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MOSFET Current Modeling

• In Digital Electronic Circuits, we used the Shockley Model 

for hand-analysis of circuit operation.

• However, there are many models with varying levels of 

accuracy to estimate the I-V curves of a MOSFET.

• In this section, we will overview several models that will 

come in use throughout this course and your future.
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Lecture Content
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Basic MOS Models
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• The most simple MOSFET model is the Switch Model.

Switch Model
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The Piece-Wise Linear Model

• As we know, when the channel pinches off, 

the current saturates.

• This can be depicted with the simple 

Piece-Wise Linear Switch Model
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Adding Channel Length Modulation

• Channel Length Modulation modeled as a finite output 

resistance, causes a saturation current dependence on VDS.
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Square Law (Shockley) Model

• To get a more accurate model, we already are familiar 

with the Shockley or Square Law Model.

• Current is just charge times velocity, so at any point, x,

along the channel:

• We found that charge can be approximated as:

• And the velocity is the mobility times the electrical field:
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Square Law (Shockley) Model

• So we get: 

• And integrating from source to drain, we get

• At pinch-off (VDS=VGS-VT), the voltage over the channel is constant, 
so we get:

• This is where the “Square-Law” name comes from.
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Square Law (Shockley) Model

• Replacing VDS with VDSeff=min(VGS-VT, VDS) we get:
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The Velocity Saturation Model

• However, when looking at a short channel device, 

we see a linear dependence on VGS.

• This can be attributed to Velocity Saturation.
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The Velocity Saturation Model

• A good approximation of the mobility curve is:

• For continuity: 

• After integration, we get: 
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The Velocity Saturation Model

• This is hard to use, but we can reach an important 

conclusion.

• We found that:

• And we know that for a velocity saturated device: 

• Equating, we get: 
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The Unified Model for Hand Analysis

• A few simple estimations will make the V-Sat model

more user-friendly:
• The mobility is piecewise linear, saturating at ξ>ξcrit/2

• VDSAT is piecewise linear, saturating at VDSAT=ξcritL/2, 

when VGT>ξcritL/2
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The Unified Model for Hand Analysis

• This brings us to the Unified Model:
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Advanced MOS Models
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VT* Model

• Sometimes we want to use a really simple model.

• We can assume that if the transistor is on, 

it’s velocity saturated.
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The Alpha Power Law Model

• Sakurai found that by changing the exponent of the square 

law, a better fit can be found with simple calculations.
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BSIM

• The main model used by simulators today is the BSIM4

model. This model uses hundreds of parameters to 

achieve a good fit.

• This model takes into 

account all known 

physical effects, as 

well as many fitting 

parameters.
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Newer Models

• BSIM Group Webpage:  

http://www-device.eecs.berkeley.edu/bsim/

• Compact Model Coalition (CMC) Webpage: 

https://www.si2.org/cmc_index.php

• Newer BSIM Models:
• BSIM6 – Bulk CMOS

• BSIMSOI  - SoI model standardized in 2001 (built on BSIM3.3)

• BSIM-CMG – multi-gate FETs (FinFet, Nanowire) – written in Verilog-A

• BSIM-IMG – Independent Multi-Gate – for UTBB-SoI

• EKV Model: http://ekv.epfl.ch/
• Developed in 1995 to provide accuracy even in subthreshold

• PSP: http://psp.ewi.tudelft.nl/
• Standard for current bulk CMOS
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Threshold Voltage Revisited

21



Energy Band Diagrams

• To understand the threshold voltage and other secondary effects of 

the MOS device, we often use energy band diagrams.

• The first approach is looking in from the gate:
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Energy Band Diagrams

• The second approach is looking from the source to the drain.
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Threshold Voltage - Basic Theory

• The basic definition of threshold voltage is

the gate voltage (VG) required to invert the channel
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Body Effect

• The appearance of a voltage difference between the 

source and body (VSB) is known as “The Body Effect”

• This can be modeled by the additional 

charge that needs to be depleted.
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Modern Body Effect

• A different approach is to look at 

the capacitive voltage divider 

between the gate and body (CGB)
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Modern Body Effect

• This can be shown to redefine VT as:

• In modern technologies, Cdep/Coxe is a constant, 

so VT is linearly dependent on VSB!
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Poly Depletion and Channel Depth

The threshold voltage is affected by two additional

factors that we have disregarded until now:

• Polysilicon Depletion
• Since polysilicon is, itself, a semiconductor, 

the depletion layer into the poly effectively 

increases the oxide thickness.

• Channel Depth
• Since the channel is not a 2-dimensional 

line along the surface, the oxide thickness 

is essentially increased.
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Hot Carrier Effects

• Electrons can get so fast that they can tunnel into 

the gate oxide and increase the threshold voltage.

• This is a reliability issue as it happens over time.
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VT Roll Off (Short Channel Effect)

• As channel length is reduced, effective  channel length is 

reduced by depletion regions.

• A trapezoid is created under the gate, 

dividing the channel into the region 

controlled by the gates and by the drain.

• In essence, VT is reduced.
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DIBL (Drain Induced Barrier Lowering)

• In short channels, the barrier of 

the channel is essentially lowered, 

as the drain causes the energy band 

to drop closer to the source.

• This is exponentially dependent on VDS.
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Roll Off / DIBL combined
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Reverse Short Channel Effect (RSCE)

• VT actually increases at channel lengths a bit higher than 

minimum…
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• There are various ways to measure VT

• One classic way takes a small VDS and sweeps VGS.

• So we can find the VGS

at which the linear part 

crosses Ids=0.

VDS=50mV

How to Measure VT
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How to Measure VT

• One of the more common ways is to find the 

VGS at which IDS=100 nA x W/L.

• For VT,lin, set a low VDS (VDS=50mV)

• For VT,sat set a high VDS (VDS=VDD)
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OP and MP in Spectre
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