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A Process Primer

A Quick Intfroduction to the CMQOS Process
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Motivation
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"I'm exhausted — I just spent
all morning writing a note to ‘
the milkman!" 'V PECIED To WRITE A NoveL.! 1~3 Years...



Integrated Circuits...

Only 15,432,756 more
mosfets to do...

Source: MIT 6.884
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The Photolithographic Process
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CMOS Process/Transistors



Basic Process Flow

Lightly Doped Wafer

Grow Field Oxide

Define Wells

Grow Gate Oxide

e D
Deposit Poly Gate
s D
Etch Gates
e D

Implant Source/Drain

Deposit Isolation
Oxide and Contacts

Deposit Metal 1

Deposit Isolation
Oxide and Via 1

Deposit Metal 2




The Computer Hall of Fam
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 Speaking of integrated circuits, the first
IC-based computer was the Texas Instruments

Mol-E-Com

A molecular electronic computer

Introduced in 1961

« “It performs exactly the same functions as a conventional
computer but is 150X smaller and 48X lighter.”

« “Three types of semiconductor networks are used in the tiny
computers: RS flip-flop, NOR gates, and logic drivers.”

« 8-16 “networks” were welded together in a stack.
« Atotal of 47 stacks (587 “networks”) made up the computer.

Source: http://s3data.computerhistory.org/brochures/ti.molecular. 196 1.102646283. pdf
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Detailed Process
Flow

Detailled Process Flow
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Seed

e =y

Single Silicon Crystal

-
P A Y

Quartz Crucible

‘Water Cooled Chamber

Heat Shield
Carbon Heater
Graphite Crucible
Crucible Support 3.05m

Spill Tray

Electrode

99.999999999 % (so-called “eleven nines” ) !!

d

Maximum impurity of starting Si wafer is equivalent to
1 mg of sugar dissolved in an Olympic-size swimming pool.

Lightly Doped |
12 Wafer JAdCROEET AT
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Field Oxide — The LOCOS Process

PROtONesist ADDECGNON
(Ontrak)

Photoresist

Field Oxide (FOX)

Active
Area

Grow Field

Oxide

@ o o(Merals) o



Field Oxide - The STl Process - -

SiO, p

* The LOCOS Process has two problems:

 Bird’'s Beak makes it hard to make transistors close to each other.
« A parasitic MOSFET can turn on underneath the FOX.

 Solution:

« Shallow Trench Isolation (STI)
* Field Implants

: : : -

Active Active Active

e N ' S res

N y
Nitride (Si-N,)

Sio,

Parasific
+~ MOSFET

Grow Field
Oxide 2 Adarn Teirnan, ”
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Well Implantation

 Cover wafer with thin layer of oxide.
Implant wells through photolithographic
process.

* After implant we must Anneal to the
covalent bonds, and Diffuse to get
the wells to the depth we want.

« Annealing: Heating up the wafer to fix
covalent bonds. Done after every ion
Implantation or similar damaging step.

1400

oy
w
o
o

1200

1000

Anneal Peak Temperature (oC)

900 }|

800

Reduced Diffusiop====——=-

Silicon Melt
Temperature

X . Single Wafer
- RTP Spike
_ Annealing
Batch 180-65nm
Furnace
Annealing

>180nm

Ultrafast Laser
LXA: 14nm

Submelt Laser & beyond
LSA: 65-14nm

\ J
5 @

Ultratech’s
Laser Process

Anneal Time

Increased Activation™===———"

Hours Minutes Seconds

Milli Micro Nano

Seconds Seconds Seconds

Source: Ulfratech

« Diffusion: Movement of dopants due to heating of the wafer.
Usually this is unwanted, as it changes the doping depth.

15 Well Implants

0 Adairn Teirnan, ©




Well Implantation - Deep N-Wells

 Can we change the body voltage of an nMOS transistor?
* Yes, using a “triple well” process! Deep NWell

Layer
« BUT... it “costs” a lot of area: Don't forget to
connect to VDD!

P-sub (p-) -

Regular NWell Layers
around boundary

Lightly Doped Grow Field Transistor Backend

NMOS Non-GND
Bulk Contact
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Transistor Fabrication: V; Implant

 The threshold voltage of a transistor is approximately:
260N , | 2¢
V, =VFB+2¢f+\/ A( f)+QQ'

C C

OoX OX

* So the first step is to implant Q,.

* Random Dopant Fluctuations (RDF) cause a
problematic distribution in V- between devices.

* Native Transistors are transistors that didn’t go
through this step (i.e. V=0 -> Depletion)

Fabrication & - o o(Metadls) g
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lon Implantation

© 1998 Copyright Eaton Corporation .

NN . S
Transistor
Fabrication

PAdCYAEEYAan,”



19

Transistor Fabrication: Gate Oxide

* Gate Oxide thickness (i) is one of the most important device parameters.

* 45nm technology has a
1.2nm thick layer (about 5 atoms!).

 Gate oxide growth has to be done
in super-clean conditions to
eliminate traps and defects.

» High-K materials extremely
complicate this process.

Silicon

Transistor
Falbrication

0 Adairn Teirnan, ©
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Transistor Fabrication: Gate Eich

e Originally Aluminum was used as the gate material,
then polysilicon, now metal again.

* The gate is the smallest dimension that is fabricated through photolithography.
 The oxide is self-aligned to the gate through the etching process.

illiil [

|

P-well (p)

P-sub (p-)

 p (field implant)
Fabrication @ - o c(Metals) e
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UV light floods backside of mask.

Photolithography LIV

Photomask Quartz Glass
Unexposed
* From Greek: Chrome Pattdn | photoresist is
. e chr?)ﬁ!u); glllow event{l; ?)Ily'
* photo — light rere O s | OV througn
« lithos — stone \. B o torets of
. Photoresist [ ] [ ]
- graphe — picture o -
 ‘“carving pictures in stone using light”
» Photomask (reticle): .. - Wavelength
. l e  193nm
« Chrome covered quartz glass. plicg \D k
* Photoresist: | -
_ . . . Material _—" n SI n 94
« Organic material, sensitive to light. ~onstant (~0.8) o ,\

° Developer: Refractive index (ng,=1)
_ _ Angle of acceptance
« Solvent that dissolves the unexposed (exposed) photoresist.  (bigger = larger lens)

Fabrication @ - o c(Metals) e




Photolithography A

 Resolution Enhancement Techniques: NSIN &
« Use immersion (wet) lithography (n,,....=1.43)
« Use mask and layout technigues

« Use a smaller wavelength (193 nm).
 From 7nm (7+), EUV (13 nm) Is used.

water

-<——Photo Mask————

Fabrication AR Aan,””
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o “Step and Scan”

Lens

Mask or
Reticle

¢ OptiCﬂ' PTOXimity AVAVAVAN / _\- / _\- ”E;?]l:mm

Corrections (OPC) “I Waer

Photolithography -g- -g @%

* Phase Shift Masks

 Multiple Exposures,
Multiple Etches

Transistor
Fabrication @ - o c(Metals) e



Photolithography  ‘hesraehyscaing

6.1 pm (Nodes)

Plasma

Excimer Laser

-
o~ -
o e a9 [ L

Lightly Doped Grow Field Transistor Backend
24 Wafer Oxide Fabrication (Metals)
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Transistor Fabrication: Tip Extension

* For various reasons, we need a Lightly Doped Drain (LDD).

« But for source/drain resistance,
we need a heavily doped area away from the channel.

 Therefore, a Tip or Spacer is formed:
A/
.

Thin Spacer for

Fabrication AR Aan,””



Contacts - Damascene Process

 The Damascene Process is used to make contacts/vias

« Athick isolation oxide is grown.

« The bumpy oxide is planarized through
Chemical-Mechanical Polishing (CMP)

« Contacts are etched,
lined and plugged.

* The remaining metal
IS etched away.

P-well (p)

m AdaoviEynan,”

P-sub (p-)

26
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Contacts

CONTACTS TO DIFFUSION, POLY
(After Metal 1)

METAL 1

CONTACT
TO
Co - SILICIDE Mo

>

CONTACT
TO
DIFFUSION

97817-090019

contact

SWS

[

e

IV TelB ¥ e

£ chipworks

Contacts in 28nm Apple A7




Misalignment Problems

goal: contact to diffusion problem: misalignment

W//////// N been te s .

contact

solution: make diffusion larger than contact (overlap)
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Planarization

* Planarization is achieved with

Source: www.businesswire.com

Draufsicht (top view)

Camer/Chuck Seitenansicht (side view)
Di-Wasser (Dl-water)
.:"'J‘- "'r'rn"v
Slurry : —{ad conditioner)
el =4

Source: wikipedia

m Adain ieirnan, ’
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Metal Layers (Backend)

* |ILD = Inter-layer Dielectric (low-k)
« Passivation protects the final layer
« Al or Cu for Metal layers

W for Plugs, TiN for barrier layer

Passivation

Metal 5 (copper)

METAL 5

Metal 3 (copper) 1 B e ) 4 ILD4

METAL 4 R T T e

Titarlaral Aialaqtei~ (TT D)

1IILC1IC VL UICICULLL IV \1]_/ 4_ ILD3
METAL 3 §

Via (tun L | B « 1LD2

p m : 1 B < 1LD1
- Metal 1 (copper) METAL 1—— fili e

Tungsten Plug to Si LY L L LR L MR« 00
<— Silicon ' E— oo

Backend
(Metals)



Copper Interconnect

» Copper cannot be deposited directly on S0,
* To solve this, the dual-Damascene process was introduced.

- _ s

n implant n implant

n+ n+ implant

P-sub (p-)

Lightly Doped Grow Field Transistor Backend




Microfabrication Summary List

1400 -
1200 -

1000 - .lll

800 -
600 - Al-Si Eutectic (560C)
400 -

Si Melting Point (1450C)

* Lithography
» Thermal Oxidation

Process Temp era

* Etching

. 200 - . . Photoresist Reflow (180C)
* lon Implantation 0‘1{'@'50'0- . —

: . & NP FF S é\o“ <«
- Epitaxial Growth (PECVD) ST g S
&Q‘ (QQ > N\ X
» Chemical Mechanical Polishing (CMP) &S
PLA

* Deposition (Physical Vapor Deposition PVD Chemical Vapor Deposition CVD)
« Diffusion (Furnace Annealing, Rapid Thermal Annealing RTA)

* Metal Plating

* Others...

Lightly Doped Grow Field Transistor Backend
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Process Variations

Process Variations
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Process Variations 0
L . X -. -"El'-'_ 210} 5 ;
. i L
" . . 1.90 7 uM T L Tl R Bex
* Variation can occur at different levels: AU N L T
- Fab to Fab variation N 2 S A
* Lot to Lot variation O ! .
° Vv_afer tO. Wafgr \{arlatlon 1'5*[1}.11:1 120 130 140 150 160 1'51?3.90 080 070 0,60 -0.50
* Die to Die Variation Loy (in mnn) Vi, (V)
« Device to Device Variation
° Process Parameters Delay of Adder circuit as a function of variations in L and V,

e Such as impurity concentrations, oxide thickness, diffusion depth.
« Caused during Deposition and Diffusion steps.
« AffectV;andt,,.

* Device Dimensions

« Lengths and widths of gates, metals, etc.
« Caused due to photolithographic limitations.

Types of
34 Variation

2 Adaryirernan,



Types of Process Variation

* Random Variation:
Occurs without regards to the location and patterns of the transistors within the chip (e.g., RDF)

* For example — Random Dopant Fluctuation (RDF)
 Systematic Variation:

Related to the location and patterns
» For example — layout density, well-proximity, distance from center of wafer

* Intra-die (Within-die) Variations

Variations between elements in the same chip
 A.k.a. - “Local Variation”

* Inter-die (Die-to-Die)
Variations between chips in the same wafer or in different wafers
 Ak.a.—"“Global Variation”

Types of
35 Variation

2 Adaryirernan,



Random Doping Fluctuation (RDF)

 The most significant factor in variations of the
threshold voltage is due to the numberand
location of dopant atoms in the channel.

* |n 1um technology,
there were many thousands of dopants.

* In 32 nm technology,
there are less than 100 dopants!

* RDF accounts for about 60% of the threshold

100000 \.\
10000
1000

100

Average Number
of Dopant Atoms

variation.
10
N
1
Managing Process Variation in Intel’s 45nm CMQOS Technology, 10000 1000 100 10 1
Intel Technology Journal, Volume 12, Issue 2, 2008 Technology Node (nm)

9 “ & Lo vanation o




Line Edge/Width Roughness (LER/LWR)

* Line Edge Roughness (LER) and Line Width Roughness (LWR) cause changes
in sub-threshold current and threshold voltage.

* These problems are expected to surpass RDF as the main cause of variations at
deep nanoscale technologies.

—
Line Edge - _
Roughness (LER) > Line Width
. Roughness (LWR)
3¢ deviation of an
edge from a line fit 3c deviation of width

to that edge

o m & Lo yanaton oo 4
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Well Proximity Effects (WPE)

 Threshold voltage depends on Well lon Implant
distance to well edge.

2 Adaryirernan,


http://www.solidodesign.com/
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Additional Variations

» Gate Dielectric Variation

* Oxide Thickness
« Fixed Charge
» Defects and Traps

 CMP Variations

 STI Steps
* Metal Gate height
 ILD (Insulation Layer Dielectric) and Interconnect Thickness

« Strain Variation
* Implant Variation
 Rapid Thermal Anneal (RTA) Variation

Additional
Variations



Impact of Process Variations

2.5 -
94 Good PMOS
Bad NMOS
E 1.9 1
= ; Nominal
= Bad PMO
Good NMOS
0.5 -
0 ' .
0 0.5 1 1.5 2 2.5

40

We will get back to
this next lecture
when we discus
process corners and
Monte Carlo
simulation...

Impact of
7 \el{lelile]n
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Manufacturing
Issues

Manufacturing Issues
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» Hillocking:
* The development of small “hills” in the
Interconnect due to stress on the Aluminum.

» Can short between metal layers, crack SiO,,
cause bumpiness.

« Adding Cu to Al helps reduce hillocking.

* Electromigration:

* Movement of Aluminum atoms due to high
current densities that can eventually
cause hillocks (shorts) or voids (opens).

* Proper design (keep J [A/cm?] under a limit)
helps prevent electromigration.

« Cu interconnect is very efficient against electromigration.

42 Electromigration
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Antenna Effect

 Charge is built up on interconnect layers during deposition.

° I I Wire attracts charge during plasma processin
If epough charge is created, this can cause e s vor A A
a high voltage to breakdown the thin gates.

Z metal area not tied to diffusion I2 g
gate area <100+5000 1 LengthL2 exceeds allowed limit

m4

m3

m2 A / drai t ‘ —

ny source/dram canactasa ————p | ——

mil ’ discharge element

Safe: m3 is too short to Dangerous: lots of m3; will
accumulate very much probably accumulate lots of
charge; won't kill gate charge and then blow oxide

Anftennas
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Antenna Effect

 “Bridging” or “Antenna Diodes” are used to eliminate the Antenna Effect.

L2

A
\j

Added link solves problem-L1 satisfies design rule

L I L
m4
M
m3 L 1] u \/iz
ms ) 20007,
ml
ate di ate ndiff
Bridging keeps gate away Node diodes are inactive during
from long metals until they chip operation (reverse-biased p/n);
drain through the diffusion let charge leak away harmlessly

Anftennas



Layer Density

 Metal layers should have between ~30% to ~70% density.
Softness of Cu

« Maximum metal widths require slotting. o,
. J results in “dishing
This etching step
takes a lot longer
| BN -
High density Low density

Solution: Add dummy
metal structures here
to maintain minimum
metal density

45 Electromigration Latchup



Latchup

* The multiple n-type and p-type regions in
the CMOS process create parasitic BJT
transistors.

* Unintentional “Thyristors” can turn on
and short V5, and GND.

« This requires power down at the least, and
sometimes causes chip destruction.

* To reduce the risk of latchup, distribute
well/substrate contacts across the chip.

46 Latchup

—T— Vdd

PNP " A —
NPN
LX_/ |\ R <

—WWA

R

substrate P-substrate

T

Rwell%

R

N
Vne
Iramp

$Rsubstrate

v

N-well



Bulk Contacts

* To ensure a constant body voltage across large areas,
Bulk Contacts or Taps have to be added frequently.

N-select

47 Electromigration Latchup

© Adam Teman, 2020



Further Reading

* J. Plummer “Silicon VLSI Technology”, 2000 — especially Chapter 2
* J. Rabaey, “Digital Integrated Circuits” 2003, Chapters 2.2-2.3

* C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010, Chapter 3
* E. Alon, Berkeley EE-141, Lectures 2,4 (Fall 2009)

 Berkeley EE-143 (Lectures — Nguyen 2014, Slides Cheung 2010)

* Tel Aviv University - Yosi Shacham


http://www.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html
http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/

