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Motivation
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Integrated Circuits…
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Source: MIT 6.884
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Solution: The Printing Process
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Source: Capital Poly
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The Photolithographic Process
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CMOS Process/Transistors
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Basic Process Flow
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The Computer Hall of Fame

• Speaking of integrated circuits, the first 

IC-based computer was the Texas Instruments

• A molecular electronic computer

Introduced in 1961

• “It performs exactly the same functions as a conventional 

computer but is 150X smaller and 48X lighter.”

• “Three types of semiconductor networks are used in the tiny 

computers: RS flip-flop, NOR gates, and logic drivers.”

• 8-16 “networks” were welded together in a stack.

• A total of 47 stacks (587 “networks”) made up the computer.

Source: http://s3data.computerhistory.org/brochures/ti.molecular.1961.102646283.pdf

Source: Texas InstrumentsSource: wikipedia



Detailed Process Flow

11

1

A Process Primer

2

Detailed Process 

Flow

4

Manufacturing 

Issues

3

Process 

Variations



March 23, 2020© Adam Teman, 

The Silicon Wafer
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Field Oxide – The LOCOS Process
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Field Oxide – The STI Process

• The LOCOS Process has two problems:

• Bird’s Beak makes it hard to make transistors close to each other.

• A parasitic MOSFET can turn on underneath the FOX.

• Solution: 

• Shallow Trench Isolation (STI) 

• Field Implants
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Well Implantation

• Cover wafer with thin layer of oxide. 

Implant wells through photolithographic 

process.

• After implant we must Anneal to the 

covalent bonds, and Diffuse to get 

the wells to the depth we want.

• Annealing: Heating up the wafer to fix 

covalent bonds. Done after every ion 

implantation or similar damaging step.

• Diffusion: Movement of dopants due to heating of the wafer.  

Usually this is unwanted, as it changes the doping depth.
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Well Implantation – Deep N-Wells

• Can we change the body voltage of an nMOS transistor?

• Yes, using a “triple well” process!

• BUT… it “costs” a lot of area:
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Transistor Fabrication: VT Implant

• The threshold voltage of a transistor is approximately:

• So the first step is to implant QI. 

• Random Dopant Fluctuations (RDF) cause a 

problematic distribution in VT between devices.

• Native Transistors are transistors that didn’t go 

through this step (i.e. VT≈0 → Depletion)
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Ion Implantation
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Transistor Fabrication: Gate Oxide

• Gate Oxide thickness (tox) is one of the most important device parameters.

• 45nm technology has a 

1.2nm thick layer (about 5 atoms!).

• Gate oxide growth has to be done 

in super-clean conditions to 

eliminate traps and defects.

• High-K materials extremely 

complicate this process.
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Transistor Fabrication: Gate Etch

• Originally Aluminum was used as the gate material, 

then polysilicon, now metal again.

• The gate is the smallest dimension that is fabricated through photolithography.

• The oxide is self-aligned to the gate through the etching process.
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Photolithography

• From Greek:

• photo – light

• lithos – stone

• graphe – picture

• “carving pictures in stone using light”

• Photomask (reticle): 

• Chrome covered quartz glass.

• Photoresist:

• Organic material, sensitive to light.

• Developer:

• Solvent that dissolves the unexposed (exposed) photoresist.
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Photolithography

• Resolution Enhancement Techniques:

• Use immersion (wet) lithography (nwater=1.43)

• Use mask and layout techniques

• Use a smaller wavelength (193 nm).

• From 7nm (7+), EUV (13 nm) is used.
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Photolithography

• “Step and Scan”

• Optical Proximity 

Corrections (OPC)

• Phase Shift Masks

• Multiple Exposures,

Multiple Etches
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Photolithography
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Transistor Fabrication: Tip Extension

• For various reasons, we need a Lightly Doped Drain (LDD).

• But for source/drain resistance, 

we need a heavily doped area away from the channel.

• Therefore, a Tip or Spacer is formed:
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Contacts – Damascene Process

• The Damascene Process is used to make contacts/vias

• A thick isolation oxide is grown.

• The bumpy oxide is planarized through 

Chemical-Mechanical Polishing (CMP)

• Contacts are etched, 

lined and plugged.

• The remaining metal 

is etched away.
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Contacts
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Misalignment Problems
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Planarization

• Planarization is achieved with 

Chemical-Mechanical Polishing (CMP)
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Metal Layers (Backend)

• ILD = Inter-layer Dielectric (low-k)

• Passivation protects the final layer

• Al or Cu for Metal layers

• W for Plugs, TiN for barrier layer
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Copper Interconnect

• Copper cannot be deposited directly on SiO2

• To solve this, the dual-Damascene process was introduced.
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Microfabrication Summary List

• Lithography

• Thermal Oxidation

• Etching

• Ion Implantation

• Epitaxial Growth (PECVD)

• Chemical Mechanical Polishing (CMP)

• Deposition (Physical Vapor Deposition PVD, Chemical Vapor Deposition CVD)

• Diffusion (Furnace Annealing, Rapid Thermal Annealing RTA)

• Metal Plating

• Others…
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Process Variations

• Variation can occur at different levels:
• Fab to Fab variation

• Lot to Lot variation

• Wafer to Wafer variation

• Die to Die Variation

• Device to Device Variation

• Process Parameters
• Such as impurity concentrations, oxide thickness, diffusion depth.

• Caused during Deposition and Diffusion steps.

• Affect VT and tox.

• Device Dimensions
• Lengths and widths of gates, metals, etc.

• Caused due to photolithographic limitations.
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Types of Process Variation

• Random Variation:
Occurs without regards to the location and patterns of the transistors within the chip (e.g., RDF)

• For example – Random Dopant Fluctuation (RDF)

• Systematic Variation:
Related to the location and patterns

• For example – layout density, well-proximity, distance from center of wafer

• Intra-die (Within-die) Variations
Variations between elements in the same chip

• A.k.a. – “Local Variation”

• Inter-die (Die-to-Die)
Variations between chips in the same wafer or in different wafers

• A.k.a. – “Global Variation”
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Random Doping Fluctuation (RDF)

• The most significant factor in variations of the 

threshold voltage is due to the number and 

location of dopant atoms in the channel.

• In 1μm technology, 

there were many thousands of dopants.

• In 32 nm technology, 

there are less than 100 dopants!

• RDF accounts for about 60% of the threshold 

variation.
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Line Edge/Width Roughness (LER/LWR)

• Line Edge Roughness (LER) and Line Width Roughness (LWR) cause changes 

in sub-threshold current and threshold voltage.

• These problems are expected to surpass RDF as the main cause of variations at 

deep nanoscale technologies.
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Well Proximity Effects (WPE)

• Threshold voltage depends on 

distance to well edge.
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Additional Variations

• Gate Dielectric Variation

• Oxide Thickness

• Fixed Charge

• Defects and Traps

• CMP Variations

• STI Steps

• Metal Gate height

• ILD (Insulation Layer Dielectric) and Interconnect Thickness

• Strain Variation

• Implant Variation

• Rapid Thermal Anneal (RTA) Variation
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Impact of Process Variations
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Source: Rabaey, et. al.
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Manufacturing Issues
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Hillocking and Electromigration

• Hillocking: 

• The development of small “hills” in the 

interconnect due to stress on the Aluminum.

• Can short between metal layers, crack SiO2,

cause bumpiness.

• Adding Cu to Al helps reduce hillocking.

• Electromigration:

• Movement of Aluminum atoms due to high

current densities that can eventually 

cause hillocks (shorts) or voids (opens).

• Proper design (keep J [A/cm2] under a limit) 

helps prevent electromigration.

• Cu interconnect is very efficient against electromigration.

42
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Antenna Effect

• Charge is built up on interconnect layers during deposition.

• If enough charge is created, this can cause 

a high voltage to breakdown the thin gates.
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Antenna Effect

• “Bridging” or “Antenna Diodes” are used to eliminate the Antenna Effect.
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Layer Density

• Metal layers should have between ~30% to ~70% density.

• Maximum metal widths require slotting.
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Latchup

• The multiple n-type and p-type regions in 

the CMOS process create parasitic BJT 

transistors.

• Unintentional “Thyristors” can turn on 

and short VDD and GND.
• This requires power down at the least, and 

sometimes causes chip destruction.

• To reduce the risk of latchup, distribute 

well/substrate contacts across the chip.
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Bulk Contacts

• To ensure a constant body voltage across large areas, 

Bulk Contacts or Taps have to be added frequently.
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Further Reading

• J. Plummer “Silicon VLSI Technology”, 2000 – especially Chapter 2

• J. Rabaey, “Digital Integrated Circuits” 2003, Chapters 2.2-2.3

• C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010, Chapter 3  
http://www.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html

• E. Alon, Berkeley EE-141, Lectures 2,4 (Fall 2009)
http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/

• Berkeley EE-143 (Lectures – Nguyen 2014, Slides Cheung 2010)

• Tel Aviv University - Yosi Shacham
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