
29 April 2023

Lecture 3:
From C to Assembly

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

SoC 101:
a.k.a., “Everything you wanted to know about a computer but were afraid to ask”

April 29, 2023© Adam Teman,

This Lecture

2

Source: ARM

April 29, 2023© Adam Teman,

Outline

Motivation

Motivation
Basic

Operations
Variables

Control
Flow

Procedure
Calls

RISC-V
Extensions

Build
Process

April 29, 2023© Adam Teman,

The ‘C’ Programming Language

• Fifty years and counting…

• C was developed in the early 70s by

Dennis Ritchie and Ken Thompson.
* ‘C’ replaced ‘B’, which was named for Ken Thompson’s wife, Bonnie.

• “ANSI C” (C89) is often considered the standard.

• Today, C is still the preferred language for programming embedded systems.

• Why?

For many reasons, but here are a few of the main ones:

• Fine-grained Control

• Memory Management

• Performance

• Bit Manipulation

• Portability and Compatibility
“C is the closest thing to assembly

that is not assembly.”

Source: computerhistory.org

April 29, 2023© Adam Teman,

But hardware runs on binaries

• The Instruction Set Architecture (ISA) is the interface

(“contract”) between the software and the hardware.

6

Microarchitecture

Program Language

Algorithm

Problem

Logic

Transistors

Runtime System

(OS/VM)

Electrons

Architecture (ISA)
Software Tools

Source Files
usually in High Level

Languages

*.c
.c.c
*.h

Compiler
Toolchain

Executable
File

Version
Control

Executable
Loader

IDE

Compiler Toolchain

Architecture Specific
Machine Code

April 29, 2023© Adam Teman,

Why Instruction Set Architecture matters

• Why can’t Intel sell mobile chips?

• 99%+ of mobile phones/tablets

based on ARM v7/v8/v9 ISA

• Why can’t ARM partners sell servers?

• 99%+ of laptops/desktops/servers

based on AMD64 (x86-64) ISA

• How can IBM still sell mainframes?

• IBM 360, oldest surviving ISA (50+ years)

• Instruction Sets do not change
• But they do accrete more instructions

7

x86 instruction set

Source: P&H, Ch. 2

ISA is most important interface

in computer system where

software meets hardware

April 29, 2023© Adam Teman,

Proprietary ISAs Die Out

• Proprietary ISA fortunes tied to business fortunes and whims

• Open Interfaces work for Software. Why not for Hardware?!?

8

Field Open Standard Proprietary Implemen. Free, Open Implementation

Networking Ethernet, TCP/IP Many Many

OS Posix MS Windows Linux, FreeBSD

Compilers C Intel icc, ARMcc gcc, LLVM

Databases SQL Oracle 12C, MS DB2 MySQL, PostgresSQL

Graphics OpenGL MS DirectX Mesa3D

ISA ???? x86, ARM, IBM360 ------

April 29, 2023© Adam Teman,

The Need for a Single ISA

• Modern SoCs have many different ISAs on a single SoC, such as:

• Applications processor (usually ARM)

• Graphics processors

• Image processors

• Radio DSPs

• Audio DSPs

• Security processors

• Power-management processor

• A Single ISA is invaluable

• A single software stack

• No proprietary ISAs that may disappear

• Flexibility for various needs and features

9
NVIDIA Tegra SoC Source: NVIDIA

April 29, 2023© Adam Teman,

The solution: RISC-V

• Summer 2010: “3-month project” at UC-Berkeley

• Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic

• May 2014: Frozen Base User Spec

• 2015: RISC-V Foundation Established

• Led by Calista Redmond since 2019

• Over 3100 members (2023)

• RISC-V Project Goal:

Become the industry-standard ISA for all computing devices

10 Source: K. Asanovic

Source: SiFive

April 29, 2023© Adam Teman,

What’s Different about RISC-V?

• Simple
• Far smaller than other commercial ISAs

• Clean-slate design
• Clear separation between user and privileged ISA

• Avoids µarchitecture or technology-dependent features

• Modular ISA designed for extensibility/specialization
• Small standard base ISA, with multiple standard extensions

• Sparse & variable-length instruction encoding for vast opcode space

• Stable
• Base and first standard extensions are frozen

• Additions via optional extensions, not new versions

• Community designed
• Developed with leading industry/academic experts and software developers

11

April 29, 2023© Adam Teman,

From Software to Hardware

• In this lecture, we will cross the boundary between software and hardware.

• At the software side, we will look at C

as a high-level programming language.

• At the hardware side, we will use the RISC-V ISA

to demonstrate assembly and machine language.

• Specifically, we’ll be using the

32-bit RISC-V integer instructions (RV32I).

• This overview will show how high-level programming constructs map

to the CPU architecture introduced in the previous lecture.

• However, these concepts are applicable to

any programming language and any instruction set architecture.

12

Basic Operations

13

Motivation
Basic

Operations
Variables

Control
Flow

Procedure
Calls

RISC-V
Extensions

Build
Process

April 29, 2023© Adam Teman,

Our basic computer

• From the last lecture, our basic computer comprises:

• Control and Datapath

• Program Counter

• General Purpose Registers

• Instruction and Data Memories

• As a load-store architecture operations

are done directly on registers, e.g.:

• Such an operation has three components:

1. Instruction Fetch

2. Register File Access

3. ALU Execution

• Let us start building our datapath with these components

IMEM

DMEM

PC

R
e

g
F

ile C
o
n

tr
o

l

ALU

add x1,x2,x3 → x1x2+x3

C Code:

f=(g+h)-(i+j);

RV ASM:

add x5,x1,x2

add x6,x3,x4

sub x7,x6,x5

April 29, 2023© Adam Teman,

1. Instruction Fetch
• Instructions are 32 bits wide, so for every instruction:

• We need to fetch one 32-bit word

• And increment the address by 4-bytes

• Instructions come in a number of formats
• Bit placement optimized for hardware implementation

• For example, all store the opcode in the bottom 7 bits

• The instruction formats in RISC-V are:
• R (Register)-Format

• 2-source, 1-destination operand

• I (Immediate)-Format
• 1-source, 1-destination, 12-bit constant

• S (Store) and B (Branch)-Format
• 2-source, 12-bit constant

• U and J (Jump)-Format
• 1-destination, 20-bit constant

15

April 29, 2023© Adam Teman,

2. Register File Access

• RISC-V has 32 Registers

• The “Goldilocks Principle”:

• “This porridge is too hot; This porridge is too cold;

This porridge is just right”

• Smaller is faster, but too small is bad.

• Registers are numbered x0 to x31

• Actually, it’s 31 registers, since x0 is hard-wired to 0

• All other registers are equivalent/general purpose

• Actually, it’s 32 registers, since there’s also the program counter (pc)

• The Application Binary Interface (ABI) gives certain registers assignments:

• x1: Return address (ra) x2: Stack pointer (sp) x3: Global pointer (gp)

x8: Frame pointer (fp) x10-11: Return values x10-17: Arguments (e.g., a0)

x5-7,28-31: temporaries (e.g., t0) x8-9,18-27: saved registers

Reg. ABI Name Description

x0 zero Hard-wired Zero

x1 ra Return Address

x2 sp Stack Pointer

x3 gp Global Pointer

x4 tp Thread Pointer

x5-7 t0-2 Temporaries

x8 s0/fp Frame Pointer/

Saved Reg

x9 s1 Saved Register

x10-11 a0-1 Arguments/

Return Values

x12-17 a2-7 Arguments

x18-27 s2-11 Saved Registers

x28-31 t3-6 Temporaries

source: elearningindustry.com

April 29, 2023© Adam Teman,

2. Register File Access

• A Register-Register Operation requires:

• Two source operands: rs1, rs2

• One destination operand: rd

• → Register file requires 2R1W access

• This operation will use the R-Format:

• Arithmetic with a constant requires:

• One source (rs1) and one destination (rd) operand.

• An “immediate” in the remaining available bits.

• This operation will use the I-Format:

• Special unit for sign extension – bit 31 always sign bit!
17

add x1,x2,x3 → x1x2+x3

addi x1,x2,0x123 → x1x2+0x123

April 29, 2023© Adam Teman,

3. Execution

• How do we know which operation to perform?

• R-Format: opcode: 7 bits, registers: 15 bits, 10 bits left

• I-Format: opcode: 7 bits, reg/const: 22 bits, 3 bits left

• Can be used to select ALU operation or other control

• Can encode 1000 different instructions with a single R-Format opcode!

• R-Format (Register-Register) Instructions:

• add, sub, Shift Left/Right (sll/srl/sra),

and/or/xor, Set less than (slt)

• I-Format (Register-Immediate) Instructions:

• addi, andi, ori, xori, slti

• No subi instruction. Just add a negative!

18

ALU

control

Function

0000 AND

0001 OR

0010 add

0110 subtract

addi x1,x2,-0x123 → x1x2-0x123

April 29, 2023© Adam Teman,

What are bitwise operations used for?

• We saw above that the ALU provides a variety of bitwise operations:
• and, or, xor, andi, ori, xori, sll, srl, sra, slt, slti

• Similarly, C provides these operations:
• &(AND), |(OR), ^(XOR), ~(NOT), <</>> (Shift)

• But what are they good for?
• Use a “mask” to select bit(s) to be altered.

• Common operations that one might perform, include:
• Set/reset bits on a microcontroller output port.

• Testing status bits on input lines or in registers.

• Set/reset status bits as the result of some operation.

• Making comparison operations.

• Quickly perform multiplication or division.

19

C=A&0xE; A a b c d

0xE 1 1 1 0

C a b c 0

C=A&0x1; A a b c d

0x1 0 0 0 1

C 0 0 0 d

C=A|0x1; A a b c d

0x1 0 0 0 1

C a b c 1

C=A^0x1; A a b c d

0x1 0 0 0 1

C a b c d!

Clear selected
bit of A

Clear all but
selected bit of A

Set selected
bit of A

Invert selected
bit of A

Variables and
Memory Access

20

Motivation
Basic

Operations
Variables

Control
Flow

Procedure
Calls

RISC-V
Extensions

Build
Process

April 29, 2023© Adam Teman,

Program and Data Memory

• Let’s take a very simple program:

• The compiler translates the high-level language

(C code) into machine language (binary).

• Both instructions and data are mapped to the

address space of the system according to the memory map.

• Program code (text) is mapped to the instruction memory

• Global variables (Static Data) are

mapped to the data memory

• Load/Store operations

are applied to move

the data in and out of

the registers.

IMEM

DMEM

PC

R
e
g

F
ile C
o

n
tr

o
l

ALU
int main() {

int x = 8;

int y = 2;

int z;

z = x+y;

return z;

}

main()

x

y

z

text

data

x
y
z

gp

main()

Reserved

Text

Static Data

Stack

Dynamic Data

April 29, 2023© Adam Teman,

C Variables

• Variables in C are declared, defined, and initialized:

• Space for variables is allocated according to data type.

• Global and Static variables allocated in Static Data.
• Static variables have scope of particular function.

• Local (“automatic”) variables allocated on the stack.

• Compiler can also allocate local variables to registers.

• volatile keyword ensures compiler will not remove.

• Consts stored within read only section
22

type-qualifier(s) type-modifier data-type variable-name = initial-value;

const

volatile

static

short

long

signed

unsigned

int

float

char

void

const unsigned char foo = 12;

long int bar;

C

type

Bytes in

RV32

Bytes in

RV64

char 1 1

short 2 2

int 4 4

long 4 8

long long 8 8

void* 4 8

float 4 4

double 8 8

long double 16 16

April 29, 2023© Adam Teman,

How are variables accessed in RISC-V?

• Remember, RISC-V is a load-store architecture:

• There are no memory-to-memory operations.

• All we need are commands to bring data from memory

into a register and to write a result back into memory.

• RISC-V only supports displacement addressing

• We achieve this with load and store

instructions using the I/S-Formats.

• rs1 points to a register that holds the memory address,

Imm defines the offset, and rd/rs2 points to a register

to load to or store from.

• 12-bits provide an offset of up to 4096 bytes!

• For example, word (32-bit) access uses the
lw (load word) and sw (store word) commands.

23

lw x6, 123(x10)→ x6=Mem[x10+123]
sw x6, 123(x10)→ Mem[x10+123]=x6

Data

rs1rd

Destination

Memory
AddressR2

Imm

Im
m

April 29, 2023© Adam Teman,

How do we access an absolute address?

• To access an absolute address, we need to load a 32-bit value into a register

• But the I-Format only provides room for a 12-bit value…

• Instead let’s use the 20-bit immediate in the U-Format

• But how does this let us load a 32-bit constant into a register?

• Start with the load upper immediate (lui) instruction:

• The immediate is loaded into bits rd[31:11].

• Now use addi to complete the 32-bit constant

• Another option is to create a PC relative address:

• Start with the add upper immediate to PC (auipc) instruction.

• And complete with addi.

24

lui t0, 456→ t0=(456<<12)

addi t0, 789→ t0=(456<<12)+789

auipc t1, 456→ t0=PC+(456<<12)
addi t1, 789→ t0=PC+(456<<12)+789

April 29, 2023© Adam Teman,

And what happens on the C side?

• When we declare int myData=0x03, the compiler:

• Allocates 4 bytes of memory to hold the variable.

• Places the value 3 (0x03) into those 32 bits.

• Associates an address, such as 0x1000, where the data will be stored.

• Therefore, when we write myData, we are referring to data at address 0x1000

• We can store the address inside a special variable, called a pointer:

• myDataPtr is a variable of type “pointer to int”

that stores the value 0x1000.

• In a 32-bit ISA (such as RV32I), a pointer is 4-bytes.

• & is an operator that returns the address of a variable.

• To read the declaration, go from right to left:

• myDataPtr… is a pointer (*)… to an integer (int)
25

int *myDataPtr = &myData; 0x1000 0x03

0x00

0x00

0x00

0x1004

0x2000 0x00

0x10

0x00

0x00

0x2004

m
y
D
a
t
a

m
y
D
a
t
a
P
t
r

&myData

April 29, 2023© Adam Teman,

Pointer Arithmetic

• The dereference operator (*) will return the value pointed to by a pointer

• Assigning a value to a pointer will store

the value at the address that is pointed to

• Adding a scalar value to a pointer is scaled by the datatype.

• Therefore, myDataPtr++ is equivalent to

• So, if myDataPtr is a pointer to int, then it is incremented by 4.

• This is very useful for iterating over arrays.

• RISC-V’s displacement addressing makes this easy.
26

int whatIsPointedTo = *myDataPtr;

int someOtherValue = 0xFFFF;

*myDataPtr = someOtherValue;

myDataPtr = myDataPtr + sizeof(*myDataPtr);

0x1000 0x00 0x00 0x00 0x03 myData

0x1004

0x1008 0x00 0x00 0x10 0x00 myDataPtr

0x100c

0x1010 0x00 0x00 0x00 0x03 whatIsPointedTo

0x100c

0x1010 0x00 0x00 0xFF 0xFF someOtherValue

0x1000 0x00 0x00 0xFF 0xFF myData

0x1004

0x1000 0x00 0x00 0x00 0x03 myData

0x1004

0x1008

0x100c

0x1010 0x00 0x00 0x10 0x00 myDataPtr0x1010 0x00 0x00 0x10 0x04 myDataPtr

Data

rs1rd

Destination

Memory
AddressR2

Imm

Im
m

April 29, 2023© Adam Teman,

Arrays and Strings

• An array is a set of items that have the same type and the same variable name.

• Array elements in C are stored in contiguous memory locations.

• As such the address of the first element of an array is just a pointer to the array

• Incrementing the pointer will move it through the array

• A string is just an array of chars, ending with null (\0)

• And so, you can just declare it as a pointer with a literal.

27

int a[4]; // static array of 4 ints

char c[50]; // static array of 50 chars

int *ptr_to_a = &a[0]; int *ptr_to_a = a;

ptr_to_a++; ptr_to_a = &a[1];

int *ptr_to_a3 = &a[3]; int *ptr_to_a3 = a+3;

char *str = ”str”; char str[4] = {’s’,’t’,’r’,’\0’};

0x0FFc

0x1000 a[0]

0x1004 a[1]

0x1008 a[2]

0x100c a[3]

0x1010

0x1014 0x00 0x00 0x10 0x00 ptr_to_a0x1014 0x00 0x00 0x10 0x04 ptr_to_a

0x1018 0x00 0x00 0x10 0x0c ptr_to_a3

0x101c ’\0’ ’r’ ’t’ ’s’ str

str

April 29, 2023© Adam Teman,

Summary of Load/Store Execution

• C variables are stored in memory and loaded into registers for execution.

• Displacement addressing is used by placing a memory address (pointer)

in a register and using an offset for array indexing.

• A 2R1W register file is used to access three operands for execution.

28

C Code:

A[12]=h+A[8];

RV ASM:

lw t0, 32(t1)

add t0,t0,t2

sw t0, 48(t1)

Base address
of A is in t1

h is in t2

A[12] requires

offset of 48

A[8] requires

offset of 32

32

Control Flow

29

Motivation
Basic

Operations
Variables

Control
Flow

Procedure
Calls

RISC-V
Extensions

Build
Process

April 29, 2023© Adam Teman,

Control Flow and Conditionals

• By default, the flow of a program will execute line-by-line

• At the ISA level, this means that the PC is

incremented by 4 (one 32-bit instruction) every clock cycle.

• Control flow constructs are a way of executing a

segment of code if something is true or false.

• Control flow at the ISA level is achieved using conditional branches
• Branch if greater than or equal Unsigned (bgeu)

• Branch if less than/Unsigned (blt/bltu)

• Branch if Equal/not Equal (beq/bne)

• Branch if greater than or equal (bge)

• Use the B-Format

if (condition) {

// run some code

}

C Code:

if (i==j)

f = g+h;

else

f = g-h;

RV ASM:

bne t0, t1, ELSE

add t2, t3, t4

beq x0, x0, EXIT

ELSE: sub t2, t3, t4

EXIT: ...

Enable ±212 branch
(half word aligned)

i j

f g h

April 29, 2023© Adam Teman,

Loops

• C provides several means of implementing loops:

• At the ISA level, these are all implemented with a conditional branch (“goto”):

31

for (init; limit; incr)

statement;

while (condition)

statement;

do {

statement;

} while (condition)

RV ASM:

LOOP: slli t0, t5, 2

add t0, t0, t6

lw t1, 0(t0)

bne t1, t7, EXIT

addi t5, t5, 1

beq x0, x0, LOOP

EXIT: ...

t0 gets the address of

a[i] and loads it into t1

a[i] is compared to k

i is incremented

unconditionally
loop back

C Code:

while (a[i]==k)

i += 1;

t6 t5 t7
Just

re-routes

wires

Sign-bit wire

replicated

32

Procedure Calls

32

Motivation
Basic

Operations
Variables

Control
Flow

Procedure
Calls

RISC-V
Extensions

Build
Process

April 29, 2023© Adam Teman,

• Functions (a.k.a., Procedures) are commonly used to:

• Make code modular, easier to read, easier to maintain.

• Remove redundant copies of code.

• Functions are often provided in two separate ways:

• Function Definition:

Full description of the function,

including the header and content

• Function Declaration/Prototype:

Abstraction of the function, only

providing the header (interface)

• This differentiation enables

separating headers from code.

int main();

int myfunc(int a, int b);

char foo(char a, char b);

int * bar(float data);

void bar(int *ptr);

Function Prototype Examples

int myfunc (int a, int b) {

int c;

c = a + b – 5;

return (c);

}

Function Definition Example

Functions

33

func-type func-name(p1-type p1, p2-type p2, …){

//code for the function

}

func-type func-name(p1-type p1, p2-type p2, …);

Type of value to be returned to caller

Arguments
passed by caller

If no return value, use void typeReturn value

Local
variable

April 29, 2023© Adam Teman,

Calling a Procedure

• Calling a procedure is implemented in machine code

by changing control flow to the address of the procedure in memory.

• This is achieved using an unconditional jump command.

• Need to store the return address, a.k.a., “linking”.

• RISC-V provides two instructions for this:

• Jump and Link (jal) uses the

J-Format to jump relative to the PC.

• PC-relative displacement addressing.

• Can jump ±220 bytes from the current address.

• Jump and Link Register (jalr) uses the

I-Format to jump to an absolute address.
• Register displacement addressing.

34

jal ra,LABEL → PCPC+Imm<<1, raPC+4

jalr ra,rs1,LABEL → PCImm(rs1), raPC+4

April 29, 2023© Adam Teman,

Passing arguments to a Function

• Arguments are passed to a function primarily by:
• Using argument registers (a0-a7).

• Pushing the arguments onto the stack.

• The argument can contain either data or a memory address
• If data is passed, this is called “passing by value”

• If an address is passed, this is called “passing by reference”

• Passing by Value:
• The function header receives a regular C variable.

• The function operates on a (read-only) copy of the variable.
• Return values passed through registers (a0-a1) or the stack.

• Passing by Reference:
• The function header receives a pointer.

• The function can modify the actual variable.
35

int square (int x) {

return (x * x);

}

void main {

int k,n;

n = 5;

k = square(n);

n = square(5);

}

Example – pass by value

void sq (int x, int *y) {

*y = x * x;

}

void main {

int k, n;

n = 5;

sq(n, &k);

sq(5, &n);

}

Example – pass by reference

April 29, 2023© Adam Teman,

RISC-V Procedure Call

• The RISC-V ABI defines:

• State registers, including the stack pointer (sp).

• Saved registers, which a procedure will not change.

• Temporary registers, which are “volatile”, i.e., they

may be changed by a called procedure.

• Additional volatile registers for passing arguments

and returning values.

• The RISC-V Calling Convention requires that:

• The sp will exit a function with the value it had when entering it.

• Registers s0-s11 will exit with the same value as when entering.

• The function will return to the address stored in ra.

• In order to ensure this, a procedure always includes a prologue and epilogue.

36

Reg. ABI

Name

Description Saver

x0 zero Hard-wired Zero N/A

x1 ra Return Address Caller

x2 sp Stack Pointer Callee

x3 gp Global Pointer N/A

x4 tp Thread Pointer N/A

x5-7 t0-2 Temporaries Caller

x8 s0/fp Frame Pointer/

Saved Reg

Callee

x9 s1 Saved Register Callee

x10-11 a0-1 Arguments/

Return Values

Caller

x12-17 a2-7 Arguments Caller

x18-27 s2-11 Saved Registers Callee

x28-31 t3-6 Temporaries Caller

April 29, 2023© Adam Teman,

Prologue and Epilogue

• To call a procedure, the caller will first:

• Place arguments in a0-a7

• Store additional arguments and registers to save on the stack.

• Call jal or jalr (placing PC+4 in ra).

• The callee then applies the prologue before the task:

• Allocate stack memory for variables and stored registers.

• Store any saved register (s0-s11) it needs to overwrite.

• Store ra on the stack, if a function call is made.

• After finishing the task, the callee applies the epilogue:

• Reload registers that were saved on the stack (including ra).

• Deallocate the stack: increment sp back to its original value.

• Jump back to the return address using jalr x0, ra.

37

C Code:

int EXMPL (int g, int h)

{

int f = SQR(g);

f += h;

return f;

}

RV ASM:

EXMPL:

addi sp,sp,-8

sw a1,8(sp)

sw ra,4(sp)

addi ra pc,0x4

jalr ra, SQR

add t0,x0,8(sp)

add a0,a0,t0

lw ra,4(sp)

addi sp,sp,8

jalr x0,0(ra)

Prologue:
store h and
ra on stack

Function Call:
raPC+4

Jump&Link

calculate return
value in a0

Epilogue:
restore ra, sp
and return

April 29, 2023© Adam Teman,

Variable Scope

Variables in C have “scope”:

• Local Scope:
• Variable defined within a function, including main().

• Local variables are stored on the stack frame of the procedure.

• Upon returning, the memory is reclaimed and variables die.

• Global Scope:
• Variables declared outside of all functions.

• Global variables are stored in the Static Data region.
• Global variables are accessible by all functions (using gp).

• Static Scope:
• Variables declared as static are accessible by all instances

of that function and automatically initialized to 0.

• Static variables are also stored in the Static Data region.

38

Reserved

Text

Static Data

Stack

Dynamic Data

int char a = 0;

int myfunc(int b); {

static int c;

c++;

return (b+c);

}

void main {

int k = 5;

k = myfunc(10);

a += myfunc(k);

}

global variable

static variable

local
variable

gp

sp

RISC-V
Features and Extensions

39

Motivation
Basic

Operations
Variables

Control
Flow

Procedure
Calls

RISC-V
Extensions

Build
Process

April 29, 2023© Adam Teman,

And a note about the ISA in general

• The RISC-V Base Integer ISA:

• Called: RV32I (32-bit), RV64I (64-bit), RV128I (128-bit)

• Must be present in any implementations.

• RISC-V is an Extendable architecture

• You can do all kinds of things to create additional instructions!

• Standard instruction set extensions:

• M: integer multiply, divide, remainder

• A: atomic memory operations

• F: single-precision floating point

• D: double-precision floating point

• C: compressed 16-bit encoding for frequently used instructions

• E: embedded – a smaller subset for small microcontrollers
40

RV32G means “All of the above”

→ Equivalent to RV32IMAFD

April 29, 2023© Adam Teman,

Full Base Architecture Datapath

41

32

April 29, 2023© Adam Teman,

Base Architecture Datapath With Control

42

32

April 29, 2023© Adam Teman,

Additional Instruction Features

• RISC-V is Little Endian
• Least-significant byte at least address of a word

• c.f. Big Endian: most-significant byte at least address

• RISC-V does not require words to be aligned in memory
• Unlike some other ISAs

• RISC-V has no branch delay slots
• One of the big differences from MIPS.

• No overflow checks on integer arithmetic.

• The 2-LSB bits are always 11.
• These bits are used for

compressed instructions

• All-zeros and All-ones instructions are illegal

43

Least-significant byte in a word

0
4
8

12
…

1
5
9

13
…

2
6

10
14
…

3
7

11
15
…

31 24 23 16 15 8 7 0

Least-significant byte
gets the smallest address

Overflow detection easily programmed

• For example, overflow detection of

unsigned addition:

addi rd, rs, Immed-12

bltu rd, rs, OVERFLOW

if rd<rs then branch

April 29, 2023© Adam Teman,

Extensions

• Motivation

• RISC-V was developed to be one ISA for all (GP, embedded, accelerator).

• Therefore, the lowest common denominator is the base (integer) architecture.

• This is very small and simple and must be present in all implementations.

• Any additional functionality is provided through extensions.

• Extensions use the available instruction encoding bit space for identification.

• Standard Extensions

• Generally useful and designed not to conflict with other standard extensions.

• Examples are multiply/divide (M), atomic (A), floating point (FDQ).

• Custom Extensions

• Highly specialized and may conflict with other standard extensions.

• Can be of varying instruction length (e.g., 48b, 64b, etc.)
44

April 29, 2023© Adam Teman,

Compressed Instructions
• RISC-V Instructions are 32-bit and word-aligned.

• However, the “C” Extension provides a set of 16-bit half-word aligned instructions.

• Each compressed instruction is exactly equivalent to some 32-bit instruction!

• Since the most used instructions have a 16-bit equivalent,
code size can be significantly reduced.

• Smaller code size improves performance by more efficient caching.

• With this extension, 32-bit and 16-bit instructions can be mixed freely.

• During decode, the 16-bit instructions are expanded into their 32-bit equivalent.

• The 2 LSB bits of all 32-bit instructions are 11. All others are compressed.

• Many compressed instructions can only access certain registers (x8 to x15)

• That way, for example, add x8, x9, x10 can fit into 16-bits!

• Other compressed instructions implicitly address certain registers according to the
ABI, such as the stack pointer (sp) and return address (ra).

• Some compressed instructions use 2-register addressing:
c.addw x8,x10 # x8=x8+x10 == add x8,x8,x10

45

April 29, 2023© Adam Teman,

Integer Multiplication

• Multiplication (and Division) are part of the “M” extension.

• Notice what happens when multiplying two n-bit numbers:

• The result is 2n bits wide.

• The bottom n bits are equal, regardless of signed/unsigned operands.

• Therefore:

• mul rd,rs1,rs2 – stores the n-lower bits in rd.

• mulh rd,rs1,rs2 – stores the n-higher bits in rd with signed operands.

• mulhu rd,rs1,rs2 – stores the n-higher bits in rd with unsigned operands.

• mulhsu rd,rs1,rs2 – has one signed and one unsigned operand.

46

unsigned

unsigned

signed

signed

signed

unsigned

Two instructions are

needed for multiplication

• First acquire high bits,

then low bits
mulh rd-high,rs1,rs2

mul rd-low, rs1,rs2

April 29, 2023© Adam Teman,

Division

• Divide like “long division” on paper.

• But we don’t know if the current

remainder is bigger than the divisor.

• So we first subtract, then check.
• If positive, quotient gets a 1.

• If negative, quotient gets a 0 and add back divisor.

• In both cases, shift divisor left and remainder right.

• After n+1 steps, quotient and remainder are ready.

• This is a long (n+1 cycle) process

• Faster algorithms exist, but are expensive.

• The “M” extension has divide instructions:

• div/divu: Return quotient (signed/unsigned)

• rem/remu: Return remainder (signed/unsigned)
47

32 bits

64 bits

64 bits

64 bit ALU

initially divisor
in left half

initially
dividend

1001
1000 1001010

-1000
10
101
1010
-1000

10

quotient

divisor

remainder

dividend

Start: Remainder Reg=Dividend,

Divisor Reg=n-bit Divisor

Remainder=Remainder-Divisor

Quotient<<1
Quotient[0]<=1

Quotient<<1
Quotient[0]<=0

Remainder=
Remainder+Divisor

Divisor>>1

n
-t

im
e
s

April 29, 2023© Adam Teman,

Floating Point

• Defined by IEEE Std 754-1985

• Single precision (32-bit) = float, Double precision (64-bit) = double

• Significand is always normalized:

• 1.0≤|significand|<2.0

• Binary floating point:

±1.xxxxxxx2×2
yyyy

48

Bias)(ExponentS 2Fraction)(11)(x −+−=S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

1 – negative
0 – non-negative

Like scientific notation:

◼ –2.34 × 1056

◼ +0.002 × 10–4

◼ +987.02 × 109

Normalized

Not
Normalized

No need to
represent
leading ‘1’

yyyy=exponent-Bias

• Single bias: 127
• Double bias: 1203

• Exponent is unsigned

April 29, 2023© Adam Teman,

Floating Point Arithmetic
Addition:

49

Align Binary Points

Add Significands

Normalize Result

Check overflow

Round and Renormalize

Add Exponents

Multiply Significands

Normalize Result

Check overflow

Round and Renormalize

Determine Sign

Multiplication:

9.999×101

+ 1.610×10–1

9.999×101

+ 0.016×101

10.015×101

1.0015×102

1.002×102

1.0002×2
–1

+ -1.1102×2
–2

1.0002×2
–1

+ -0.1112×2
–1

0.0012×2
–1

1.0002×2
–4

1.0002×2
–4

Decimal Example Binary Example

1.110×1010

× 9.200×10–5

10+(-5)=5

1.11×9.20

= 10.212×105

1.0212×106

1.021×106

+1.021×106

1.0002×2
–1

× -1.1102×2
–2

(-1)+(-2)=-3

1.002×1.112
= 1.1102×2

–3

1.1102×2
–3

1.1102×2
–3

(+)×(-)=(-)

-1.1102×2
–3

Decimal Example Binary Example

April 29, 2023© Adam Teman,

Floating-Point Adder Hardware

• Common FP Unit operations:

• Add/Sub, Mul/Div, Reciprocal,

SQRT, FPInt Conversion

• Much more complex than integer

• Operations take several cycles

• Can be pipelined

• RISC-V has special FP Registers

• Called f0 to f31

• FP load/store: flw, fsw

• Arithmetic: fadd.s, fmul.d, fsqrt.s, …

• Comparison: feq.s, flt.d, fle.s, …

• Branch on FP condition true/false: b.cond

50

Step 1

Step 2

Step 3

Step 4

April 29, 2023© Adam Teman,

Additional Standard Extensions

• Q - Quad-Precision Floating-Point

• L - Decimal Floating-Point

• B - Bit Manipulation

• J - Dynamically Translated Languages

• T - Transactional Memory

• P - Packed-SIMD Instructions

• V - Vector Operations

• N - User-Level Interrupts

• H - Hypervisor

• S - Supervisor-level Instructions

52

The Build Process (CALL)

53

Motivation
Basic

Operations
Variables

Control
Flow

Procedure
Calls

RISC-V
Extensions

Build
Process

April 29, 2023© Adam Teman,

Building a Software Project

Software Tools

Source Files
usually in High

Level Languages

*.c
.c.c

*.h
Compiler
Toolchain

Executable
File

Version
Control

Executable
Loader

IDE

Compiler Toolchain
Architecture-Specific

Machine Code

Source Files

*.c
.c.c/
*.h

Compiler
Proper

Object Files

Pre-
processor

Preprocessed Files

*.c
*.c
*.i

*.c
*.c
*.s Assembler

*.c
*.c
*.o

Assembly Files

Linker Locator
Relocatable

File
Executable

April 29, 2023© Adam Teman,

Preprocessing

• Before compilation, C code is sent through the preprocessor, in order to:

• Include external files (#include):

• Define constants, features and macros (#define):

• Directives for Compilation Conditions
(#ifdef, #ifndef, #endif, #if, #else):

• Passing instructions to the compiler (#pragma)

and error reporting during compilation (#error).

55

#include <stdio.h>

#include “mylibs.h”

#define PI 3.1415

#define CIRCLE_AREA(x) PI*x*x

#define ADD_THE_FEATURE

#ifdef ADD_THE_FEATURE

// void the_feature() { ... }

#endif

source: freepik.com

source:

safetymanagementgroup.com

April 29, 2023© Adam Teman,

Compilation

• The compiler takes the preprocessed files (.i) and produces assembly files (.S):

• Readable text files according to the ABI.

• Sectioning according to memory map.

• Assembly code includes pseudo-instructions

to make more readable, e.g.:

• neg↔ sub rd, x0, rs2

• not↔ xori rd, rs1,-1

• nop↔ addi x0, x0, 0

• mv↔ addi rd, rs1, 0

• li↔ addi rd, x0, Imm

• ret↔ jalr x0, x1, 0.

• call↔ lui/auipc + jalr.

• j↔ jal x0, LABEL56

hello.c:

#include <stdio.h>

int main() {

printf("Hello, %s\n",

"world");

return 0;

}

hello.S:

.text

.align 2

.global main

main:

addi sp,sp,-16

sw ra,12(sp)

lui a0,%hi(string1)

addi a0,a0,%lo(string1)

lui a1,%hi(string2)

addi a1,a1,%lo(string2)

call printf

lw ra,12(sp)

addi sp,sp,16

li a0,0

ret

.section .rodata

.balign 4

string1:

.string "Hello, %s!\n"

string2:

.string "world"

April 29, 2023© Adam Teman,

Assembler

• The Assembler translates Assembly code (.S) into binary object files (.o).

• The Assembler performs two passes over the code:

• First pass:

Translate instructions/pseudo-instructions into binary.

Remember the position of labels for forward references.

• Second pass:

Translate labels into immediates for branches and jumps.

• But not all addresses can be calculated

• Only position-independent code (PIC) can be produced.

• Absolute addresses calculated during linking/relocating.

• Global and Static variables → Relocation Table

• Labels from other files → Symbol Table

• A standard format is ELF www.skyfree.org/linux/references/ELF_Format.pdf57

hello.o:

00000000 <main>:

0: ff010113 addi sp,sp,-16

4: 00112623 sw ra,12(sp)

8: 00000537 lui a0,0x0

c: 00050513 addi a0,a0,0

10: 000005b7 lui a1,0x0

14: 00058593 addi a1,a1,0

18: 00000097 auipc ra,0x0

1c: 000000ef jalr ra,0x0

20: 00c12083 lw ra,12(sp)

24: 01010113 addi sp,sp,16

28: 00000513 addi a0,a0,0

2c: 00008067 jalr ra

addi t2,x0,9

L1:slt t1,x0,t2

beq t1,x0,L2

addi t2,t2,-1

j L1

L2:
3 words back
(6 halfwords)

3 words
forward

(6 halfwords)

April 29, 2023© Adam Teman,

Linker

• The linker combines several .o files into a single “relocatable” file.

• This includes two primary actions: Symbol Resolution and Relocation.

• Symbol Resolution

• During assembly, some labels are “unresolved”.

• The linker looks for these labels in other files and copies them to the program.

• Relocation

• During assembly, all programs start at address 0x0000.

• The linker merges all assembled files,

and updates the instruction addresses (i.e., relocates the code).

• The Linker creates a relocatable version of the program

• The program is complete, except no memory addresses assigned

• The relocation table points to all labels that must be swapped with addresses.
58

April 29, 2023© Adam Teman,

Startup Code

• During linking, special startup code is inserted into the program.

• Startup code for C programs usually does the following:

• Disables all interrupts

• Copies initialized data from ROM to RAM

• Zeroizes the unitialized data area

• Allocates space for the stack

• Initializes the stack pointer and global pointer

• Enables interrupts

• Calls main()

• Startup code is usually provided as a file called startup.asm or crt0.S

59

April 29, 2023© Adam Teman,

Locator

• The final stage of the build process is the Locator.

• The Relocatable File contains the entire program but no memory addresses.

• The linker script defines where different segments of memory should be stored.

• The Locator replaces the placeholders (defined in the relocation table) with

physical addresses, according to the linker script definitions.

• The output is a binary memory image

that can be loaded into the target ROM

• In embedded systems,

the locator is often merged with the linker.

• In general purpose systems, relocation is

performed during runtime by the loader.

60

hello.out:

000101b0 <main>:

101b0: ff010113 addi sp,sp,-16

101b4: 00112623 sw ra,12(sp)

101b8: 00021537 lui a0,0x21

101bc: a1050513 addi a0,a0,-1520

101c0: 000215b7 lui a1,0x21

101c4: a1c58593 addi a1,a1,-1508

101c8: 288000ef jal ra,10450

101cc: 00c12083 lw ra,12(sp)

101d0: 01010113 addi sp,sp,16

101d4: 00000513 addi a0,0,0

101d8: 00008067 jalr ra

string1 is
relocated to
20a10

string2 is
relocated to
20a1c

printf is
relocated to
28800

April 29, 2023© Adam Teman,

Loader

• While bare-metal embedded systems utilize startup code to run a program,

higher-end computers running operating systems utilize a loader.

• A loader starts running an executable by:

• Reading the file’s header to determine size of text and data segments.

• Allocating address space for program, including text, data and stack

segments.

• Copying instructions + data from executable file into the new address space.

• Relocating, Resolving Symbols and dynamically linking libraries.

• Copying arguments (argv, argc) passed to the program onto the stack.

• Initializes machine registers (sp, gp, etc.)

• Jumping to start-up routine (main())

61

April 29, 2023© Adam Teman,

References

• Patterson, Hennessy “Computer Organization and Design – The RISC-V Edition”

• Patterson, Waterman “The RISC-V Reader”

• Berkeley CS-61C, “Great Ideas in Computer Architecture”

• RISC-V Spec

• Harry H. Porter “RISC-V: An Overview of the ISA”

• Krste Asanovic, Hot Chips Tutorial on RISC-V, Aug. 2019

• USF C Tutorial, http://www.rc.usf.edu/tutorials/classes/tutorial/c_intro/

• Coursera, UC Boulder “Introduction to Embedded Systems”

• James Peckol, “Embedded Systems: A Contemporary Design Tool”

62

http://www.rc.usf.edu/tutorials/classes/tutorial/c_intro/

	Default Section
	Slide 1: Lecture 3: From C to Assembly
	Slide 2: This Lecture
	Slide 3: Outline

	RISC V
	Slide 4: Motivation
	Slide 5: The ‘C’ Programming Language
	Slide 6: But hardware runs on binaries
	Slide 7: Why Instruction Set Architecture matters
	Slide 8: Proprietary ISAs Die Out
	Slide 9: The Need for a Single ISA
	Slide 10: The solution: RISC-V
	Slide 11: What’s Different about RISC-V?
	Slide 12: From Software to Hardware

	Basic Operations
	Slide 13: Basic Operations
	Slide 14: Our basic computer
	Slide 15: 1. Instruction Fetch
	Slide 16: 2. Register File Access
	Slide 17: 2. Register File Access
	Slide 18: 3. Execution
	Slide 19: What are bitwise operations used for?

	Variables
	Slide 20: Variables and Memory Access
	Slide 21: Program and Data Memory
	Slide 22: C Variables
	Slide 23: How are variables accessed in RISC-V?
	Slide 24: How do we access an absolute address?
	Slide 25: And what happens on the C side?
	Slide 26: Pointer Arithmetic
	Slide 27: Arrays and Strings
	Slide 28: Summary of Load/Store Execution

	Control Flow
	Slide 29: Control Flow
	Slide 30: Control Flow and Conditionals
	Slide 31: Loops

	Procedure calls
	Slide 32: Procedure Calls
	Slide 33: Functions
	Slide 34: Calling a Procedure
	Slide 35: Passing arguments to a Function
	Slide 36: RISC-V Procedure Call
	Slide 37: Prologue and Epilogue
	Slide 38: Variable Scope

	Extensions
	Slide 39: RISC-V Features and Extensions
	Slide 40: And a note about the ISA in general
	Slide 41: Full Base Architecture Datapath
	Slide 42: Base Architecture Datapath With Control
	Slide 43: Additional Instruction Features
	Slide 44: Extensions
	Slide 45: Compressed Instructions
	Slide 46: Integer Multiplication
	Slide 47: Division
	Slide 48: Floating Point
	Slide 49: Floating Point Arithmetic
	Slide 50: Floating-Point Adder Hardware
	Slide 52: Additional Standard Extensions

	Build Process
	Slide 53: The Build Process (CALL)
	Slide 54: Building a Software Project
	Slide 55: Preprocessing
	Slide 56: Compilation
	Slide 57: Assembler
	Slide 58: Linker
	Slide 59: Startup Code
	Slide 60: Locator
	Slide 61: Loader
	Slide 62: References

