SoC 101;

a.k.a., “Everything you wanted to know about a computer but were afraid to ask”

Lecture 3:
From C to AssembDbly

Prof. Adam Teman
EnICS Labs, Bar-llan University

29 April 2023

E n ||CS The Alexander Kofkin N’A

Emerging Nanoscaled Faculty of Engineering

Integrated Circuits and Systems Labs

This Lecture

Source: ARM
L Watchdog
< JTAG/Serial wire
4> §
1 .. > Timers
<
c
3
o UART
v
APB
Peripheral

© Adam Teman, 2023

Outline

[-~ TR Y

Variables and
Memory Access

Motivation Basic Operations

= The Alexander Kofkin
Enics_ X

e Faculty of Engineering

= The Alexander Kofkin
e N

e Faculty of Engineering

= The Alexander Kofkin
£EnlCS Ny)

e Faculty of Engineering

RISC-V

Control Flow Features and Extensions

o— The Alexander Kofkin & = The Alexander Kofkin & E:nlcs The Alexander Kofkin &
L=y Faculty q[Engineering 7 - Faculty of Engineering 7 Ve O Faculty of Engineering 7 Ve

= Erren Mo et

EnICS The Alexander Kofkin &

Errenng Haninc Faculty of Engineering

Motlivation

o— =N ‘lcs The Alexander Kofkin AIAI

Em erging Nan Faculty of Engineering
Integrated Circ t dSytemsLabs _

The ‘C’ Programming Language

* Fifty years and counting...

« C was developed in the early 70s by
Dennis Ritchie and Ken Thompson.
*‘C’ replaced ‘B’, which was named for Ken Thompson’s wife, Bonnie.

 “ANSI C” (C89) is often considered the standard.

« Today, C is still the preferred language for programming embedded systems.
* Why? ayT -

For many reasons, but here are a few of the main ones: ‘ — N

* Fine-grained Control

 Memory Management

« Performance

* Bit Manipulation “C is the closest thing to assembly
 Portability and Compatibility that is not assembly.”

LANGUAGg &

But hardware runs on binaries

* The Instruction Set Architecture (ISA) is the interface Problem
(“contract”) between the software and the hardware.

Source Files Compiler Toolchain Runtime System
usually in High Level . (O S /V|V|)
Languages ; I : Architecture Specific
Software Tools - : . .
H Machine Code = Architecture (ISA)
*.C Compiler Executable
*.h Toolchain File
A
I
l ______ Version IDE Executable Transistors
Control Loader
Electrons

Why Instruction Set Architecture matters

« Why can’t Intel sell mobile chips?

* 99%+ of mobile phones/tablets
based on ARM v7/v8/v9 ISA

» Why can’t ARM partners sell servers?

* 99%+ of laptops/desktops/servers
based on AMDG64 (x86-64) ISA 1000

900
 How can IBM still sell mainframes? 800+ X86 instruction set
* |IBM 360, oldest surviving ISA (50+ years)

ISA is most important interface
in computer system where
software meets hardware

700
600
500
400 H
300 -

* Instruction Sets do not change 200-

« But they do accrete more instructions e

D o b o> o D D O DO D PO DO
S \Q%?‘\q]q} S S ’\qjcab‘\%q ShsSes @Qb‘ SN

Mumber of Instructions

Year

Proprietary ISAs Die Out

* Proprietary ISA fortunes tied to business fortunes and whims

MIPSS

Q0 imagination

,.
"‘

’ AIphaPowered

* Open Interfaces work for Software. Why not for Hardware?!?

VNV =

COMPUTI NG

4f%Sun =

ITANIUM® | i
ORACLG T inside” ’

Field Open Standard Proprietary Implemen. | Free, Open Implementation
Networking Ethernet, TCP/IP | Many Many

OS Posix MS Windows Linux, FreeBSD

Compilers C Intel icc, ARMcc gcc, LLVM

Databases SQL Oracle 12C, MS DB2 | MySQL, PostgresSQL
Graphics OpenGL MS DirectX Mesa3D

ISA 2?7?77 x86, ARM, IBM360 | ------

The Need for a Single ISA

* Modern SoCs have many different ISAs on a single SoC, such as:

 Applications processor (usually ARM)
« Graphics processors

thdeo Encodejf E 2=

3 ==
* Image processors | ‘Processot §§
- Radio DSPs o e —
A d P'?f%?%i A‘;/’lde‘o Decode; IEI'!E
€ U IO DSPS g‘ﬁr’*‘ = Processor - i h“ [
. <y 2 , Cortex A9 | Cortex A9
e Security processors e [Fcru_ - cpl
« Power-management processor aAud'o - Bo= =
) o Processor : e e -
A Single ISA is invaluable 3 ir |
. Dual : ple) e
 Asingle software stack Displays S e
* No proprietary ISAs that may disappear Lj ki |
* Flexibility for various needs and features UsB === 1

NVIDIA Tegra SoC

The solution: RISC-V

: “3-month project” at UC-Berkeley
« Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic
: Frozen Base User Spec

: RISC-V Foundation Established :

» Led by Calista Redmond since 2019
« Over 3100 members (2023)

* RISC-V Project Goal: RISC
Become the industry-standard ISA for all computing devi

CeS

..‘l”’ s ww
el [FirstiRISC:

What's Different about RISC-V? A" 4 |

 Simple
 Far smaller than other commercial ISAs
* Clean-slate design

» Clear separation between user and privileged ISA
« Avoids parchitecture or technology-dependent features

* Modular ISA designed for extensibility/specialization

« Small standard base ISA, with multiple standard extensions
« Sparse & variable-length instruction encoding for vast opcode space

 Stable

« Base and first standard extensions are frozen
« Additions via optional extensions, not new versions

« Community designed
« Developed with leading industry/academic experts and software developers

From Software to Hardware

* In this lecture, we will cross the boundary between software and hardware.
» At the software side, we will look at C
as a high-level programming language.
« At the hardware side, we will use the RISC-V ISA
to demonstrate assembly and machine language. »: ‘
* This overview will show how high-level programming constructs map
to the CPU architecture introduced in the previous lecture.
 However, these concepts are applicable to

« Specifically, we’ll be using the
any programming language and any instruction set architecture.

32-bit RISC-V integer instructions (RV32l).

Basic
Operations

Basic Operations

o— &n “CS The Alexander Kofkin Aﬁ

Em erging Nan Faculty of Engineering
13 Integrated Circ t dSytemsLabs

Our basic computer

* From the last lecture, our basic computer comprises:

« Control and Datapath 4| ALU operation
* Program Counter
« General Purpose Registers
* Instruction and Data Memories

* As a load-store architecture operations
are done directly on registers, e.g.: 2dd x1,x2,x3 > x1€x2+x3

 Such an operation has three components:

1. Instruction Fetch | RVASM:

: : C Coode: 2616l 55,540 52
2. Reqister FllgAccess F= (g+h) - (149) ; ~dd %6, %3, 24
3. ALU Execution sub x7,x6, x5

* Let us start building our datapath with these components

IMEM

..............

.

1. Instruction Feich

* Instructions are 32 hits wide, so for every instruction:

 We need to fetch one 32-bit word

* And increment the address by 4-bytes
* Instructions come in a number of formats

 Bit placement optimized for hardware implementation
« For example, all store the opcode Iin the bottom 7 bits

* The instruction formats in RISC-V are:

* R (Register)-Format
e 2-source, 1-destination operand

* | (Immediate)-Format
* 1-source, 1-destination, 12-bit constant

* S (Store) and B (Branch)-Format
e 2-source, 12-bit constant

U and J (Jump)-Format
« 1-destination, 20-bit constant

PC —e—

7 bits 5 bits

12 bits

5 bits

rs1
5 bits

3 bits

3 bits

7 bits 5 bits

20 bits

5 bits

3 bits

Read
address

Instruction

Instruction
memory

o bits

5 bits

5 bits

5 bits

opcode

7 bits

opcode

7 bits

opcode

7 bits

opcode

7 bits

Add

2. Register File Access

* RISC-V has 32 Registers E

* The “Goldilocks Principle”
« “This porridge is too hot; This porridge is too cold,;
This porridge is just right”
« Smaller is faster, but too small is bad.
* Registers are numbered x0 to x31

« Actually, it's 31 registers, since x@ is hard-wired to @
 All other registers are equivalent/general purpose

« Actually, it's 32 reqgisters, since there’s also the program counter (pc)

Reg. | ABI Name Description
x0 Zero Hard-wired Zero
x1 ra Return Address
x2 sp Stack Pointer
x3 gp Global Pointer
x4 tp Thread Pointer

x5=17 t0-2 Temporaries
x8 s0/fp | Frame Pointer/

Saved Reg
x9 sl Saved Register
x10-11 a0-1 [Arguments/
Return Values
x12-17 a2-17 Arguments
x18-27| s2-11 | Saved Registers
x28-31 t3-6 Temporaries

 The Application Binary Interface (ABI) gives certain registers assignments:

% 3: Global pointer (gp)
= 8. Frame pointer (fp) x10-11: Return values x10-17: Arguments (e.d., a0)

* x1: Return address (ra)

x5-7,28-31:temporaries (e.g., t0)

x 2. Stack pointer (sp)

x8-9,18-27: saved registers

2. Register File Access

» A Register-Register Operation requires:
add x1,x2,x3 2 X1€x2+x3

« Two source operands: rsl, rs2

* One destination operand: rd

* - Regqister file requires 2ZR1W access
* This operation will use the R-Format:

* Arithmetic with a constant requires:

Instruction !
—_—

.| Read
" | register 1

| Read

Read

data 1
register 2

Write Registers

register Read

Write 2

data

RegWrite

32 64

Imm

Gen

funct3 - opcode

addi x1,x2,0x123 2> x1€x2+0x123

This operation will use the |-Format:

One source (rs1) and one destination (rd) operand.
An “immediate” in the remaining available bits.

.
5 | Read
> register 1 Read)
Register 5 | Read data 1
numbers |~ register 2
5 |Write Registers ; Data
L ¥ register Read
; data 2
Data { — \éV;L;e - /
|RegWrite
funct/ rs2 rsi
7 bits 5 bits 5 bits 3 bits
rsi
12 bits 5 bits 3 bits

Special unit for sign extension — bit 31 always sign bit!

5 bits 7 bits
opcode
5 bits 7 bits

3. Execution

* How do we know which operation to perform?

» R-Format: opcode: 7 bits, reqisters: 15 bits, 10 bits left [twer [52] st]wunct [opooce |
 |-Format: opcode: 7 bits, reg/const: 22 bits, 3 bits left —I

 Can be used to select ALU operation or other control

12 bits

5 bits

3 bits

« Can encode 1000 different instructions with a single R-Format opcode!

* R-Format (Register-Register) Instructions:

* add, sub, Shift Left/Right (s11/srl/sra),
and/or/xor, Set less than (s1t)

* |-Format (Register-immediate) Instructions:
* addi, andi, ori, xori, slti
 NO subi Instruction. Just add a negative!

addi x1,x2,-0x123 2> x1€<x2-0x123

ALU ALy
result

ALU operation

7 bits

ALU | Function
control

0000 AND

0001 OR

0010 add

0110 | subtract

What are bitwise operations used for?

» We saw above that the ALU provides a variety of bitwise operations:
* and, or, xor, andi, ori, xori, sll, srl, sra,slt,slt1i

» Similarly, C provides these operations: S

* &(AND), |(OR), ~(XOR), ~(NOT), <</>> (Shift) Cloar selocted = O%E
 But what are they good for? bit of A -
« Use a “mask” to select bit(s) to be altered. CzA&/(b%l" ; {j

« Common operations that one might perform, include: Clearaiibut =
selected bit of A

« Set/reset bits on a microcontroller output port. C=A|0x1; A

« Testing status bits on input lines or in registers. et selocted 0%1
« Set/reset status bits as the result of some operation. pjtof 2

« Making comparison operations. C=A*0x1; A
* Quickly perform multiplication or division. Invert se|e€ted 0x(1:

bit of A

O

Q [

O

Q [

O

O

o o

QO

=i= Qo O O

o

oo oo o/oo o+~ o

Q |O
Q. = O

Variables and
Memory AcCcess

o— &n ‘lcs The Alexander Kofkin A’A

Em erging Nan Faculty of Engineering
20 Integrated Circ t dSytemsLabs

Stack
Program and Data Memory |
Dynamic Data
* Let’s take a very simple program: Static Data
» The compiler translates the high-level language T
(C code) into machine language (binary). ~eserved . IMEM
» Both instructions and data are mapped to the main ()
address space of the system according to the memory map. T/f I
« Program code (text) is mapped to the instruction memory PC| [
» Global variables (Static Data) are = <
= 1 O
mapped to the data memory | L T
text main () T o 3

- Load/Store operations J"

‘L—»

D
£
>
C

: int main() { ap
are appll_ed to move int x = 8; ~
the data in and out of int y = 2;7 | N x ;
: int z; z
the registers. e data| v L, DMEM

return z;

C Variables

« Variables in C are declared, defined, and initialized:

type-qualifier(s) type-modifier data-type variable-name = initial-value;

/f [,[const unsigned char foo = 12;
const short int long int bar;
volatile long float '
static signed char
unsigned void
. . . C Bytes in | Bytes in
* Space for variables is allocated according to data type. type RV32 | RV64
. . . . char 1 1
« Global and Static variables allocated in Static Data. short 2 2
 Static variables have scope of particular function. li“t j ;‘
11 . 7 - ong
« Local ("automatic”) variables allocated on the stack. Tong long 8 8
« Compiler can also allocate local variables to registers. — ; ;
* volatile keyword ensures compiler will not remove. double 8 8
long double 16 16

Consts stored within read only section

23

How are variables accessed in RISC-V?

- . R2|_Address
* Remember, RISC-V is a load-store architecture: — T Fl — | Memory
* There are no memory-to-memory operations. \, £ —
 All we need are commands to bring data from memory

INto a register and to write a result back into memory.

 RISC-V only supports displacement addressing

 We achieve this with load and store rs1 opcode

Instructions using the I/S-Formats. 12 bits Sbits 3bits 5bits 7 bits
* rsl points to a register that holds the memory address,

Imm defines the offset, and rd/rs2 points to a register

to load to or store from.

« 12-bits provide an offset of up to 4096 bytes!

* For example, word (32-bit) access uses the lw x6, 123(x10)> x6=Mem[x10+123]
1w (load word) and sw (store word) commands. =" *© 123 (x10)=> Mem[x10+123]=x6

24

How do we access an absolute address?

* To access an absolute address, we need to load a 32-bit value into a register

« But the I-Format only provides room for a 12-bit value...
 |Instead let’s use the 20-bit immediate in the U-Format

20 bits 5 bits 7 bits

* But how does this let us load a 32-bit constant into a register?

 Start with the load upper immediate (1ui) instruction:
 The immediate is loaded into bits rd[31:11]. lui t0, 456> t0=(456<<12)
 Now use addi to complete the 32-bit constant 2ddi t0, 789 t@=(456<<12)+789

 Another option is to create a PC relative address:
 Start with the add upper immediate to PC (auipc) Instruction.

* And complete with addi. auipc tl, 456> t@=PC+(456<<12)
addi tl1, 789> t@=PC+(456<<12)+789

25

And what happens on the C side?

 When we declare int mypata=0x03, the compiler:

» Allocates 4 bytes of memory to hold the variable.

« Places the value 3 (0x03) into those 32 bits.

« Associates an address, such as 0x1000, where the data will be stored.

« Therefore, when we write myData, we are referring to data at address 0x1000

» We can store the address inside a special variable, called a pointer:

int *myDataPtr = &myData; 0x1000 0x03

/ 0x00 %
- myDataPtr is a variable of type “pointer to int” LS TI—
that stores the value 0x1000. ol .
* Ina 32-bit ISA (such as RV321), a pointer is 4-bytes. 0)
* & Is an operator that returns the address of a variable. 02000 0x00 f
* To read the declaration, go from right to left: - B
0x2004

* myDataPtr...is apointer (*)... to aninteger (1nt)

26

Pointer Arithmetic

* The dereference operator (*) will return the value pointed to by a pointer

0x1000

int whatIsPointedTo = *myDataPtr; 0%1004

. . . . 0x1008

« Assigning a value to a pointer will store 0x100¢
the value at the address that is pointed to 0x100¢

0x1010
int someOtherValue = OXFFFEF;

*myDataPtr = someOtherValue;

0x00

0x00

OxFF

0x00

0x00

0x10

OxFF myData“;\j>
0x00 JmyDataPtr

0x00

0x00

0x00

0x03

atIsPointedTo

0x00

0x00

OxFF

OxFF{4 someOtherValue

 Adding a scalar value to a pointer is scaled by the datatype.

* Therefore, myDataPtr++ IS equivalent to
myDataPtr = myDataPtr + sizeof (*myDataPtr);

* This is very useful for iterating over arrays.
* RISC-V’s displacement addressing makes this easy.

0x1000
0x1004
0x1008
0x100c
0x1010

« SO, If myDataPtr IS a pointer to int, then it is incremented by 4.R

0x00

0x00

0x00 | 0x03 | myData

)

0x00

0x00

0x10 | O0x04 | myDataPtr

2
Memory

rd

| st

| Imn1|

i

Data

Arrays and Strings

 An array is a set of items that have the same type and the same variable name.

« Array elements in C are stored in contiguous memory locations.

int af[4]; // static array of 4 ints
char c[50]; // static array of 50 chars

* As such the address of the first element of an array is just a pointer to the array

int *ptr to a = &a[0]; &= | int *ptr to a = a; 0xO0FFC
— — — — 0x1000

 Incrementing the pointer will move it through the array o0

ptr to a++; E=3 ptr to a = &all]l; e

0x1014

int *ptr to a3 = &al3]; == | 1nt *ptr to a3 = at+3; 01018

* A string is just an array of chars, ending with nul1l (\0)
* And so, you can just declare it as a pointer with a literal.

char *str = ”str”; &= char str[4] = {'s’,’t’,’'r’,’\0"};

27

0x00

0x00

0x10

0x04

0x00

0x00

0x10

0x0c

I\OI

str

Summary of Load/Store Execution

« C variables are stored in memory and loaded into registers for execution.

* Displacement addressing is used by placing a memory address (pointer)
in a register and using an offset for array indexing.

* A 2R1W register file is used to access three operands for execution.

Read ALU operation
. register 1 Read Ve
A[8] requires ~en data 1 em r||V|e o
emtoRe
hisin £2 offset of 32 Instruction reSJiSt‘?I;2 ” ALUSrc ALU i:_rs e °
egisters ea
RV ASM: \ Wri_tet diteaag CI)VI result Address yata [1M
I register U
. u
C COde/ lW to , 32 (tl) L write . 1)(- OX
A[12]=h+A[8]; add t0,t0,t?2 data | wie Data
: > memory
K sw t0, 48(tl) RegWrite data
Base address _ 2 [imm | 32 MemRead
ofAisintl A[12] requires Gen
offset of 48

Control
Flow

Control Flow

Emerging Nanoscaled FaCUIty Of Englneerlng
29 Integrated Circuits and Systems Labs Bar-llan University

E A “CS The Alexander Kofkin A’;

Conirol Flow and Conditionals

* By default, the flow of a program will execute line-by-line

« At the ISA level, this means that the PC Is

Incremented by 4 (one 32-bit instruction) every clock cycle.

(condition) {
// run some code

* Control flow constructs are a way of executing a 1.4
segment of code if something is true or false.)

Add ——

Read

—~PC address

Instruction

Instruction
memory

* Control flow at the ISA level is achieved using conditional branches

« Branch if greater than or equal Unsigned (bgeu)

« Branch if less than/Unsigned (b1t /bltu)

« Branch if Equal/not Equal (beg/bne)

« Branch if greater than or equal (bge) C Code:

e Use the B-Format Enable +2** branch if (i==])

(half word aligned) f = g+h;
12:1 rs1 opcode else

12 bits 5bits 3 bits 5 bits 7 bits f = g-h;

p—
RV ASM: / /
tl

bne tO, , ELSE

add t2, t3, t4

beqg x0, x0, EXIT
ELSE: sub t2, t3, t4

EXIT: ... | | h]‘

f g

31

Loops

* C provides several means of implementing loops:

do {
for (init,; limit,; incr) while (condition) statement;
statement; statement; } while (condition)

* At the ISA level, these are all implemented with a conditional branch (“goto”):
C Code: t6 t5 t7

h. l (J[]J J) JUS: PC from instruction datapath —
wnile all]|== re-routes ranc
i . l’. Wires \ @ Add Sum F‘argeth
RV ASM. to gets the address Of Regd J ALU operation
a[i] and loads itinto t1 e B o .
LOOP 5 Slll tO 7 t5 7 2 \ . rei]?ster2 To branch
add t0. t0. t6 a[i] iscomparedto k e Registers e o
! ! register Read
B el ey / i is incremented wite e
bne tl 7 t7 / EXAIV data
addi t5, t5, 1 unconditionally Reghite
beqg x0, x0, LOOP — loop back 2 [mm | 2] Sign-bit wire

Gen

EXIT: ... replicated

Procedure
Calls

Procedure Calls

o— =N ‘lcs The Alexander Kofkin AIAI

Em erging Nan Faculty of Engineering
32 Integrated Circ t dSytemsLabs _

33

Functions

* Functions (a.k.a., Procedures) are commonly used to:

« Make code modular, easier to read, easier to maintain.
« Remove redundant copies of code.

* Functions are often provided in two separate ways:

* Function Definition: func—type fFunc-name{ pl—-type pl, p2-type D2, -)1
Full description of the function, //code for the function
Including the header and content }

* Function Declaration/Prototype: | func-type func-name(pl-type pl, p2-type p2, ..);
Abstraction of the fUﬂCtiOﬂ, Only Function Definition Example Function Prototype Examples

providing the header (interface) int myfunc (int a, int b) { it main();
Type of value to be returned to caller int c; /‘ int myfunc(int a, int b);

. . . . g |/cha+b_5;A t char foo(char a, char b);
This dlfferentlatlon enables local = o). camdiTen int * bar(float data);
separating headers fromcode. ' vgid bar(int *ptr);

Return value If no return value, use void type

34

Calling a Procedure

« Calling a procedure is implemented in machine code
by changing control flow to the address of the procedure in memory.

« This Is achieved using an unconditional jump command.
« Need to store the return address, a.k.a., “linking”.

* RISC-V provides two instructions for this:

« Jump and Link (7a1) uses the opcode

_ _ 20 bits 5 bits 7 bits
‘]_Format_ o ngp relative to th_e P jal ra,LABEL > PC&PC+Imm<<1l, ra<PC+4
« PC-relative displacement addressing.

« Can jump £22° bytes from the current address.
- Jump and Link Register (7alr) uses the

|-Format to jump to an absolute address. £l gReous

. Register displacement addressin 12 obits 9Bl Sbs 7Bl
J P J jalr ra,rsl,LABEL > PC&Imm(rsl), ra<PC+4

35

Passing arguments to a Function

Example — pass by value

* Arguments are passed to a function primarily by: int square (int x) {
. Using argument registers (a0-a7). e
e Pushing the arguments onto the stack. Voiitmiii'{
* The argument can contain either data or a memory address .
« If data is passed, this is called “passing by value” e
 If an address is passed, this is called “passing by reference”
° PaSSing by Value: Example — pass by reference
* The function header receives a regular C variable. void sq (int x, int *y) |
* The function operates on a (read-only) copy of the variable. = *v ==x* %
» Return values passed through registers (a0-a1) or the stack. md main {
* Passing by Reference: e
* The function header receives a pointer. sqg,'zk;;
sq(5, &n);

 The function can modify the actual variable. ;

36

Reg. ABI Description Saver
RISC-V Procedure Call
x0 zero | Hard-wired Zero N/A
..... e L L e
| e e e
¢ The RISC'V ABI deflneS: x3 gp | Global Pointer N/A
. . . . x4 tp | Thread Pointer N/A
« Slate registers, including the stack pointer (sp). 557 | t0-2 |Temporaries | Caller
- Saved registers, which a procedure will not change. | ™ || {ansporer | ol
« Temporary registers, which are “volatile”, i.e., they |__ X e RN RISL | CalleE)
x10-11| a0-1 [Arguments/ Caller
may be changed by a called procedure. Retum e
. iti ' ' i 212l a2 T L Arguments cellog
Additional volatile registers for passing arguments R e |
and retuming values. T R emporanes T TG

* The RISC-V Calling Convention requires that:
* The sp will exit a function with the value it had when entering it.
* Registers s0-s11 will exit with the same value as when entering.
* The function will return to the address stored in ra.

* In order to ensure this, a procedure always includes a prologue and epilogue.

37

C Code:

Prologue and Epilogue int DAL (int g, int b
int_f f SOR(g) ;
* To call a procedure, the caller will first: o 7

.)
« Place arguments in a0-a7

« Store additional arguments and registers to save on the stack. RVASM:

e Call a1l or jalr (placing PC+4 In ra). Prologue: | EXMPL:
store h and

- The callee then applies the prologue before the task: ~ r=onstack o Zﬁ':ﬁés

 Allocate stack memory for variables and stored registers. sw ra,4(sp)

» Store any saved register (s0-s11) it needs to overwrite. ""E= Laai va pe, x4

« Store ra on the stack, if a function call is made. Jump&LIn e
« After finishing the task, the callee applies the epilogue: caleulate return_ jaad£0,0, 8 (5p)

valuein a0 * add a0, a0, t0
» Reload registers that were saved on the stack (including ra). y
W ra, 4 (sp)

» Deallocate the stack: increment sp back to its original value. /. addi sp, sp, 8

o . ' Emu_e jalr X0,0 (ra)
Jump back to the return address using jalr =0, ra.=Rdue = -

and return

Sp Stack

Variable Scope |

Dynamic Data

. . 14 .
Variables in C have “scope”: gp\ Static Data

 Local Scope:

 Variable defined within a function, including main (). L
- Local variables are stored on the stack frame of the procedure. Reserved
« Upon returning, the memory is reclaimed and variables die.
e Global SCOpe: global variable — 71t char & = 0
» Variables declared outside of all functions. static variable —_|{nt myfunc (int b);
* Global variables are stored in the Static Data region. A
- Global variables are accessible by all functions (using gp). return (b+c) ;

}

« Static Scope:

» Variables declared as static are accessible by all instances VOldtmam {

. . e e nt k = 5;
of that function and automatically initialized to O. |oc,~ak1)||/'f< _ myfunc (10) ;
variapie

- Static variables are also stored in the Static Data region. T S (1)

38

NN ORY
Extensions

RISC-V
Features and Extensions

E A “CS The Alexander Kofkin AI;
nggnoscaIed

Emergin Faculty of Engineering
Integ

39 ntegrated Circuits and Systems Labs

40

And a note about the ISA in general

* The RISC-V Base Integer ISA:

« Called: RV32I (32-bit), RV64I (64-bit), RV128I (128-hit)
* Must be present in any implementations.

 RISC-V is an Extendable architecture
* You can do all kinds of things to create additional instructions!
« Standard instruction set extensions:

M: integer multiply, divide, remainder ~

P
> RV32G means “All of the above”

- Equivalent to RV32IMAFD

A: atomic memory operations
F: single-precision floating point
D: double-precision floating point) <

N

)

C: compressed 16-bit encoding for frequently used instructions
E: embedded — a smaller subset for small microcontrollers

41

Full Base Architecture Datapath

PC

PCSrc
M
>Add > u
X
4 —» >Add Sum
Read Fee?s(jter1 ALUSrc 4.] ALU operation
address g theafil | L MemWrite
Read o MemtoRe
nstruct register 2 > Zero [—= 9
nstruction - ALU
Wiite Registers Read AL"IJ,[o F\;ea; d
|nStrUCti0n register data 2 resu alta
memory
| Write
data
_|write Data
RegWrite " | data memory
%2 | 1mm 32 MemRead
|l Gen

Base Architecture Datapath With Control

A |

>Add

4 — Add Sum

= xc= ©

Branch
\ MemRead
Instruction [6-0] MemtoReg
» Control ALUOpP
MemWrite
| ALUSrc
RegWrite

Instruction [19-15] Read

Read * > register 1 Rogq

address ;
Instruction [24-20
nstruction [] | Read data 1

Instruction register 2

L0 Instruction [11-7] Write Read
Instruction ™ register data2
memory

Read
Address i

Oxc=—

Write
data Registers

“xc=0

Write Data
data memory

A

Instruction [31-0]

Instruction [30,14-12]

43

Additional Instruction Features

Least-significant byte in a word

 RISC-V is Little Endian
. Least-significant byte at least address of a word 15114113117
« c.f. Big Endian: most-significant byte at least address 111101 9 | &
+ RISC-V does not require words to be aligned e e
-V does not require words to be aligned in memory 321110
« Unlike some other ISAs 31 24 23 16NN
Least-significant byte
 RISC-V has no branch delay slots gets the smallest address
* One of the big differences from MIPS.
* No overflow checks on integer arithmetic. Overflow detection easily programmed
o ; - « For example, overflow detection of
The 2-LSB _blts are always 11. unsigned adsition:
* These bits are used for addi rd, rs, Immed-12
compressed instructions bltu rd, rs, OVERFLOW

* All-zeros and All-ones instructions are illegal i S JRCIIES Sl kel

inst :-1:2: 000 001 010 011 100 101 110 111
inst[6:5] (> 32b)
e 00| LOAD LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC OP-IMM-32 48b
X e n s I o n s 01| STORE | STORE-FP | custom-1 AMO OPpP LT OP-32 G4b
10| MADD MSUB NMSUB NMADD OP-FP | reserved | custom-2/rv128 48b
11| BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rvi28| = 80b

* Motivation

Table 23.1: RISC-V base opcode map, inst[1:0]=11

« RISC-V was developed to be one ISA for all (GP, embedded, accelerator).
» Therefore, the lowest common denominator is the base (integer) architecture.
« This is very small and simple and must be present in all implementations.
« Any additional functionality is provided through extensions.

« Extensions use the available instruction encoding bit space for identification.

» Standard Extensions

« Generally useful and designed not to conflict with other standard extensions.

« Examples are multiply/divide (M), atomic (A), floating point (FDQ).

e Custom Extensions

« Highly specialized and may conflict with other standard extensions.

« Can be of varying instruction length (e.g., 48b, 64D, etc.)

44

45

Compressed Instructions

* RISC-V Instructions are 32-bit and word-aligned.

* However, the “C” Extension provides a set of 16-bit half-word aligned instructions.

« Each compressed instruction is exactly equivalent to some 32-bit instruction!

« Since the most used instructions have a 16-bit equivalent,
code size can be significantly reduced.

« Smaller code size improves performance by more efficient caching.
* With this extension, 32-bit and 16-bit instructions can be mixed freely.

« During decode, the 16-bit instructions are expanded into their 32-bit equivalent.
 The 2 LSB bits of all 32-bit instructions are 1 1. All others are compressed.

« Many compressed instructions can only access certain registers (<3 to x15)

e That way, for example, add x8, x9, x10 can fitinto 16-bits!

« Other compressed instructions implicitly address certain registers according to the
ABI, such as the stack pointer (sp) and return address (ra).

¢ Some compressed instructions use 2-register addressing:
c.addw x8,x10 # x8=x8+x10 == add x8,x8,x10

ﬁwo instructions are \

I nllleg el' MU "'ipliCCl'l'iO n needed for multiplication
» First acqui.re high bits,
» Multiplication (and Division) are part of the “M” extension. | . cu s vor, oo

» Notice what happens when multiplying two n-bit numbers: " =erton, =t =2

(Unsigned) 1101 0101 = 213 1101 0101 = -43 1101 0101 = -43
(unsigned) * 1011 1011 = 187 x 1011 1011 = -69 x 1011 1011 = 187
1001 1011 (1001 0111]= 39,831 0000 1011(1001 0111)= 2,967 1110 0000(1001 0111)= -8,041

* The result is 2n bits wide.
* The bottom n bits are equal, regardless of signed/unsigned operands.

* Therefore:
* mul rd, rsl, rs2 — stores the n-lower bits in rd.
* mulh rd, rsl, rs2 — stores the n-higher bits in rd with signed operands.
* mulhu rd,rsl,rs2 —stores the n-higher bits in rd with unsigned operands.
* mulhsu rd, rsl, rs2 —has one signed and one unsigned operand.

46

47

quotient\ 1001

Start: Remainder Reg=Dividend,

) e o divisor Divisor Reg=n-bit Divisor 7
Division % 1000)1001010 ¢
divi —1000 Remainder=Remainder-Divisor
lvidend —10 e
* Divide like “long division” on paper. 101 Q; i
 But we don’t know if the current 1010 , o emadnders |l 2
o _1000 Quo.tlent<<1 z
remainder is bigger than the divisor. =r2~ | Quotient[e]<=1 }
' remainder — " 10 Quotient<<1
« So we first subtract, then check. Quotient[0]<=0
» If positive, quotient gets a 1. —
 |If negative, quotient gets a @ and add back divisor. bivisor>>1 — J———
* In both cases, shift divisor left and remainder right. - .
— initially divisor
« After n+1 steps, quotient and remainder are ready. Divisor < inleft half
» Shift right [<—
* This is a long (n+1 cycle) process —
- Faster algorithms exist, but are expensive. \\//' —
» The “M” extension has divide instructions: 3zj:f“ef7
* div/divu: Return quotient (signed/unsigned) Remainder C’D
o . . Write test
* rem/remu: Return remainder (signed/unsigned) nitially =~] &5 I
dividend

Floating Point

* Defined by IEEE Std 754-1985
 Single precision (32-bit) = f1oat, Double precision (64-bit) = double

X = (—1)° x (1+ Fraction) x 2(5®enent-2as)

1 — negative single: 8 bits single: 23 bits
0 — non-negative ~ double: 11 bits double: 52 bits

C g _ _ Like scientific notation:
« Significand is always normalized: . _2 34 x 1056« Normalized

e 1.0<|significand|<2.0 = +0.002 x 10— Not

_ _ _ . 498702 x 1 9 .— Normalized
 Binary floating point: 987,02 % 10

] . XXXXXXX,X2YYYY

/ yyyy=exponent-Bias
No need to e Single bias: 127
represent « Double bias: 1203

I H \1[=
eading « Exponent is unsigned
48

Floating Point Arithmetic

Addition:

Decimal Example

9.999x101
+ 1.610x1071%

9.999x10!
+ 0.016x10!

10.015x10*

1.0015x10%?

1.002x102

49

Align Binary Points

\ 4

Add Significands

v

Normalize Result

\ 4

Check overflow

l

Round and Renormalize

Binary Example

1.
+ -1.

000,x271
110,%x272

.000,x272
.111,x271

.001,x21

.000,x27

.000,%x24

Multiplication:
Decimal Example Binary Example
1.110x10%0 1.000,%x271
x 9.200%x107° x =1.110,%x27
Add Exponents
10+ (=-5)=5 (=1)+(=2)=-3
Multiply Significands
1.11x9.20 1.00,x1.11,
= 10.212x10° v = 1.110,x2"°
Normalize Result
1.0212x106 | 1.110,x273
Check overflow
!
Round and Renormalize
1.021x106 | 1.110,%x273

Determine Sign
(+)x(=)=(=)
+1.021x10° -1.110,x273

50

Floating-Point Adder Hardware

« Common FP Unit operations:
« Add/Sub, Mul/Div, Reciprocal,

SOQRT, FP<«Int Conversion

* Much more complex than integer

Operations take several cycles
Can be pipelined

 RISC-V has special FP Registers

Called f0to £31
FP load/store: f1w, fsw

Arithmetic: fadd.s, fmul.d, fsgrt.s, ...

Comparison: feqg.s, flt.d, fle.s, ...
Branch on FP condition true/false: b. co

Sign | Exponent Fraction Sign | Exponent
Y Y
s \Iﬁ\LU Compare
ma exponents
\

Exponent

difference
\ B | Y v \ Y Step 1

Co_ 1) »Co_ 1) ’—>(0 1
Y Y
Shift smaller
Control | Shift right number right
AA W L] Y
N
Big ALU Add
’ Step 2
\ \
0 1 0 1
Incremen t or > . .
> gecremen i ~#=1 Shift left or right Normalize
I
! Step 3
»-| Rounding hardw: Round
\ A | v Step 4
n d Sign | Exponent Fraction

——

52

Additional Standard Extensions

* Q - Quad-Precision Floating-Point

* L - Decimal Floating-Point

B - Bit Manipulation

* J - Dynamically Translated Languages
* T - Transactional Memory

* P - Packed-SIMD Instructions

* V - Vector Operations

* N - User-Level Interrupts

* H - Hypervisor

* S - Supervisor-level Instructions

Build
Process

The Build Process (CALL)

o— =N ‘lcs The Alexander Kofkin AIAI

Em erging Nan Faculty of Engineering
53 Integrated Circ t dSytemsLabs

Building a Software Project

Source Files
usually in High
Level Languages

-

Source Files

Compiler Toolchain

Architecture-Specific

Software Tools Machine Code
*.c Compiler Executable
— . — .
*.h Toolchain File
!
o Version DE Executable
Control Loader
Pre- - SLIulolCi *.s [—> Assembler * .o —> Linker = Reloc'atable —> Locator —*| Executable
processor i Proper File
Preprocessed Files Assembly Files Object Files

S5

Preprocessed Files Assembly Files Obiject Files

Preprocessing ...

 Before compilation, C code is sent through the preprocessor, in order to:

* Include external files (#include): #include <stdio.n> |
#include “mylibs.h”

« Define constants, features and macros (#define): n

#define PI 3.1415

#define CIRCLE AREA (x) PI*x*x

 Directives for Compilation Conditions
(#ifdef, #ifndef, #endif, #if, #else):

#define ADD THE FEATURE

#ifdef ADD THE FEATURE
// void the feature() { ... }
fendif

« Passing instructions to the compiler (#pragma)
and error reporting during compilation (#error).

) re- . Compiler . Relocatable
/ *.1—> P *.s = Assembler *,0 = Linker —»| . > Locator =
h | \ processor - Proper File

Executable

@ = . Relocatab
[o cf|_, Pre * i Ll | *.5 — Assembler %0 > Linker —»f o oct@ | BN
o m p I q I o n *.h p rrrrrrrr __ Flle

Source Files Preprocessed Fite Assembly Files Obiject Files

* The compiler takes the preprocessed files (. i) and produces assembly files (.s):

- Readable text files according to the ABI. hello.S:
- Sectioning according to memory map. e 7
» Assembly code includes pseudo-instructions SRR
to make more readable, €.g- hello.c: %%jl %E%;(éiringl)
L nego s xd KOs TS2 inciue <staio.n i o Gty
* not < xori rd, rsl,-1 |int mgin()"{ o wo(stringz)
* nop <> addi x0, x0, O SRS Hellﬁv}oﬁi\ﬁ); iffll E;?Ef(sm

. . addi_sp,sp, 16
* mv <> addi rd, rsl, O return 0;

} <>,
e 11 & addi rd, XO, Imm .section .rodata
: .balign 4
* ret < jJalr x0, x1, O. stringl:
: : : .string "Hello, %s!\n"
* call & lui/auipc + Jjalr. Sterine?s

.string "world"

56 ¢ j \d jal XO, LABEL

57

Assembler

* The Assembler translates Assembly code (. S) into binary object files (. o).
t2,x0,9 (6 halfwords)

=

*.c/ Pre- .
—> e
*.h processor m

Source Files

I5

Compile
Proper

Preprocessed Files

* The Assembler performs two passes over the code:

First pass:
Translate instructions/pseudo-instructions into binary.
Remember the position of labels for forward references.

Second pass:

Translate labels into immediates for branches and jumps.

* But not all addresses can be calculated

Only position-independent code (PIC) can be produced.
Absolute addresses calculated during linking/relocating.
Global and Static variables - Relocation Table

Labels from other files = Symbol Table

A standard format is ELF www.skyfree org/linuxireferences/ELF_Format.pdi

r * . 5 . *.0
Assembly Files QObject Files

> Linker —»|

addi
Ll:slt

beg

addi

]
L2:

File

Relocatable

hello.o:

tl,x0,t2
tl,x0,L2
t2,t2,-1

L <—__ 3 words back

> Locator =—»| Executable

3 words
forward

(6 halfwords)

00000000 <main>:

O:
4
8:
C:

10:
14:
18:
lc:
20:
24
28:
2C:

££f010113
00112623
00000537
00050513
000005b7
00058593
00000097
000000et
00c12083
01010113
00000513
00008067

addi
SW
lui
addi
lui
addi
auipc
jalr
1w
addi
addi
Jalr

SP, SPy -16
ra, 12 (sp)
a0, 0x0
a0,a0,0
al, 0x0
al,al, O
ra, 0x0
ra, 0x0
ra, 12 (sp)
sp,sp, 16
a0,a0,0
ra

x, - i Relocatabl
c/ e HiE * 1 f—p Compiler * .5 = Assembler *.0 eoc.a %€, |locator —»| Executa ble
£ ol processor - Proper File

Linke
I n r Source Files Preprocessed Files Assembly Files Object Files

* The linker combines several . o files into a single “relocatable” file.
 This includes two primary actions: Symbol Resolution and Relocation.

« Symbol Resolution
* During assembly, some labels are “unresolved”.
* The linker looks for these labels in other files and copies them to the program.

* Relocation
» During assembly, all programs start at address 0x0000.

* The linker merges all assembled files,
and updates the instruction addresses (i.e., relocates the code).

* The Linker creates a relocatable version of the program

 The program is complete, except no memory addresses assigned
* The relocation table points to all labels that must be swapped with addresses.

58

59

N) .
-c/ — il *.1—> Ceala *.s = Assembler *.0 Reloc.atable = Locator —>| Executa
q r U p o e - S __ Proper =

ble

Source Files Preprocessed Files Assembly Files Object Files

* During linking, special startup code is inserted into the program.

« Startup code for C programs usually does the following:

» Disables all interrupts

Copies initialized data from ROM to RAM
Zeroizes the unitialized data area

Allocates space for the stack

Initializes the stack pointer and global pointer

Enables interrupts
e Callsmain ()

« Startup code is usually provided as a file called startup.asmorcrt0.S

. _ |) : elocata
c/ Pre « 3 |, Compiler * .5 |=—> Assembler *.0 = Linker —
: r * . h processor 1 Proper :

File

Source Files Preprocessed Files Assembly Files Obiject Files

* The final stage of the build process is the Locator.

EE Executa ble

 The Relocatable File contains the entire program but no memory addresses.
* The linker script defines where different segments of memory should be stored.

* The Locator replaces the placeholders (defined in the relocation table) with
physical addresses, according to the linker script definitions.

 The output is a binary memory image hello.out:
- stringl | .
that can be loaded into the target ROM reﬁg%‘lt;gg o 00010150 <main>:
* In embedded systems, string2is | Tohas. 0002 cay

relocated to 101be:

the locator is often merged with the linker. Zo2ic —0. 00

101c4:

* |n general purpose systems, relocation IS printris | _1oicss
performed during runtime by the loader. "®'9%2ied o 101cc:
101d4:

101d8:

60

al050513
000215b7
alc58593
288000ef
00c12083

: 01010113

00000513
00008067

addi
SW
lui
addi
lui
addi
jal
1w
addi
addi
jalr

sp, sp, —16
ra, 12 (sp)
a0, 0x21
a0,a0,-1520
al, 0x21
al,al,-1508
ra, 10450
ra, 12 (sp)
sp, sp, 16
a0,0,0

ra

Loader

» While bare-metal embedded systems utilize startup code to run a program,
higher-end computers running operating systems utilize a loader.

* A loader starts running an executable by:

Reading the file’'s header to determine size of text and data segments.
Allocating address space for program, including text, data and stack
segments.

Copying instructions + data from executable file into the new address space.
Relocating, Resolving Symbols and dynamically linking libraries.
Copying arguments (argv, argc) passed to the program onto the stack.
Initializes machine registers (sp, gp, etc.)

Jumping to start-up routine (main ())

References

« Patterson, Hennessy “Computer Organization and Design — The RISC-V Edition”
 Patterson, Waterman “The RISC-V Reader”

* Berkeley CS-61C, “Great Ideas in Computer Architecture”

 RISC-V Spec

* Harry H. Porter “RISC-V: An Overview of the ISA”

* Krste Asanovic, Hot Chips Tutorial on RISC-V, Aug. 2019

« USF C Tutorial,

 Coursera, UC Boulder “Introduction to Embedded Systems”

 James Peckol, “Embedded Systems: A Contemporary Design Tool”

http://www.rc.usf.edu/tutorials/classes/tutorial/c_intro/

	Default Section
	Slide 1: Lecture 3: From C to Assembly
	Slide 2: This Lecture
	Slide 3: Outline

	RISC V
	Slide 4: Motivation
	Slide 5: The ‘C’ Programming Language
	Slide 6: But hardware runs on binaries
	Slide 7: Why Instruction Set Architecture matters
	Slide 8: Proprietary ISAs Die Out
	Slide 9: The Need for a Single ISA
	Slide 10: The solution: RISC-V
	Slide 11: What’s Different about RISC-V?
	Slide 12: From Software to Hardware

	Basic Operations
	Slide 13: Basic Operations
	Slide 14: Our basic computer
	Slide 15: 1. Instruction Fetch
	Slide 16: 2. Register File Access
	Slide 17: 2. Register File Access
	Slide 18: 3. Execution
	Slide 19: What are bitwise operations used for?

	Variables
	Slide 20: Variables and Memory Access
	Slide 21: Program and Data Memory
	Slide 22: C Variables
	Slide 23: How are variables accessed in RISC-V?
	Slide 24: How do we access an absolute address?
	Slide 25: And what happens on the C side?
	Slide 26: Pointer Arithmetic
	Slide 27: Arrays and Strings
	Slide 28: Summary of Load/Store Execution

	Control Flow
	Slide 29: Control Flow
	Slide 30: Control Flow and Conditionals
	Slide 31: Loops

	Procedure calls
	Slide 32: Procedure Calls
	Slide 33: Functions
	Slide 34: Calling a Procedure
	Slide 35: Passing arguments to a Function
	Slide 36: RISC-V Procedure Call
	Slide 37: Prologue and Epilogue
	Slide 38: Variable Scope

	Extensions
	Slide 39: RISC-V Features and Extensions
	Slide 40: And a note about the ISA in general
	Slide 41: Full Base Architecture Datapath
	Slide 42: Base Architecture Datapath With Control
	Slide 43: Additional Instruction Features
	Slide 44: Extensions
	Slide 45: Compressed Instructions
	Slide 46: Integer Multiplication
	Slide 47: Division
	Slide 48: Floating Point
	Slide 49: Floating Point Arithmetic
	Slide 50: Floating-Point Adder Hardware
	Slide 52: Additional Standard Extensions

	Build Process
	Slide 53: The Build Process (CALL)
	Slide 54: Building a Software Project
	Slide 55: Preprocessing
	Slide 56: Compilation
	Slide 57: Assembler
	Slide 58: Linker
	Slide 59: Startup Code
	Slide 60: Locator
	Slide 61: Loader
	Slide 62: References

