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MOSFET Current Modeling

* In Digital Electronic Circuits, we used the Shockley Model
for hand-analysis of circuit operation.

* However, there are many models with varying levels of
accuracy to estimate the |-V curves of a MOSFET.

* In this section, we will overview several models that will
come in use throughout this course and your future.
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Basic MOS Models
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Switch Model s
* The most simple MOSFET model is the Switch Model.

Vgs > Vy R

on
so—/%/J\/\/\/—oD

1R,

> Vs > Vps
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[ The Switch A

The Piece-Wise Linear Model - Nodel

 As we know, when the channel pinches off, inear odel
the current saturates. IDAS

* This can be depicted with the simple L linear saturation s

Piece-Wise Linear Switch Model |

DSAT

ICS



Adding Channel Length Modulation [

The Piece-wise
Linear Model

Ry

 Channel Length Modulation modeled as a finite output
resistance, causes a saturation current dependence on V.

IDS IDS

A Channel
——e D Length
IDSAT |<_E
S V
v Y DS Ipsar
H ””/
e S )
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[ The Switch A

Square Law (Shockley) Model ~ Model

e . . D
The Piece-wise

» To get a more accurate model, we already are familiar p—
with the Shockley or Square Law Model. i

&

* Current is just charge times velocity, so at any point, X,

along the channel: I (x) _ —v(X)Q(X)WdX
» We found that charge can be approximated as:

Q(X) =—Co I:VGS —Ves (X) —V; i|
 And the velocity is the mobility times the electrical field:

v (X) =4 (x) = 1, 5
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[ The Switch A

Square Law (Shockley) Model ~Model

ya D
The Piece-wise
Linear Model

rSoweget  dx = C W (Ves =V —V, )dV

" The Square A
Law Model

< v

* And integrating from source to drain, we get
_j | dx = j 1,C W (Vg =V -V )de,unCOXV%VDS (VGS —vT—%VDS)

* At pinch-off (V,=V;s-V+), the voltage over the channel is constant,
so we get: W

| osar = 4,C, I(VGS -V )2

* This is where the “Square-Law” name comes from.
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Square Law (Shockley) Model

* Replacing V¢ with Vo —min(Vgs-Vo, V) we get:

2

W

(1+ AVys)

The Switch
Model

p
The Piece-wise
L Linear Model y

" The Square )

Vosett
los = 1,Co — (VGS —V; )VDSeff ——
L 2
ex ‘Ifi1 | | | | IDS
A

| IDSAT

10 Ves(¥)

~ Law Model
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The Switch
Model

The Velocity Saturation Model

we see a linear dependence on V.. ETEE

v
* However, when looking at a short channel device, FE‘*P;C“:;‘V’:?
e

* This can be attributed to Velocity Saturation.

<105 M 23—
Y Vat ~10 A )

w0 = &=nlCS
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The Velocity Saturation Model

* A good approximation of the mobility curve is:

Model

<

[ The Switch A

4

ya D
The Piece-wise
L Linear Model )

" The Square A

4

4

,Lgf Ecl > Law Model \

The V-Sat
V = 1+ érit ~ Model

Vsat 5 > gcrit
* For continuity: 2V,
é:crit =
7,
* After integration, we get: uC. W V2
lps = \V/ L (VGS —V; )VDS — 5
1+ °PS

gcrit L i
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[ The Switch A

The Velocity Saturation Model

~ Model
The Piece-wise
- This is hard to use, but we can reach an important  —
. . Thes )
conclusion. " Law Model |
° . C W i V 2] " TheV-Sat |
We found that. IDS _ \IL/ln OX ” (VGS _VT )VDS _ DZS ~ Model
1+ [V . -
écritL

* And we know that for a velocity saturated device:
lps =WC,, (VGS —Vpsar — Vs )V

sat

* Equating, we get:
(VGS _VT )gcrit L VDSAT (écrit L >> VGT ) :VGS _VT — pinCh off
(VGS _VT ) T gcrit L

VDSAT —

V L <<Vgr ) =&, L= vel sat
oo (Sl <Vor )= Sl Vel 2l 2= 0 |~ Q



oo ° " The Switch
The Unified Model for Hand Analysis e
! The Piece-wise A
« A few simple estimations will make the V-Sat model p—
more user-friendly: i
» The mobility Is piecewise linear, saturating at £>¢_,../2 " TheV-sSat |
* Vpsar IS piecewise linear, saturating at Ve jr=¢icL/2,  Model
when VGT>5critL/2 . " The Unified
E ~ Model
z | 3
E_é i Vo= 108 = Actual Vg7
° Constant velocity ,};L_ | /2

E /27 Vealll £ (V/um) SL/2 VGSI: Vs (VE n “CS



The Unified Model for Hand Analysis M

>

p
The Piece-wise

» This brings us to the Unified Model: p—
» ot —Te
DSeff " TheV-Sat
los = #4,Cx r (VGS —V; )VDSeff - 5 (1+/1VDS) ! TT\/I(Xi:It )
- — [ The Unified A
VDSeff = min (VGS _VT ) VDS ) VDSAT ) hede
fcritL — szat

VDSAT — 2 fcrit R
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Advanced MOS Models
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VT* Model

» Sometimes we want to use a really simple model.

* We can assume that if the transistor is on,
it's velocity saturated.

IDS = kn (VGS _VT )VDSAT -

| 0 Vg, <V,
DS — * -
kn (VGS _VT )VDSAT VGS >VT

17

" The Switch |

Model

&

4

The Piece-wise
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" TheV-Sat |

Model
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The Alpha Power Law Model

« Sakurai found that by changing the exponent of the square
law, a better fit can be found with simple calculations.

| Dsar (a) = 1,C

, Alpha (a=1.3) -

Shockley (a=2)

’ VGS=
IIJd-— ¥ '::’g;....--n.!r 5Y
Measured . . o
= YGS-ID L] ° i
+ YDS-ID .
=3 Shockley Model « i
.E.z = VGSID 4 S ewece iliii.:l'f-i"v
- ""n’s-ln ™ e _.-"‘
E av
'i ....... sadmssntn 1 v
I'E‘ L=1um
=) ! Ws10um 1 3V
L ] l"_!"'; !!!!!!! p 2V
e 7 VBS=0V
- 2v
a EEEIEEEENEEE RN BN 1V
0 1 2 3 VDO 4 5

ID : Draln Current [mA]

FIF-
Tesepgeiseee et

o VBS=0V
& L=Tum W=10um
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av

p 3V
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v

oX 2|_ (VGS V

VGES=
4 5V

The Switch
Model

The Piece-wise
Linear Model

The Square
Law Model

|
|
|
[ The V-Sat
|
|
|

Model

The Unified
Model

The VT*
Model

The Alpha Power
Law Model
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BSIM

* The main model used by simulators today is the BSIM4
model. This model uses hundreds of parameters to

achieve a good fit. con | o
» This model takes into i _} T
3.87 : ol | 4.00
account all known B R
physical effects, as zoo | A e
well as many fitting = A ]
parameters. 2
; - St tar

Model

&

" The Switch |

4

The Piece-wise
Linear Model

N

Law Model

&

" The Square )

4

" TheV-Sat |

~ Model
" The Unified
~ Model
 TheVvT*
~ Model
e D

The Alpha Power
Law Model

< Y
a N
BSIM
< Y
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Newer Models

« BSIM Group Webpage:
« Compact Model Coalition (CMC) Webpage:

 Newer BSIM Models:

« BSIM6 — Bulk CMOS

« BSIMSOI - Sol model standardized in 2001 (built on BSIM3.3)

« BSIM-CMG — multi-gate FETs (FinFet, Nanowire) — written in Verilog-A
« BSIM-IMG - Independent Multi-Gate — for UTBB-Sol

 EKV Model:

« Developed in 1995 to provide accuracy even in subthreshold

* PSP:
e Standard for current bulk CMOS

Model

&

" The Switch |

4

The Piece-wise
Linear Model

Law Model

&

" The Square )

4

Model

&

" TheV-Sat |

Xl

" The Unified
Model

&

J

The VT*
Model

&

4

Law Model
Q

.
The Alpha Power

4

a

BSIM

&

N

4

p
And more...
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http://www-device.eecs.berkeley.edu/bsim/
https://www.si2.org/cmc_index.php
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Threshold Voltage Revisited
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Energy Band Diagrams

* To understand the threshold voltage and other secondary effects of
the MOS device, we often use energy band diagrams.

* The first approach is looking in from the gate:

E, L
411
) -
" | -
- .ﬁ E,
>
o Ef EC N —— Ef
Q -
§ _| v >
:_%
a. Gate Si
Body
. '
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Energy Band Diagrams

* The second approach is looking from the source to the drain.

1
_ - Long Channel

/ Vgs=0V

—_—
N* Source I Uds

N
—

V=V,




Threshold Voltage - Basic Theory ey

* The basic definition of threshold voltage is
the gate voltage (V) required to invert the channel

Qox Qe e
Vi = By — 20, -2 - 2 NV L
ox o 4 _’cﬂﬁaj-: |
J L [z i iy
Q.. =+/20N &, |20 av, "4V, |
dep QN A ‘ F‘ EC?EfJ_ / 4\

N kT
d._=—¢ In—2 = —
L

24 e &nlCS




« D

Body EffeC-I- \ Basic Theory /

" Classic Body A
Effect

p

4

 The appearance of a voltage difference between the
source and body (Vg) is known as “The Body Effect”

The Body Effect

* This can be modeled by the additional
charge that needs to be depleted.

Quep = \/ZqNAgsi (‘_ZCDF +VSBD

Vi =V +7/(\/‘_2(DF +VSB‘ _\/‘_ZCDF‘)

Vipg=®ys — 20, - Qn — Qdepo \/qusi NA

C C 2.5 -2 1.5 _ -1 -0.5 0
- T, - £qlCS
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Modern Body Effect

C

Ve

Gate

i
oxe —T1— # Toxe

* A different approach is to look at
the capacitive voltage divider
between the gate and body (C)

Ve — N

EEEEEEEE

Cdep

Qinv = _Coxe (VGS _Vcs _VTO ) + Cdep (VSB +Vcs )

dep

C

oxe

n=1+

- (VGS - nVcs _VTO)

oxe
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3TOXE
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d max

=1+

@ N

Basic Theory
y

" Classic Body A
L Effect )

Modern Body\
.~ Effect

Ve
0 G

- Coxe
e C

VB’ B
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Modern Body Effect

* This can be shown to redefine V as:

dep V
SB

(0)(S

V7 (Vsg) =Vqg - C

* In modern technologies, C. /C .. is a constant,
so V. is linearly dependent on V!

{ Basic Theory }

Classic Body
Effect

Modern Body
Effect
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Poly Depletion and Channel Depth (&=

" Classic Body )

The threshold voltage is affected by two additional f Effect \
factors that we have disregarded until now: Modern Body

channel
electrons Q EffeCt

4

poly

* Polysilicon Depletion _

 Since polysilicon is, itself, a semiconductor, "
the depletion layer into the poly effectively =
Increases the oxide thickness.
highly doped p-type Si

e Channel Depth poly-Si gate metal

Oxide

 Since the channel is not a 2-dimensional
line along the surface, the oxide thickness

i ntially increased. C 3T
S esse tay creas né1+ dep :1_|_ oXe

oxe W max
28 ™ &nlCS




Hot Carrier Effects S
" Classic Body )
* Electrons can get so fast that they can tunnel into  —
the gate oxide and increase the threshold voltage. R
Q . '
VTO — CDMS — ZCDF — QOX — aep Hot Carriers
] ] ] agn ] ] COX COX ] ) j
* This is a reliability issue as it happens over time.
16.0m .
| Sold Fresh — U, Swess ine=100 minutes — v
Le). 3um, T =d2A =
T I S
4.0mf O etz | [ e
9% 1 2 3 4 5 g:
) ZnlCS




V+ Roll Off (Short Channel

* As channel length is reduced, effective ch

N

Effe C‘l') : Basic Theory )

" Classic Body )

annel length is  © et

Modern Body\

reduced by depletion regions. e R
source/channel Vs 7 W
varier ong channe I T——==" 1 R

& 4

~ LY /,
" J A lw'“ 4 "
N . i U S ’
Vds _-—'1F f_.fi__: . . ﬁ\\ Yo D
e VT Roll-Off

* A trapezoid is created under the gate,
dividing the channel into the region ¢
controlled by the gates and by the drain.z -

* In essence, V- is reduced.
30
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0.00 }

! | K. Goto et
-0.05} 65nm technology. A al. IEDM
ool t,=1.2nm {2003

I V=1V
0.15 }

i m \Vds =50mV
020} ® Vds =1.0V
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Basic Theory

DIBL (Drain Induced Barrier Lowerlng)

Classic Body
Effect

* In short channels, the barrier of .
the channel is essentially lowered, WI
as the drain causes the energy band PR

to drop closer to the source.

Modern Body

ey
el
o
S
S
_

Hot Carriers

» This is exponentially dependent on V.. VT RolFOrt

Vy

long channel

4 DIBL
O V=0 V4s=0
Low Vjs threshold
Vd5=Vdd Vd5=vdd

\ short channel

Vi =Va o0y = (Vs +0.4) -

C,
s T,long

31 1':._,_4 | Oxe o—n“CS




Roll Off / DIBL combined

Vpg = 0.05V ~ NMOS
~ [o]
04
02
=
T~
N .
0
-02
e ' PMOS
-04
| L I 1 1 \ ] 1 1
| 0 02 04

0.6
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Reverse Short Channel Effect (RSCE) (S
" Classic Body A
* V- actually increases at channel lengths a bit higher than ~ “&feet
. Modern Body\
minimum... e
| Subthreshold (RSCE only) >14 @ S
2 1zl | e
-] 0 11 vbp=1.2v VT Roll-Off
% RSCE z 2 Max. ki at min. length ; )
> =2 1 DIBL
E E 0] VDD=1.2v ; i
3 |Superthreshold (SCE+RSCE) 23 T hwosan | | B
ﬁ 1 VDD=0.2V Min. Tdtla:rﬂt I.'l.35|.|m
0 0 0.2 0.4 0.6 0.8 1

Channel Length (uin) Channel Length (pm)
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How to Measure VT —
" Classic Body

* There are various ways to measure V-  —
. " Modern Body

* One classic way takes a small V¢ and sweeps V.. . Effect

Hot Carriers

Id = k |:(Vgs _Vt)Vds _MJ OC\/gs _Vt 2.5 10 . . : . > <

VT Roll-Off
- 2 . '
* So we can find the V. oL
at which the linear part <] ) y
crosses |.=0. o e
0.5 | Measuring VT\

<€ y
0 05" 1 15 2 25 = n “ ‘C S
‘ Ves (V) O
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How 1o Measure VT

* One of the more common ways is to find the

Vs at which 1,.=100 nA x W/L.
* For V;;,, setalow Vg (Vps=50mV)
*ForV

W
0.1 X L (RA)

Tsat S€t @ high Vg (Vps=Vpp) I A

V. = S0 mV

>V,

@ D
Basic Theory

A 4

" Classic Body |

Effect
KModern Body\
Effect
« D

Hot Carriers

e D
VT Roll-Off

DIBL

RSCE

« N
Measuring VT
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Further Reading

* J. Rabaey, “Digital Integrated Circuits” 2003, Chapters 2.5, 3.3-3.5

« Weste, Harris “CMOS VLSI Design”, Chapter 7

* C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010, Chapters 4-7

* Tzividis, et al. “Operation and Modeling of MOS Transistor”’Chapters 1-5

« E. Alon, Berkeley EE-141, Lecture 9 (Fall 2009)

« M. Alam, Purdue ECE-606 - lectures 32-38 (2009) nanohub.org

« A. B. Bhattacharyya “Compact MOSFET models for VLSI design”, 2009,

« T. Sakurai, “Alpha Power-Law MOS Model” — JSSC Newsletter Oct 2004

« Managing Process Variation in Intel’s 45nm CMOS Technology, Intel Technology Journal, 2008

 Berkeley “BSIM 4.6.4 User’s Manual”
http://www-device.eecs.berkeley.edu/~bsim/BSIM4/BSIM464/BSIM464_Manual.pdf
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