
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Digital VLSI Design

Lecture 2: Verilog HDL
Semester A, 2016-17

Lecturer: Dr. Adam Teman

mailto:adam.teman@biu.ac.il

What is a hardware description language?

• HDL is NOT another programming language:

• Textual representation of Hardware constructs

• All statements are executed in parallel

• Code ordering is flexible.

Example:

• a=1;b=2;c=a+b  c==3

• c=a+b;a=1;b=2  c==3

• Execution of code is triggered by Events

• Sensitivity lists are used to define when a code section is executed

• Different simulators may yield different results

• => Coding style is required

2

Abstraction levels

• Three coding styles:

• Structural code (GTL (Gate Level), Netlist)

• RTL (Register Transfer Level)

• Behavioral (Testbench)

• DUT (Device Under Test)

• Represents Hardware

• Usually RTL or GTL

• Testbench

• Represents System

• Usually Behavioral

• Using higher order languages (“e”/SystemVerilog)

3

Verilog Syntax

1

Introduction

2

Verilog

Syntax

3

Simple

Examples

4

FSM

Implementation

5

Coding Style

for RTL

Basic Constructs

• Primitives:

• not, and, or, etc.

• Signals:

• 4 states: 0,1,X,Z

• Wires: do not keep states

• Registers: keep states (i.e., outputs)

• Can represent buses or group of signals

or(out, in1, in2);

wire in1,in2;
reg out;
wire [7:0] data;
reg [31:0] mem [0:7]; //width (bits)=32, depth (words)=8

5

Basic Constructs

• Operators:

• Similar to primitives

• &, |, ~, &&, ||, etc.

• Constants:

• The format is: W’Bval

• Examples:

• 1’b0 – single bit binary 0 (or decimal 0)

• 4’b0011 - 4 bit binary 0011 (or decimal 3)

• 8’hff = 8 bit hexadecimal ff (or decimal 255)

• 8’d255= 8 bit decimal 255

6

out = in1 | in2;

Procedural Blocks

• Initial block

• Will be executed only once, at first time

the unit is called (Only in testbench)

• Always block

• Statements will be evaluated when

a change in sensitivity list occurs

• Example1 - sync reset,

rising edge triggered flop:

• Example 2 - async reset,

rising edge triggered,

load enable flop:

7

initial begin
a = 1’b0;
b = 1’b0;

end

always @(posedge clock)
if (!nreset)
q <= #1 1’b0;

else
q <= #1 d;

always @(posedge clock or negedge nreset)
if (!nreset)
q <= #1 1’b0;

else if (load_enable)
q <= #1 d;

Procedural Blocks

• There are two types of Always blocks

• Sequential

• Asserted by a clock in the sensitivity list.

• Translates into flip-flops/latches.

• Combinational

• Describes purely combinational logic,

and therefore, sensitivity list has (non-

clock) signals.

• Verilog 2001 standard allows using *

instead of a sensitivity list to reduce

bugs.

8

always @(posedge clock or negedge nreset)
if (!nreset)
q <= #1 1’b0;

else if (load_enable)
q <= #1 d;

always @(a or b or c)
out = a & b & c;

always @(*)
out = a & b & c;

Assignments
Verilog has three types of assignments:

• Continuous assignment
• Outside of always blocks

• Blocking procedural assignment “=“
• RHS is executed and assignment is completed

before the next statement is executed.

• Non-blocking procedural assignment “<=“
• RHS is executed and assignment takes place

at the end of the current time step (not clock cycle)

• To eliminate mistakes, follow these rules:

9

// assume initially a=1;
a = 2;
b = a;
// a=2; b=2;

// assume initially a=1;
a <= 2;
b <= a;
// a=2; b=1;

• Combinational always block: Use blocking assignments (=)

• Sequential always block: Use non-blocking assignments (<=)

• Do not mix blocking and non-blocking in the same always block

• Do not assign to the same variable from more than one always block

assign muxout = (sel&in1) | (~sel&in0);
assign muxout = sel ? in1 : in0;

• Instances

• Referencing a block at a different

level

Hierarchy

• Modules

• Used to define a hardware block

10

module mux4 (out, in, sel);
input [3:0] in;
input [1:0] sel;
output out;
reg out;

always @*
case (sel)

2’b00: out = in[0];
2’b01: out = in[1];
2’b10: out = in[2];
2’b11: out = in[3];
default: out = 4’bx;

endcase
endmodule

Module

Header

Module

Body

mux4 M0 (.out(outa),.in(a),.sel(sel));
mux4 M1 (.out(outb),.in(b),.sel(sel));

System Tasks

• System tasks are used to provide interface to simulation data

• Identified by a $name syntax

• Printing tasks:
• $display, $strobe: Print once the statement is executed

• $monitor: Print every time there is a change in one of the parameters

• All take the “c” style printf format

• Waveform tasks:
• $shm_open - Opens a dump file

• $shm_probe() – lists signals to probe

11

$display(“At %t Value of out is %b\n”,$time,out);

$shm_open(“testbench.db”,1);
$shm_probe(“AS”) // dump all signals

Simple Examples

1

Introduction

2

Verilog

Syntax

3

Simple

Examples

4

FSM

Implementation

5

Coding Style

for RTL

Hello World

• Your first Verilog module:

module main;
initial
begin

$display(“Hello world!”);
$finish;

end
endmodule

13

Combinatorial Logic

• Three ways to make a Mux

• Using an Assign Statement: • Using a Case statement:

• Using an Always Block:

14

wire out;
assign out = sel ? a : b;

reg out;
always @ (a or b or sel)
begin
case (sel)

1’b0: out=b;
1’b1: out=a;

endcase
end

reg out;
always @ (a or b or sel)
if (sel)
out=a;

else
out=b;

Sequential Logic

• A simple D-Flip Flop:

• An asynch reset D-Flip Flop:

• Be careful not to infer latches!!!:

15

reg q;
always @(posedge clk)
q<= #1 d;

reg q;
always @(posedge clk or negedge reset_)
if (~reset_)
q<= #1 0;

else
q<= #1 d;

reg q;
always @(en)

if (en)
q<= #1 d;

Arithmetic

• Verilog supports standard arithmetic operators:

• +, -, *, << (shift left), >> (shift right), etc.

• Be careful about division… (not synthesizable!)

• Concatenate signals with the {,} operator

• But…

• By default, Verilog treats all vectors as unsigned binary numbers.

• To do signed (two’s complement) operations,

declare the reg/wire as signed:

• To make a constant signed, add an s: 10’sh37C

16

wire signed [9:0] a,b;
wire signed [19:0] result = a*b;

assign a = 4’b1100;
assign b = 4’b1010;
assign c = {a,b}; //c=8’b11001010

reg vs. wire
• Oh no… Don’t go there!

• A reg is not necessarily an actual register, but rather a “driving signal”… (huh?)

• This is truly the most ridiculous thing in Verilog…

• But, the compiler will complain, so here is what you have to remember:

17

1. Inside always blocks (both sequential and combinational) only reg can be used as LHS.

2. For an assign statement, only wire can be used as LHS.

3. Inside an initial block (Testbench) only reg can be used on the LHS.

4. The output of an instantiated module can only connect to a wire.

5. Inputs of a module cannot be a reg.

reg r;
always @*
r = a & b;

wire w;
assign w = a & b;

reg r;
initial
begin

r = 1’b0;
#1
r = 1’b1;

end

module m1 (out)
output out;

endmodule

reg r;
m1 m1_instance(.out(r));

module m2 (in)
input in;
reg in;

endmodule

• Create a clock:

Testbench constructs

18

`define CLK_PER 10

initial
begin //begins executing at time 0
clk = 0;

end

always //begins executing at time 0 and never stops
#(CLK_PER/2) clk = ~clk;

Verilog FSM Implementation
A simple 4-bit counter example

19

1

Introduction

2

Verilog

Syntax

3

Simple

Examples

4

FSM

Implementation

5

Coding Style

for RTL

FSM Example

• A 4-bit counter

• Receives 4 inputs:

• clk – the system clock

• rst_n – an active low reset

• act – the activate signal

• up_dwn_n – count up (positive)

or count down (negative)

• Outputs 2 signals:

• count: the current counted value

• ovflw: an overflow signal

module sm
#(parameter COUNTER_WIDTH = 4)
(clk,rst_n,act,up_dwn_n,count,ovflw);

input clk;
input rst_n;
input act;
input up_dwn_n;
output [COUNTER_WIDTH-1:0] count;
output reg
reg ovflw;
reg [COUNTER_WIDTH-1:0] count;
reg [3:0] state, next_state;

20

FSM Example

• Draw the state machine:

localparam IDLE = 4'b0001;
localparam CNTUP = 4'b0010;
localparam CNTDN = 4'b0100;
localparam OVFLW = 4'b1000;

• Define (Enumerate) names for each state:

IDLE

Count

Up

Count

Down

Overflow

reset

act==0

act==1
up_dwn_n==1

act==1
up_dwn_n==0

count--

count++

ovflw=1

act==0

act==0

act==1
up_dwn_n==1

act==1
up_dwn_n==0

act==1
up_dwn_n==0

act==1
up_dwn_n==1

21

FSM Example

• Combinational block

• compute the next state:

always @*
case (state)
IDLE: begin

if (act)
if (up_dwn_n)
next_state = CNTUP;

else
next_state = CNTDN;

else
next_state = IDLE;

end

CNTUP: begin
if (act)
if (up_dwn_n)
if (count==(1<<COUNTER_WIDTH)-1)
next_state = OVFLW;

else
next_state = CNTUP;

else
if (count==4’b0000)
next_state=OVFLW;

else
next_state=CNTDN;

else
next_state=IDLE;

end
22

FSM Example

• Combinational block

• compute the next state:

CNTDN: begin
if (act)
if (up_dwn_n)
if (count==(1<<COUNTER_WIDTH)-1)

next_state = OVFLW;
else

next_state = CNTUP;
else
if (count==4’b0000)

next_state=OVFLW;
else

next_state=CNTDN;
else
next_state=IDLE;

end

OVFLW: begin
next_state=OVFLW;

end

default: begin
next_state = 4’bx;
$display(“%t: State machine not

initialized\n”,$time);
end

endcase

23

FSM Example

• Sequential block

• Define the state registers:

• Define the counter registers:

always @(posedge clk or negedge rst_n)
if (!rst_n)
state <= #1 IDLE;

else
state <= #1 next_state;

always @(posedge clk or negedge rst_n)
if (!rst_n)
count <= #1 4’b000;

else
if (state==CNTUP)
count <= #1 count+1'b1;

else if (state==CNTDN)
count <= #1 count-1'b1;

assign ovflw = (state==OVFLW) ? 1'b1 : 1'b0;

endmodule

24

• Finally assign the output (Moore):

Testbench Example

• Definition of signals and parameters

• Instantiate the state machine:

module sm_tb;
parameter WIDTH = 5;
reg clk;
reg rst_n;
reg act;
reg up_dwn_n;
wire [WIDTH-1:0] count;
wire ovflw;

sm #(WIDTH) DUT (.clk(clk),.rst_n(rst_n),
.act(act),.up_dwn_n(up_dwn_n),
.count(count),.ovflw(ovflw));

25

Testbench Example

• Set initial values, value monitoring

and reset sequence:

initial begin
clk = 1'b1;
rst_n = 1'b0; // Activate reset
act = 1'b0;
up_dwn_n = 1'b1;
$shm_open("testbench.db",1); // Open waveform file
$shm_probe("AS"); // Dump all signals to file
// Monitor changes
$monitor("%t: rst_n=%b act=%b up_dwn_n=%b count=%d

ovflw=%b\n",$time,rst_n,act,up_dwn_n,count,ovflw);
// After 100 time steps, release reset
#100 rst_n = 1'b1;

end

• Define a clock:

initial begin
// @100, Start counting up
// until overflow
#100 act = 1'b1;

up_dwn_n = 1'b1;
// Reset (10 cycles pulse)
#1000 rst_n = 1'b0;

act = 1'b0;
#100 rst_n = 1'b1;
// Do a count-up to 4 and
// then count-down to ovflw
#100 act = 1'b1;

up_dwn_n = 1'b1;
#40 up_dwn_n = 1'b0;

end
endmodule

always
#5 clk = ~clk;

26

• Set stimuli:

Coding Style for RTL – Part 1

1

Introduction

2

Verilog

Syntax

3

Simple

Examples

4

FSM

Implementation

5

Coding Style

for RTL

HDL is NOT another programming language!

• Well, at least it shouldn’t be…

• Verilog is a relatively “rich” programming language, with commands

and constructs that let you do many things.

• In fact, it was originally designed exclusively as a verification language.

• However, when designing hardware,

you cannot actually do whatever you want!

• Therefore, it is important to follow some simple (but strict!) rules

and adhere to a coding style.

• In the following slides:

• I will introduce you to a few guidelines and rules.

• But, we will revisit this later, after you have some hands-on experience.

Organizing your code

• Each module should be in a separate file

• Name the file <modulename>.v

• Always connect modules by name (the .dot() form).

• Write each input/output on a separate line

• Comment what each signal is used for.

• Separate sequential and combinational logic

29

module fsm(...)
input ... ;
...
always@(posedge clk or negedge rst_)
... // sequential code

always@*
... // combinational code

assign ... // simple combinational logic
endmodule

fsm.v

Assignment

Just to make sure you got the rules I mentioned before…

• In a combinational (always@*) block:

• Always use blocking (=) assignment.

• Recommended to use (*) in your sensitivity list.

• Always use full case statements. Use default to propagate X.

• In a sequential (always@posedge) block:

• Always use non-blocking (<=) assignment.

• Add a unit delay (<= #1) to help debug.

• Prefer each flip-flop in a separate always block.

• Prefer to data enable all sampling.

• Never assign a signal (LHS) from more than one always block.

30

Be careful not to infer latches

• A very bad mistake made by rookie HDL designers

is to describe latches by mistake.

• If an output is not explicitly assigned by every signal in the sensitivity list, a

latch will be inferred to save the previous

state of the signal.

• For example, what happens if sel==11 ?

• The same will happen if an output is not
assigned in all branches of an if-else
block.

31

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;

always @(sel or a or b or c or d)
case (sel)

2‘b00: out = a;
2‘b01: out = b;
2‘b10: out = d;

endcase
endmodule

Stick with one reset type

• The purpose of reset is to bring your design into a well-known state.

• It is desirable to have every flip-flop resettable, whether or not required.

• We usually use asynchronous reset:

• But synchronous reset is also okay:

• Just make sure you don’t mix them in your design!

32

always @(posedge clk or negedge rst_)
if (!rst_)
state <= idle;

else
state <= next_state;

always @(posedge clk)
if (!rst_)
state <= idle;

else
state <= next_state;

Parameterize your design

• “Pretty code” is code that is completely parametrized

• Two approaches to parameterization:
• Compiler directives: `define, `include, and `ifdef

• put all `define statements in external define files.

• Parameters or localparam

• parameters can be overridden through instantiation

• localparam is better for constants, such as FSM encoding

• You can also use generate statements, but be careful of these.

• Always encode FSM states with hard coded values

• You can choose various methods, such as binary, gray code, one-hot, etc.

33

Write readble code

• Always use indentation!!!

• You will lose points if you turn in ugly code!

• Naming Conventions

• Really useful!

• There is no “one right answer”, but two recommended styles are:

• NetFPGA VerilogCodingGuidelines

https://github.com/NetFPGA/netfpga/wiki/VerilogCodingGuidelines

• ETH-Zurich VHDL naming conventions (with emacs highlighting!):

https://www.dz.ee.ethz.ch/en/information/hdl-help/vhdl-naming-conventions.html

34

https://github.com/NetFPGA/netfpga/wiki/VerilogCodingGuidelines
https://www.dz.ee.ethz.ch/en/information/hdl-help/vhdl-naming-conventions.html

Some helpful documents and references

• Chris Fletcher “Verilog: wire vs. reg”

• Greg Tumbush “Signed Arithmetic in Verilog 2001 – Opportunities and Hazards”

• NetFPGA wiki “VerilogCodingGuidelines”

• MIT 6.111 Lectures http://web.mit.edu/6.111/www/f2007/

• Stuart Sutherland, Don Mills “Standard Gotchas: Subtleties in the Verilog and

SystemVerilog Standards That Every Engineer Should Know”

35

http://web.mit.edu/6.111/www/f2007/

