Digital Integrated Circuits (83-313)

Lecture 10: The Manufacturing Process

Semester B, 2016-17

Lecturer: Dr. Adam Teman

Emerging Nanoscaled Integrated Circuits and Systems Labs

TAs:

Itamar Levi, Robert Giterman

4 June 2017

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email <u>adam.teman@biu.ac.il</u> and I will address this as soon as possible.

Integrated Circuits...

Lecture Content

Basic Process Flow

Basic Process Flow

Lightly Doped Wafer
Grow Field Oxide
Define Wells
Grow Gate Oxide
Deposit Poly Gate
Etch Gates
Implant Source/Drain
Deposit Isolation Oxide and Contacts
Deposit Metal 1
Deposit Isolation Oxide and Via 1
Deposit Metal 2

5

Detailed Process Flow

The Silicon Wafer

Maximum impurity of starting Si wafer is equivalent to 1 mg of sugar dissolved in an Olympic-size swimming pool.

Lightly Doped Wafer

Smithsonian (2000)

Field Oxide – The LOCOS Process

Lightly Doped Wafer

Grow Field Oxide

(Ontrak)

Field Oxide – The STI Process

• The LOCOS Process has two problems:

- Bird's Beak makes it hard to make transistors close to each other.
- A parasitic MOSFET can turn on underneath the FOX.

• Solution:

- Shallow Trench Isolation (STI)
- Field Implants

Lightly Doped Wafer

Grow Field Oxide

Well Implantation

- Cover wafer with thin layer of oxide. Implant wells through photolithographic process.
- After implant we must Anneal to the covalent bonds, and Diffuse to get the wells to the depth we want.
 - <u>Annealing</u>: Heating up the wafer to fix covalent bonds. Done after every ion implantation or similar damaging step.
 - <u>Diffusion</u>: Movement of dopants due to heating of the wafer. Usually this is unwanted, as it changes the doping depth.

Lightly Doped Wafer

Source: Ultratech

Well Implantation – Deep N-Wells

• Can we change the body voltage of an nMOS transistor?

p (field implant)

P-well (p)

Regular NWell Layers around boundary

- Yes, using a "triple well" process!
- BUT... it "costs" a lot of area:

Isolated

Deep N-well (n-)

P-well (p)

p (field implant)

Lightly Doped Wafer

11

N-well (n-)

P-sub (p-)

Transistor Fabrication: V_T Implant

• The threshold voltage of a transistor is approximately:

$$V_{T} = V_{FB} + 2\phi_{f} + \frac{\sqrt{2\varepsilon_{s}qN_{A}(2\phi_{f})}}{C_{ox}} + \frac{qQ_{I}}{C_{ox}}$$

Lightly Doped Wafer

Grow Field Oxide

Well Implants

Transistor Fabrication

- So the first step is to implant Q_{I} .
- Random Dopant Fluctuations (RDF) cause a problematic distribution in $V_{\rm T}$ between devices.
- Native Transistors are transistors that didn't go through this step (i.e. $V_{\rm T} \approx 0 \rightarrow$ Depletion)

Ion Implantation

Lightly Doped Wafer

Grow Field Oxide

Well Implants

Transistor Fabrication

Transistor Fabrication: Gate Oxide

- Gate Oxide thickness (t_{ox}) is one of the most important device parameters.
- 45nm technology has a
 1.2nm thick layer (about 5 atoms!).
- Gate oxide growth has to be done in super-clean conditions to eliminate traps and defects.

• New high-*K* materials extremely complicate this process.

Lightly Doped Wafer

Transistor Fabrication: Gate Etch

- Originally Aluminum was used as the gate material, then polysilicon, now metal again.
- The gate is the smallest dimension that is fabricated through photolithography.
- The oxide is self-aligned to the gate through the etching process.

Lightly Doped Wafer

Grow Field Oxide

Photolithography

- Photolithographic resolution is set by $D = k_1 \frac{\lambda}{\cdot}$
- Therefore, to get better resolution, we could:
 - Use a smaller wavelength (today 193 nm).
 - At 7nm, EUV (13 nm) will be used.
 - Use *immersion* (wet) lithography $(n_{water}=1.43)$
 - Use mask and layout techniques.
 - Use nanoimprinting.

Lightly Doped Wafer Grow Field Oxide Well Implants **Transistor Fabrication**

 $n \sin \alpha$

Photolithography

- "Step and Scan"
- Optical Proximity Corrections (OPC)
- Phase Shift Masks

Photolithography

Transistor Fabrication: Tip Extension

- For various reasons, we need a Lightly Doped Drain (LDD).
- But for source/drain resistance, we need a heavily doped area away from the channel.
- Therefore, a *Tip* or *Spacer* is formed:

Grow Field Oxide

Well Implants

Transistor Fabrication

Contacts – Damascene Process

The Damascene Process is used to make contacts/vias

- A thick isolation oxide is grown.
- The bumpy oxide is planarized through Chemical-Mechanical Polishing (CMP.)
- Contacts are etched, lined and plugged.
- The remaining metal is etched away.

Misalignment Problems

Planarization

• Planarization is achieved with Chemical-Mechanical Polishing (CMP)

Source: <u>www.businesswire.com</u>

Lightly Doped Wafer

Grow Field Oxide

Well Implants

Transistor Fabrication

Contacts

Backend (Metals)

Source: wikipedia

Metal Layers (Backend)

- ILD = Inter-layer Dielectric (low-*k*)
- Passivation protects the final layer
- Al or Cu for Metal layers
- W for Plugs, TiN for barrier layer

Lightly Doped Wafer Grow Field Oxide

Well Implants

Contacts

Copper Interconnect

Lightly Doped Wafer Copper cannot be deposited directly on SiO2 Grow Field Oxide • To solve this, the *dual-Damascene* process was introduced. Well Implants Transistor Fabrication Contacts Backend (Metals) FOX n implant n implant n+ implant p (field implant p (field implant) P-well (p) P-sub (p-)

Microfabrication Summary List

- Lithography
- Thermal Oxidation
- Etching
- Ion Implantation
- Epitaxial Growth (PECVD)
- Chemical Mechanical Polishing (CMP)
- Deposition (Physical Vapor Deposition PVD, Chemical Vapor Deposition CVD)
- Diffusion (Furnace Annealing, Rapid Thermal Annealing RTA)
- Metal Plating
- Others...

Manufacturing Issues

Hillocking and Electromigration

• Hillocking:

- The development of small "hills" in the interconnect due to stress on the Aluminum.
- Can short between metal layers, crack SiO₂, cause bumpiness.
- Adding Cu to AI helps reduce hillocking.

• Electromigration:

- Movement of Aluminum atoms due to high current densities that can eventually cause hillocks (shorts) or voids (opens).
- Proper design (keep J [A/cm²] under a limit) helps prevent electromigration.
- Cu interconnect is very efficient against electromigration.

Antenna Effect

- Charge is built up on interconnect layers during deposition.
- If enough charge is created, this can cause a high voltage to breakdown the thin gates.

Safe: m3 is too short to accumulate very much charge; won't kill gate Dangerous: lots of m3; will probably accumulate lots of charge and then blow oxide

Antenna Effect

• "Bridging" or "Antenna Diodes" are used to eliminate the Antenna Effect.

Layer Density

- Metal layers should have between ~30% to ~70% density.
- Maximum metal widths require slotting.

Softness of Cu results in "dishing"

Solution: Add dummy metal structures here to maintain minimum metal density

Process Variations

Process Variations

Variation can occur at different levels:

- Fab to Fab variation
- Lot to Lot variation
- Wafer to Wafer variation
- Die to Die Variation
- Device to Device Variation

Process Parameters

- Such as impurity concentrations, oxide thickness, diffusion depth.
- Caused during Deposition and Diffusion steps.
- Affect $V_{\rm T}$ and $t_{\rm ox}$.

Device Dimensions

- Lengths and widths of gates, metals, etc.
- Caused due to photolithographic limitations.

Delay of Adder circuit as a function of variations in L and V_T

Types of Process Variation

• Random Variation:

Occurs without regards to the location and patterns of the transistors within the chip (e.g., RDF)

• For example – Random Dopant Fluctuation (RDF)

• Systematic Variation:

Related to the location and patterns

• For example – layout density, well-proximity, distance from center of wafer

• Intra-die (Within-die) Variations

Variations between elements in the same chip

• A.k.a. - "Local Variation"

• Inter-die (Die-to-Die)

Variations between chips in the same wafer or in different wafers

• A.k.a. - "Global Variation"

Random Doping Fluctuation (RDF)

- The most significant factor in variations of the threshold voltage is due to the number and location of dopant atoms in the channel.
 - In $1\mu m$ technology, there were many thousands of dopants.
 - In 32 nm technology, there are less than 100 dopants!
- RDF accounts for about 60% of the threshold variation.

Managing Process Variation in Intel's 45nm CMOS Technology, Intel Technology Journal, Volume 12, Issue 2, 2008

Figure 1: Random dopant fluctuations (RDF) are an important effect in sub-micron CMOS technologies

Figure 2: Average number of dopant atoms in the channel as a function of technology node

Line Edge/Width Roughness (LER/LWR)

- Line Edge Roughness (LER) and Line Width Roughness (LWR) cause changes in sub-threshold current and threshold voltage.
- These problems are expected to surpass RDF as the main cause of variations at deep nanoscale technologies.

Well Proximity Effects (WPE)

• Threshold voltage depends on distance to well edge.

Additional Variations

Gate Dielectric Variation

- Oxide Thickness
- Fixed Charge
- Defects and Traps

CMP Variations

- STI Steps
- Metal Gate height
- ILD (Insulation Layer Dielectric) and Interconnect Thickness

Strain Variation

- Implant Variation
- Rapid Thermal Anneal (RTA) Variation

Probability Reminder

Properties of Random Variables

• The probability distribution function (PDF) *f*(*x*) specifies the probability that a value of a continuous random variable *X* falls in a particular interval:

$$P[a < X \le b] = \int_{a}^{b} f(x) dx$$

• The cumulative distribution function (CDF) *F*(*x*) specifies the probability that *X* is less than some value *x*:

$$F(x) = P[X < x] = \int_{-\infty}^{x} f(u) du \qquad f(x) = \frac{d}{dx} F(x)$$

• The mean (μ) and variance (σ^2) are defined as:

$$\mu(X) = \overline{X} = E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx \qquad \sigma^2(X) = E\left[\left(x - \overline{X}\right)^2\right] = \int_{-\infty}^{\infty} \left(x - \overline{X}\right)^2 f(x) dx$$

Probability Reminder

Normal Random Variables

40

 A normal (Gaussian) random variable, shifted to have a zero mean (μ=1) and a normalized standard variation (σ²=1) has:

41

Process Corners

- Devices are tested at *fast*, *slow* and *nominal* corners.
 - Changes in $V_{\rm T}$, W, L, $t_{\rm ox}$
- Devices are tested at various temperatures
 - Higher temperatures cause a reduction in mobility.
- Devices are tested at various supply voltages
 - Higher voltages cause increased currents

Impact of Process Variations

Process Corners

Corner	V _T	L _{eff}	t _{ox}	V_{DD}	T
Fast					
Typical	Х	Х	Х	Х	Х
Slow					
High Leakage					

What about temperature inversion???

What about Local Variation?

- Often there are too many parameters to think about and setting a specific corner case is insufficient.
- The basic approach is then to "roll the dice" for each parameter and run a simulation.
- These are called Monte Carlo Statistical Simulations.
- Both Global and Local Variations can be taken into consideration.

Further Reading

- J. Plummer "Silicon VLSI Technology", 2000 especially Chapter 2
- J. Rabaey, "Digital Integrated Circuits" 2003, Chapters 2.2-2.3
- C. Hu, "Modern Semiconductor Devices for Integrated Circuits", 2010, Chapter 3 http://www.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html
- E. Alon, Berkeley *EE-141*, Lectures 2,4 (Fall 2009) http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/
- Berkeley EE-143 (Lectures Nguyen 2014, Slides Cheung 2010)
- Tel Aviv University Yossi Shacham

