
29 March 2023

Lecture 2:
The Microprocessor

Prof. Adam Teman

EnICS Labs, Bar-Ilan University

SoC 101:
a.k.a., “Everything you wanted to know about a computer but were afraid to ask”

March 29, 2023© Adam Teman,

This Lecture

2

Source: ARM

March 29, 2023© Adam Teman,

Lecture Overview

3

Introduction and History

Introduction ISA
Procedure

Calls
CALL

Measuring
Performance

March 29, 2023© Adam Teman,

Traditional Classes of Computers

• Personal computers
• General purpose, variety of software

• Subject to cost/performance tradeoff

• Server computers
• Network based

• High capacity, performance, reliability

• Range from small servers to building sized

• Supercomputers
• High-end scientific and engineering calculations

• Highest capability but represent a small fraction of the overall computer market

• Embedded computers
• Hidden as components of systems

• Stringent power/performance/cost constraints

Embedded Computer:

A computer inside another device,

used for running one predetermined

application or collection of software.

Embedded Computer:

A computer inside another device,

used for running one predetermined

application or collection of software.

Source: www.learncomputerscienceonline.com

March 29, 2023© Adam Teman,

Components of a Computer

• The five classic components of a computer are:
• Input

• Output

• Memory

• Datapath

• Control

• Same components for all kinds of computer
• Desktop, server, embedded

• Input/output (I/O) includes
• User-interface devices: Display, keyboard, mouse

• Storage devices: Hard disk, CD/DVD, flash

• Network adapters: For communicating with other computers

6

Source: P&H, Chapter 1

The Processor

March 29, 2023© Adam Teman,

The first computer

• The “Analytical Engine” (1837-1871) *never completed

• Conceived by Charles Babbage, the “Father of Computing”.

• The first concept of a programmable general-purpose computer.

• It would be able to perform any calculation set before it.

• Included the main components of a modern computer:

• The Mill ↔ The CPU and ALU (conditional branching)

• The Store ↔ Memory (1K 50-digit numbers)

• The Reader ↔ Input (Jacquard Punch Cards)

• The Printer ↔ Output (print out mathematical tables)

• The first computer program

• Algorithm to calculate Bernoulli numbers.

• Written by Ada Lovelace for the Analytical Engine.

PHOTO: Britannica, Science Museum London

Source: wikipedia

Source: Pointdexter’s

March 29, 2023© Adam Teman,

The Turing Machine

• Described by Alan Turing (1936)

• A machine with finite states, an infinite tape (memory) of symbols

and a scanner that can read and write to the current position.

• At any moment, the current symbol is scanned, and depending on

the state, it may be replaced, and the scanner is moved to a new position.

• Such a machine can compute all computable problems.

• Turing completeness is the ability for a system of

instructions to simulate a Turing machine.

8 PHOTO: Rocky AcostaSource: DEV

PHOTO: Britannica

March 29, 2023© Adam Teman,

Early Computers

• The ENIAC is often considered “the first computer”

• Actually, it was the first

“Electronically Programmable General Purpose Computer”.

• In other words, it was the first electronic Turing Machine*.

* The Analytical Engine was the first Turing Machine.

• But programming it required rewiring hundreds of cables

• This process took anywhere from days to weeks.

• A new concept was necessary

• Mauchly and Eckert were working on EDVAC and came up

with the idea of treating the instructions as just another piece of data.

• Von Neumann heard about it and wrote

the nominal paper about the “stored-program”

9

PHOTO: CORBIS/GETTY IMAGES

PHOTO: Life Magazine

First draft of a report

on the EDVAC

March 29, 2023© Adam Teman,

Stored-Program Computers

• In a stored-program computer, a.k.a. a Von Neumann Machine:

• Instructions represented in binary, just like data

• Programs are stored in memory, just like data

• The memory can be read and written when given an address

• The program counter (PC) holds the address of the current instruction

• The program flow is achieved by incrementing the PC or branching.

• Programs can operate on programs
• e.g., compilers, linkers, …

• Programs are shipped as files of
binary numbers (“binaries”)
• “Binary compatibility” allows compiled

programs to work on different computers

10

Source: Wolf, Computers as Components

PHOTO: Alan W. Richards

and Brittanica

March 29, 2023© Adam Teman,

Microcoded Computers

• In early processors:

• ROM was cheaper and faster than RAM.

• Logic was expensive compared to ROM.

• Getting the control unit right was very hard.

• In 1958, Maurice Wilkes came up

with the idea of microcoding.

• Implement the “microcoded” control unit with ROM to make it programmable.

• Microcode turns complex instructions into a set of datapath control signals.

• Microcode is part of micro-architecture and not visible to the programmer.

• First used to design the control unit of EDSAC-II.

• Easier to design, fix bugs, support new instructions without changing datapath.

• But does not benefit from µarch innovations, better compilers, reprogramming.
11

March 29, 2023© Adam Teman,

From CISC to RISC

• Complex instruction set computers (CISC)

• Large variety of instructions

• Instructions may perform very complex tasks
• e.g., string searching

• Very common for early computer architectures

• Reduced instruction set computers (RISC)

• Fewer and simpler instructions
• Most compiled code only used a few of the

available CISC instructions

• Load/Store instruction sets
• Operations cannot be performed directly

on memory locations, only on registers

• Relatively straightforward to pipeline

• Virtually all ISAs invented since the eighties are RISC.12

RISC-I (1982)
5 µm NMOS, 1 MHz, 44K transistors

John Cocke
IBM-801 (1980)

Source: ethw.com

Dave Patterson
RISC (1982)

Source: UC Berkeley Source: Stanford

John Hennessy
MIPS (1983)

March 29, 2023© Adam Teman,

Princeton/Harvard Architecture

• Von Neumann or Princeton Architecture

• Instructions and data share a single memory space

• Can be either reading an instruction or

reading/writing data from/to the memory

• Limits operating bandwidth

• Harvard Architecture

• Uses two separate memory spaces

for instructions and data

• The CPU can both read an instruction and

access data memory at the same time
• Improved operating throughput

• RISC designs are also more likely to feature this model
13

Source: Wolf, Computers as Components

March 29, 2023© Adam Teman,

The Computer Architecture Monopoly

• While thousands of instruction set architectures (ISAs) have been invented

and used over the years, the vast majority have died off and disappeared.

• Only two three general purpose ISAs are commonly found today:

• Intel x86 (a.k.a., AMD64): A CISC architecture,

which (still) dominates the laptop, desktop and server domains.

• ARM: A (formerly) RISC architecture,

which dominates the embedded computing domain.

• RISC-V: An open-source RISC architecture that is gaining popularity.

• Other ISAs survive mainly as legacy or for application specific purposes.

• We will discuss this in detail later in the course, but for now, we introduce the

ISA as a concept, and use RISC-V, where examples are required.

14

March 29, 2023© Adam Teman,

Can’t we be ISA agnostic?

• Compilation is the translation of high-level code to machine code (ISA).

• Converts a program from the source language (e.g., C) to an equivalent

program in another language (e.g., RISC-V assembly).

• But, we don’t compile a Python script…

• An Interpreter directly executes a program in the source language.

• An Interpreter is a program that executes other programs

• In general, we interpret a high-level language when efficiency is not critical

and translate to a lower-level language to increase performance

15

Easy to program

Inefficient to interpret

Difficult to program

Efficient to interpret

Python Java C++ C Assembly Machine code

Java bytecode

The language execution

continuum:

March 29, 2023© Adam Teman,

Machine language interpretation?

• Interpreting high-level code is understandable,

but would we ever interpret machine language?

• Emulation/Simulation:

• e.g., Whisper – a RISC-V simulator for learning/debugging

• Backwards Compatibility

• e.g., Apple Macintosh conversion

from Motorola 680x0 to PowerPC to x86

• e.g., Apple Mac conversion (revisited…)

from x86 to ARM (Apple Silicon M1)

16
Source: 9to5mac

The Instruction Set
Architecture

17

Introduction ISA
Procedure

Calls
CALL

Measuring
Performance

March 29, 2023© Adam Teman,

Instructions

• The objectives of a microprocessor:

• Transfer or store data

• Operate on data

• Make decisions based on the values or outcomes of operation

• Correspondingly, there are three categories of instructions:

• Data Transfer: Move data within the system and

exchange data with external devices.

• Flow of Control: Determine the execution order of instructions.

• Arithmetic and Logic: computational capabilities

and functionality of the microprocessor.

• The instruction set architecture (ISA) is the set of instructions and concepts

that provide an interface (“a contract”) between the software and hardware.
18

PHOTO:

Shuttershock

Microarchitecture

Architecture (ISA)

Program Language

Algorithm

Problem

Logic

Transistors

Runtime System

(OS/VM)

Electrons

Source:

P&H, Chapter 1

March 29, 2023© Adam Teman,

Instructions (ctnd.)

• In a Von Neumann architecture, instructions are “just another piece of data”.

• Therefore, an instruction is just a data word (a vector of bits).

• For example, in RISC-V, instructions are 32-bits wide.

• The bits of data encode all the data necessary to carry out the instruction, e.g.:

• Opcode: An encoding of the name/type of the instruction

• Operands: Sources (inputs) and Destinations (outputs) of the operation

• Immediates: Hard-coded constants to be used as inputs to the operation

• Other information (metadata): Additional encodings that can affect the control

flow, operation, and additional features.

• For example: ADD RD,RS1,RS2 (RDRS1+RS2) could be implemented

19

OPCODE RD RS1 RS2

N-bits

March 29, 2023© Adam Teman,

Side note: Simplified view of Memory

• Before starting, let’s briefly introduce registers vs. memory

• Registers are flip-flops, while memory (for now) is SRAM.

• Both are typically synchronous with “one-cycle latency”, so we need a single

clock edge to read or write from/to both registers and memory.

• However, registers are advantageous over memory, since:

• Access to an SRAM takes (close to) a whole clock cycle,

while other operations can be applied before or after register access.

• Several registers can be accessed simultaneously, while only

a single SRAM address can be accessed for read/write during a given cycle.

• Register access requires lower power than memory access.

• Therefore, operation on registers is typically preferred to operations on memory.

• However, due to size, only a limited number of registers are available.
20

March 29, 2023© Adam Teman,

General Purpose Register ISA

• Most modern architectures have general purpose register (GPR) ISAs

• The architecture uses datapath registers as operands.

• As opposed to stack architectures or accumulator architectures.

• Generally faster and easier for compilers.

• The ISA (and ABI*) provides a defined

set of processor registers, including:

• General Registers (i.e., R1, R2, R3)

• Program Counter (PC)

• Stack Pointer (SP) and Frame Pointer (FP)

• Others

• Different ISAs have a different number of GPRs

• x86: 8 regs, ARMv7: 16 regs, RISC-V: 32 regs
21 RISC-V Registers*ABI = Application Binary Interface

March 29, 2023© Adam Teman,

Data Transfer Instructions

• Data transfer instructions are responsible for moving data around inside the

processor and for bringing data in from the outside world or sending data out.

• Many modern RISC machines are “load-store” architectures:

• Data is loaded from memory to registers for computation

• Results are written to registers, which can later be stored back in memory.

• Only accesses the memory through explicit LOAD/STORE instructions

• These are carried out with two types of instructions:

• Load data from memory to a register, e.g.:

LOAD R1, ADDRESS

• Store data from a register to memory, e.g.:

STORE R1, ADDRESS

22
Source: Computers as Components

March 29, 2023© Adam Teman,

Memory Access Addressing Modes

• Some of the most common addressing modes are:

• Direct Addressing

LOAD R1, const R1MEM[const]
Memory address immediately available, but size limited.

• Register Indirect Addressing

LOAD R1, R2 R1MEM[R2]
Store full bit-width (e.g., 32-bits) inside register.

• Displacement or Indexed Addressing

LOAD R1, R2, const R1MEM[R2+const]
Enables access relative to base pointer (e.g., array, stack).

• Program Counter Relative Addressing

LOAD R1, (PC), const R1MEM[PC+const]
Enables relative addressing based on code placement.

• RISC-V only supports Displacement Addressing!
23

Data

ConstR1

DestinationR1

Memory

Data

R2R1

DestinationR1

Memory
AddressR2

Data

R2R1

Destination

Memory
AddressR2

const

c
o

n
s
t

R1

Memory

Data

R1

Destination

AddressPC

const

c
o

n
s
t

March 29, 2023© Adam Teman,

Elaboration: Big Endian vs. Little Endian

• From Gulliver’s Travels

• Big Endians broke their eggs at the large end ("the primitive way")

• The Lilliputian King made his subjects (Little Endians) break their eggs at the small end.

24

Big Endian
ADDR3 ADDR2 ADDR1 ADDR0

BYTE0 BYTE1 BYTE2 BYTE3

00000001 00000100 00000000 00000000

Examples
Names in China (e.g., Teman Adam)

ISO 8601 Dates YYYY-MM-DD (e.g., 2019-03-20)

Eating Pizza crust first

Little Endian
ADDR3 ADDR2 ADDR1 ADDR0

BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

Examples
Names in the West (e.g., Adam Teman)

Dates in England DD/MM/YYYY (e.g., 20/03/2019)

Eating Pizza skinny part first (the normal way)

Consider the number 1025 as we normally write it:
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

Adapted from: Berkeley CS61C

Source: www.gutenberg.org

Source:

endian.com

March 29, 2023© Adam Teman,

Elaboration: Big Endian vs. Little Endian

• Assume the memory holds the

following bytes in Little Endian:

• Loading a byte from 0xE5000004 will give:

0x0000001A
• Loading a halfword from 0xE5000004 will give:

0x00002B1A
• Loading a word from 0xE5000004 will give:

0x4D3C2B1A
• We can view this as holding a

sequence of aligned words:

25

March 29, 2023© Adam Teman,

Flow-Control Instructions

• Utilize addressing modes to change flow-control

• As opposed to incrementing the PC by one instruction.

• Conditional Branches

• Branch if equal/not equal

• Branch if greater/less than

• Nonconditional

• Jump

• Jump and Link
• Stores the return address in a register (for procedure calls)

• Labels are commonly used to make the assembly code more readable

• Will be replaced by absolute (immediate addressing)

or relative (often PC+offset) addresses during compilation

26

Data

ConstR1

DestinationR1

Memory

Data

PCR1

Destination

AddressPC

const

c
o

n
s
t

Jump to LOOP_BEGIN
compile

March 29, 2023© Adam Teman,

Arithmetic-Logic Instructions

• Register-Register Arithmetic

• ADD R3, R1, R2 → R3 = R1+R2

• Register-Immediate Arithmetic

• ADD R3, R1, const → R3 = R1+const

• Common Arithmetic-Logic Commands:

• Basic: Add, Subtract

• Extended: Multiply, Divide

• Floating Point Arithmetic

• Logical: AND, OR, XOR

• Shift: Shift left/right, logical/arithmetic

• Compare: “Set if” less/greater than

27

R1R1 R3

Operand 2R2

Operand 1R1

Result R3+

constR1 R3

Operand 1R1

Result R3+

Calling a Procedure

28

Introduction ISA
Procedure

Calls
CALL

Measuring
Performance

March 29, 2023© Adam Teman,

Procedure Calls

• There are six stages in calling a function (a.k.a. procedure):

1. Place the arguments where the function can access them

2. Acquire storage and save the registers that are needed

3. Save return address and Jump to the function

4. Perform the desired task

5. Return from the function:

• Place the result values where the calling function can access them

• Restore any saved registers

• Release any local storage resources

6. Return control to the point of origin (return address)

• Procedures use the stack to store registers, variables, etc.

29

Save
Arguments

Save Registers

Jump and Link

Perform Task

Return Values

Return Address

March 29, 2023© Adam Teman,

The Stack

• Building a Stack allows nested procedure calls

• The stack contains one stack frame

(or activation record) for each active procedure

• The stack frame contains the return address,

saved register values and parameters (arguments)

• The stack pointer points to the top of the stack

and grows when additional data is pushed.

• The frame pointer points to the beginning of the frame,

which is the stack pointer value when the procedure is called.

30

The “prologue” of a function call:

- Moves the stack pointer up by framesize

- Stores the current return address on the stack

- Stores other saved registers on the stack

The “epilogue” of a function call:

- Restores save regs and return address

- Move the stack pointer back down by framesize

- Change the PC to the return address

F1 frame

main() {

f1(xyz);

}

S
ta

c
k
 F

ra
m

e

Frame

Pointer Return Address

Saved Register

Argument

Variable

void f1(int a) {

f2(a,25);

}

F2 frame

Return Address

F1 SP and FP

Saved Register

Variable

Stack

Pointer

March 29, 2023© Adam Teman,

Calling Conventions

• A procedure is initiated from within another piece of code.

• Initiating function = “caller”, Subroutine = “callee”

• In order to ensure that the caller’s state is not changed

during the subroutine, important data must be saved.

• The caller can save important registers before calling the subroutine.

• The callee can save registers that are going to be overwritten during execution.

• Since the two functions are written independently,

redundant saves may be applied.

• The calling convention will define which registers should be saved

by the callee and which by the caller and this can lead to improved efficiency.

• The compiler/programmer should

(almost) always adhere to the calling convention.

• The calling convention is part of the Application Binary Interface (ABI)
31

Save important stuff

Save if overwriting

Running a Program - CALL
(Compiling, Assembling, Linking, and Loading)

32

Introduction ISA
Procedure

Calls
CALL

Measuring
Performance

March 29, 2023© Adam Teman,

General Compilation Process

• Converting source code into an executable binary image involves three steps:

1. Compiling (and assembling) each source file into an object file.

2. Linking together all object files into a single object file

3. Relocating relative addresses in the

object file into absolute addresses

• The result is a binary image,

ready to run on the hardware

• Cross Compilation:

• Compiling software on one system (the host)

intended for running on a different platform (the target)

33

Source: Programming

Embedded Systems

March 29, 2023© Adam Teman,

Steps in Compiling and Running a C Program

• Compiler

• Input: High-Level Language Code (foo.c)

• Output: Assembly Language Code (foo.s)

• (Note: Output may contain pseudo-instructions)

• Assembler

• Input: Assembly Language Code (foo.s)

• Output: Object Code, information tables (foo.o)

• Reads and Uses Directives

• Replace Pseudo-instructions

• Produce Machine Language

• Creates Object File (ELF or COFF format)

34

Executable: a.exe

Locator

Merged Object: a.out

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cgcc -O2 -S -c foo.c foo.c

foo.s

foo.o

March 29, 2023© Adam Teman,

Processor Memory Map

• Text:

• Program code

• Static data:

• Global variables, e.g., static variables in C,

constant arrays and strings

• A global pointer (GP) is used initialized to address

allowing ±offsets into this segment

• Dynamic data:

• a.k.a., “heap”

• e.g., malloc in C, new in Java

• Stack:

• Automatic storage for managing procedure called
35

Source: P&H, Ch. 2

March 29, 2023© Adam Teman,

Steps in Compiling and Running a C Program

• Linker

• Input: Several Object code files
(e.g., foo.o,lib.o)

• Output: Merged object file (a.o)

• Combines several .o files into a single object file

• Enables separate compilation of files
• Changes to one file do not require recompilation of the

whole program (e.g., Linux source > 20 M lines of code!)

• Locator

• Input: Linked object file (a.o), linker script

• Output: Executable (a.exe)

• Replace relative addresses with actual addresses

• Linker script tells locator how to assign memory
37

Executable: a.exe

Locator

Merged Object: a.o

Linker

Object: foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.cfoo.c

foo.s

foo.o

a.o

+lib.o

a.exe

Linker
script

March 29, 2023© Adam Teman,

Static vs. Dynamically Linked Libraries

• What we’ve described is the traditional way: statically-linked approach

• Library is now part of the executable, so if the library updates,

we don’t get the fix (have to recompile if we have source)

• Includes the entire library even if not all of it will be used

• Executable is self-contained

• Alternative is dynamically linked libraries (DLL),

common on Windows & UNIX platforms

• The Loader (OS) has to dynamically link the functions at runtime:

• The OS starts the dynamic linker

• The dynamic linker starts the program, copies first time calls into memory

• The programs are changed to point to the correct function

38

Measuring Performance

39

Introduction ISA
Procedure

Calls
CALL

Measuring
Performance

March 29, 2023© Adam Teman,

How do we measure performance?

• Response time

• How long it takes to do a task

• Throughput

• Total work done per unit time
• e.g., tasks/transactions/… per hour

• We’ll focus on response time for now…

• Define: Performance = 1/Execution Time

• Elapsed time
• Total response time, including all aspects

• Processing, I/O, OS overhead, idle time

• CPU time
• Time spent processing a given job

• Discounts I/O time, other jobs’ shares
40

March 29, 2023© Adam Teman,

Increasing Performance

• CPU Time:

• Reduce number of clock cycles

• Increase clock rate

• CPU Clock Cycles

• Reduce Instruction Count

• Reduce CPI

• Instruction Count

• Determined by program, ISA and compiler

• Average cycles per instruction

• Determined by CPU hardware

• Average CPI affected by instruction mix

41

=



CPU Time

CPU Clock Cycles Clock Cycle Time

=



Clock Cycles

Instruction Count Cycles per Instruction


=

Instruction Count CPI
CPU Time

Clock Rate

March 29, 2023© Adam Teman,

The Iron Law

• Performance depends on

• Algorithm: affects IC, possibly CPI

• Programming language: affects IC, CPI

• Compiler: affects IC, CPI

• Instruction set architecture: affects IC, CPI, Tc

42

Instructions Clock cycles Seconds
CPU Time= × ×

Program Instruction Clock cycle

March 29, 2023© Adam Teman,

Amdahl’s Law

• Improving an aspect of a computer and

expecting a proportional improvement in

overall performance

• Corollary: make the common case fast

• Common == “most time consuming”, not necessarily “most frequent”

• The uncommon case doesn’t make much difference

• But the common case changes.

With optimization, common becomes uncommon and vice versa.

43

Source: Computer museum History Center

affected
improved unaffected

T
T = +T

improvement factor

March 29, 2023© Adam Teman,

Amdahl’s Law Example

• How does applying cache to a processor help?

• Memory operations currently take 30% of execution time.

• By adding a cache, 80% of the memory operations gets a 4X speedup

• What is the overall speedup?

• Now we add an L2 cache

• Speed up half of the

remaining 20% by a factor of 2.

• This is wrong!

• We forgot the part of that the

L2 cache didn’t get optimized!

44

L1 Cache Not Memory

24% 70%

N/A

6%

L1 Cache Not Memory

6% 70%

N/A

6%

L1 Cache Not Memory

6% 70%

L2

1.5%

N/A

3%

March 29, 2023© Adam Teman,

MIPS as a Performance Metric

• MIPS: Millions of Instructions Per Second

• Doesn’t account for

• Differences in ISAs between computers

• Differences in complexity between instructions

• CPI varies between programs on a given CPU

• No single MIPS for a given computer
45

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS


=




=


=

March 29, 2023© Adam Teman,

Main References

• Patterson, Hennessy “Computer Organization and Design – The RISC-V

Edition”

• Berkeley CS-61C, “Great Ideas in Computer Architecture”

• Patterson, Waterman “The RISC-V Reader”

• Wolf, “Computer as Components - Principles of Embedded Computing System

Design,” Elsevier 2012

• Barr, Massa “Programming Embedded Systems with C and GNU Development

Tools”, O’Reilly 2005

47

	Default Section
	Slide 1: Lecture 2: The Microprocessor
	Slide 2: This Lecture

	Summary Section
	Slide 3: Lecture Overview

	Introduction
	Slide 4: Introduction and History
	Slide 5: Traditional Classes of Computers
	Slide 6: Components of a Computer
	Slide 7: The first computer
	Slide 8: The Turing Machine
	Slide 9: Early Computers
	Slide 10: Stored-Program Computers
	Slide 11: Microcoded Computers
	Slide 12: From CISC to RISC
	Slide 13: Princeton/Harvard Architecture
	Slide 14: The Computer Architecture Monopoly
	Slide 15: Can’t we be ISA agnostic?
	Slide 16: Machine language interpretation?

	ISA
	Slide 17: The Instruction Set Architecture
	Slide 18: Instructions
	Slide 19: Instructions (ctnd.)
	Slide 20: Side note: Simplified view of Memory
	Slide 21: General Purpose Register ISA
	Slide 22: Data Transfer Instructions
	Slide 23: Memory Access Addressing Modes
	Slide 24: Elaboration: Big Endian vs. Little Endian
	Slide 25: Elaboration: Big Endian vs. Little Endian
	Slide 26: Flow-Control Instructions
	Slide 27: Arithmetic-Logic Instructions

	Procedure Calls
	Slide 28: Calling a Procedure
	Slide 29: Procedure Calls
	Slide 30: The Stack
	Slide 31: Calling Conventions

	CALL
	Slide 32: Running a Program - CALL
	Slide 33: General Compilation Process
	Slide 34: Steps in Compiling and Running a C Program
	Slide 35: Processor Memory Map
	Slide 37: Steps in Compiling and Running a C Program
	Slide 38: Static vs. Dynamically Linked Libraries

	Performance
	Slide 39: Measuring Performance
	Slide 40: How do we measure performance?
	Slide 41: Increasing Performance
	Slide 42: The Iron Law
	Slide 43: Amdahl’s Law
	Slide 44: Amdahl’s Law Example
	Slide 45: MIPS as a Performance Metric
	Slide 47: Main References

