclusion.

• We found that:

• And we know that for a velocity saturated device: 

• Equating, we get: 
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The Unified Model for Hand Analysis

• A few simple estimations will make the V-Sat model more user-friendly:

• The mobility is piecewise linear, saturating at ξ>ξcrit/2

• VDSAT is piecewise linear, saturating at VDSAT=ξcritL/2, when VGT>ξcritL/2
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The Unified Model for Hand Analysis

• This brings us to the Unified Model:
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VT* Model

• Sometimes we want to use a really simple model.

• We can assume that if the transistor is on, it’s velocity saturated.
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The Alpha Power Law Model

• Sakurai found that by changing the exponent of the square law, a better fit 

can be found with simple calculations.
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BSIM and Newer Models

• BSIM (Berkeley Short-channel IGFET Model) is the primary compact model family 

used for SPICE simulation for the last three decades.

• These model use hundreds of parameters 

to achieve a good fit.

• BSIM4 is the main model for bulk CMOS

• Takes into account most physical effects

as well as many fitting parameters.

• The Compact Model Coalition (CMC) chooses,

maintains and promotes new models

• Additional models include EKV, PSP, and

models for non-MOS devices.
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Energy Band Diagrams

• To understand the threshold voltage and other secondary effects of the MOS 

device, we often use energy band diagrams.

• The first approach is looking in from the gate:

22
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Energy Band Diagrams

• The second approach is looking from the source to the drain.

23

~0.2eV
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Threshold Voltage - Basic Theory

• The basic definition of threshold voltage is

the gate voltage (VG) required to invert the channel
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Body Effect

• The appearance of a voltage difference between the 

source and body (VSB) is known as “The Body Effect”

• This can be modeled by the additional 

charge that needs to be depleted.
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Modern Body Effect

• A different approach is to look at the capacitive voltage divider between the 

gate and body (CGB)
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Modern Body Effect

• This can be shown to redefine VT as:

• In modern technologies, Cdep/Coxe is a constant, 

so VT is linearly dependent on VSB!
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Poly Depletion and Channel Depth

The threshold voltage is affected by two additional

factors that we have disregarded until now:

• Polysilicon Depletion

• Since polysilicon is, itself, a semiconductor, 

the depletion layer into the poly effectively 

increases the oxide thickness.

• Channel Depth

• Since the channel is not a 2-dimensional 

line along the surface, the oxide thickness 

is essentially increased.
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Hot Carrier Effects

• Electrons can get so fast that they can tunnel into the gate oxide 

and increase the threshold voltage.

• This is a reliability issue as it happens over time.
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VT Roll Off (Short Channel Effect)

• As channel length is reduced, effective 

channel length is reduced by depletion regions.

• A trapezoid is created under the gate, dividing 

the channel into the region controlled by the 

gates and by the drain.

• In essence, 

VT is reduced.
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DIBL (Drain Induced Barrier Lowering)

• In short channels, the barrier of the channel is 

essentially lowered, as the drain causes the energy 

band to drop closer to the source.

• This is exponentially dependent on VDS.

31

( ) d
T T,long DS

oxe

0.4
C

V V V
C

= − + 

Basic Theory
Classic Body 

Effect
Modern Body 

Effect
Hot Carriers VT Roll-Off DIBL RSCE Measuring VT



April 27, 2020© Adam Teman, 

Roll Off / DIBL combined
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Reverse Short Channel Effect (RSCE)

• VT actually increases at channel lengths a bit higher than minimum…
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VGS

IDS

VDS=50mV

How to Measure VT

• There are various ways to measure VT

• One classic way takes a small VDS and sweeps VGS.

• So we can find the VGS at which the linear part 

crosses Ids=0.
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How to Measure VT

• One of the more common ways is to find the VGS at which IDS=100 nA x W/L.

• For VT,lin, set a low VDS (VDS=50mV)

• For VT,sat set a high VDS (VDS=VDD)
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Note about Simulation

• The first step of all Spice (Spectre) simulations is a DC Operating Point 

calculation.
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Simulation tip: OP and MP in Spectre

• So we saw that the threshold voltage is dependent on the operating point. 

• How do you know what the the VT of a transistor is in a given simulation? 

• To find VT0, use the “MP” option.

• To find VT,lin, VT,sat, VT,gm, use the “OP” option.

• How would you go about plotting roll-off (SCE) and RSCE?

37



The Computer Hall of Fame

• We generally consider the ENIAC to be the first computer, 
but the official first fully electronic computer was the

• Atansoff-Berry Computer

Conceived in 1937, operational in 1942

• Built at Iowa State University by Prof. John Atansoff
and his student Clifford Berry.

• Not programmable nor Turing-complete, but included 
binary arithmetic and electronic switching elements.

• A patent dispute over the first electronic computer was 
settled in 1973, when the patent of the ENIAC was 
invalidated.

Source: wikipedia

Source: wikipedia
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Reminder: Impact of Process Variations

40 Source: Rabaey, et. al.

How do we take this 

into consideration 

during simulation?
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Remove the Rust: Probability Basics

• Properties of Random Variables

• The probability distribution function (PDF) f(x) specifies the probability that a 

value of a continuous random variable X falls in a particular interval: 

• The cumulative distribution function (CDF) F(x) specifies the probability that X

is less than some value x:

• The mean (µ) and variance (σ2) are defined as:
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Remove the Rust: Probability Basics

• Normal Random Variables

• A normal (Gaussian) random variable, shifted to have a zero mean (µ=0) and a 

normalized standard variation (σ2=1) has:
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Global Variation Modeling: Process Corners

• Global Variation assumption:

• If a certain process step is skewed, the entire chip is affected equivalently.

• We will define “corner cases” of fabrication, i.e., 3σ from the mean.

• We also assume the voltage and temperature are globally affected.

• Devices are modeled for fast, slow and nominal corners.

• Changes in VT, W, L, tox

• Devices are tested at various temperatures

• Temperature affects mobility and VT.

• Typically 0°C – 85°C or -40°C – 125°C

• Devices are tested at various supply voltages

• Higher voltages cause increased currents

• Typically ±10%VDD43
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Process Corners

• What are the PVT (=Process, Voltage, Temperature) 

settings for each simulation corner?

44
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What about Local Variation?

• Often there are too many parameters to think about 

and setting a specific corner case is insufficient.

• For example: Pelgrom’s Law

• VT variance is inversely proportional 

to transistor area

45
Source: Stanford, EE380

𝜎 𝑉T =
𝐾

𝑊 ⋅ 𝐿

Source: Asenov, IEEE TED 1998

How do we 

deal with this?
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Monte Carlo Simulation

• The basic approach is to “roll the dice” for each 

parameter and run a simulation.

• These are called Monte Carlo Statistical Simulations.

• The result is a distribution plot of design constraints, 

e.g., delay or noise margin

• Both Global and Local Variations can be 

taken into consideration.

Source: Stanford, EE380



April 27, 2020© Adam Teman, 

Simulation questions

• How do we plot threshold voltage variation?
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VGS

IDS

Leakage in Nanoscaled Transistors

• Transistors that are supposed to be off actually leak!
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Main Types of Leakage
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Subthreshold Leakage

• When VGS<VT, there is still a finite carrier 

concentration at the surface:

• As we saw with the body effect, due to bulk to channel 

capacitance, the surface voltage isn’t only controlled 

by the gate:
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Subthreshold Leakage

• Let’s make things easier:

• Remember that:

• And we now defined the threshold 

voltage according to current:

• So the boundary 

condition requires:

• And we can now calculate 

subthreshold current as:
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Subthreshold Leakage

• An even easier way is to look at the plot of log(IDS)=f(VGS):

• The slope of this curve is called the “Subthreshold Slope”

• The inverse of this slope is known as the 

“Subthreshold Swing” (S):

• And Ioff, which is defined as 

the current when VGS=0 is:
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Subthreshold Leakage

• So subthreshold leakage is:

• Exponentially dependent on VGS.

• Exponentially dependent on VT.

• S is the subthreshold swing coefficient.

• Optimally, Sopt=60 mV/dec

• Realistically S ≈100 mV/dec
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Subthreshold Leakage

Example:

• We want to design a transistor with:

• What is the minimum VT?
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Impact of DIBL

• DIBL causes an additional exponential increase 

in subthreshold leakage with VDS.
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90nm technology. 

Gate length: 45nm
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Subthreshold Dependence on Temperature

• This is rather complex, as mobility degrades with temperature and other device 

values (such as flatband voltage) are temperature dependent.

• Altogether, subthreshold leakage rises 

exponentially with temperature*.

* Without considering temperature inversion
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Temperature Inversion

• Classic approach to temperature effect on delay:

• BUT!

• VT decreases by as much as -3mV/°C

• The point of temperature inversion is the voltage at which speed 

increases with temperature (~VDD=1V)!
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So speed decreases 

with temperature

So speed actually 

increases with 

temperature!
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Gate Leakage

• Two mechanisms:

• Direct tunneling (dominant)

• Fowler Nordheim tunneling

• Exponentially Dependent on:

• Gate Voltage (VG) 

• Oxide Thickness (tox).

• Non-dependent on temperature.

• Much stronger in nMOS than pMOS

(higher barrier for holes)

• Minimum tox=1.2nm!!!
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Gate Induced Drain Leakage

• GIDL current flows from the drain to the substrate.

• Caused by high electric field under the gate/drain 

overlap, causing e-h pair creation.

• Main phenomena is Band-to-Band Tunneling
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Diode Leakage

• JS=10-100pA/μm2 @25°C for 0.25μm CMOS.

• JS doubles for every 9°C

• Much smaller than other leakages in deep sub-micron.

• But a bigger factor in low subthreshold leakage 

processes, like FinFET.
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Punchthrough

• As VDS grows, so does the drain depletion region, 

and the channel length decreases.

• In severe cases, the source and drain are connected

causing non-controllable leakage current.
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Leakage Summary
• Subthreshold Leakage:

• IDS>0 when VGS<VT due to weak inversion.

• Grows with VGS, VDS, lower VT

• Gate Leakage:
• IG>0 due to direct tunneling through the oxide.

• Grows with VGB, tox

• Gate Induced Drain Leakage (GIDL):
• IDB>0 due to high electric field in 

the GD overlap region (VGD).

• Reverse Biased Diode Leakage
• ISB, IDB due to diffusion and thermal generation.

• Punchthrough:
• IDS due to drain and source depletion layers touching.
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Process Corners - Revisited

• Should we now redefine the PVT settings?
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Corner VT Leff tox VDD T

Fast

Typical X X X X X

Slow

Max Leakage
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But what about 

Temperature Inversion?
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Further Reading

• J. Rabaey, “Digital Integrated Circuits” 2003, Chapters 2.5, 3.3-3.5 

• Weste, Harris “CMOS VLSI Design”, Chapter 7

• C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010, Chapters 4-7

• Tzividis, et al. “Operation and Modeling of MOS Transistor”Chapters 1-5

• E. Alon, Berkeley EE-141, Lecture 9 (Fall 2009) 

• M. Alam, Purdue ECE-606 – lectures 32-38 (2009) nanohub.org

• A. B. Bhattacharyya “Compact MOSFET models for VLSI design”, 2009, 

• T. Sakurai, “Alpha Power-Law MOS Model” – JSSC Newsletter Oct 2004

• Managing Process Variation in Intel’s 45nm CMOS Technology, Intel Technology Journal, 2008

• Berkeley “BSIM 4.6.4 User’s Manual” 

http://www-device.eecs.berkeley.edu/~bsim/BSIM4/BSIM464/BSIM464_Manual.pdf
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