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Integrated Circuits…
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Lecture Content
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Basic Process Flow
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Basic Process Flow

5

Lightly Doped Wafer

Grow Field Oxide

Define Wells

Grow Gate Oxide

Deposit Poly Gate

Etch Gates

Implant Source/Drain

Deposit Isolation 

Oxide and Contacts

Deposit Metal 1

Deposit Isolation 

Oxide and Via 1

Deposit Metal 2



Detailed Process Flow
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The Silicon Wafer

7

Smithsonian (2000)

Lightly Doped Wafer



Field Oxide – The LOCOS Process
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Field Oxide – The STI Process

• The LOCOS Process has two problems:
• Bird’s Beak makes it hard to make transistors close to each other.

• A parasitic MOSFET can turn on underneath the FOX.

• Solution: 
• Shallow Trench Isolation (STI) 

• Field Implants
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Well Implantation

• Cover wafer with thin layer of oxide. 

Implant wells through photolithographic process.

• After implant we must Anneal to the 

covalent bonds, and Diffuse to get 

the wells to the depth we want.
• Annealing: Heating up the wafer to fix 

covalent bonds. Done after every ion 

implantation or similar damaging step.

• Diffusion: Movement of dopants due to 

heating of the wafer.  Usually this is 

unwanted, as it changes the doping 

depth.
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Well Implantation – Deep N-Wells

• Can we change the body voltage of an nMOS transistor?

• Yes, using a “triple well” process!

• BUT… it “costs” a lot of area:

11

Lightly Doped Wafer

Grow Field Oxide

Well Implants

P-sub (p-)

p (field implant) p (field implant)

N-well (n-) P-well (p)

Deep N-well (n-)

Isolated 
P-well (p)

NMOS Non-GND 
Bulk Contact

Deep NWell
Layer

Regular NWell Layers 
around boundary

Don’t forget to 
connect to VDD!



Transistor Fabrication: VT Implant

• The threshold voltage of a transistor is approximately:

• So the first step is to implant QI. 

• Random Dopant Fluctuations (RDF) cause a problematic 

distribution in VT between devices.

• Native Transistors are transistors that didn’t go through this step 

(i.e. VT≈0 Depletion)
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Ion Implantation
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Transistor Fabrication: Gate Oxide

• Gate Oxide thickness (tox) is one of the most important 

device parameters.

• 45nm technology has a 

1.2nm thick layer (about 5 atoms!).

• Gate oxide growth has to be done 

in super-clean conditions to 

eliminate traps and defects.

• New high-K materials extremely complicate this process.
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Transistor Fabrication: Gate Etch

• Originally Aluminum was used as the gate material, 

then polysilicon, now metal again.

• The gate is the smallest dimension that is fabricated 

through photolithography.

• The oxide is self-aligned to the gate through the etching process.
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Photolithography

• Photolithographic resolution is set by 

• Therefore, to get better resolution, we could:
• Use a smaller wavelength (today 193 nm).

• At 7nm, EUV (13 nm) will be used.

• Use immersion (wet) lithography (nwater=1.43)

• Use mask and layout techniques.

• Use nanoimprinting.
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Photolithography

• “Step and Scan”

• Optical Proximity Corrections (OPC)

• Phase Shift Masks
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Photolithography
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Transistor Fabrication: Tip Extension

• For various reasons, we need a Lightly Doped Drain (LDD).

• But for source/drain resistance, 

we need a heavily doped area away from the channel.

• Therefore, a Tip or Spacer is formed:
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Contacts – Damascene Process

• The Damascene Process is used to make contacts/vias
• A thick isolation oxide is grown.

• The bumpy oxide is planarized through 

Chemical-Mechanical Polishing (CMP.)

• Contacts are etched, lined and plugged.

• The remaining metal is etched away.
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Contacts
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Misalignment Problems
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Planarization

• Planarization is achieved with 

Chemical-Mechanical Polishing (CMP)
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Metal Layers (Backend)

• ILD = Inter-layer Dielectric (low-k)

• Passivation protects the final layer

• Al or Cu for Metal layers

• W for Plugs, TiN for barrier layer
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Copper Interconnect

• Copper cannot be deposited directly on SiO2

• To solve this, the dual-Damascene process was introduced.
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Microfabrication Summary List

• Lithography

• Thermal Oxidation

• Etching

• Ion Implantation

• Epitaxial Growth (PECVD)

• Chemical Mechanical Polishing (CMP)

• Deposition (Physical Vapor Deposition PVD, Chemical Vapor Deposition CVD)

• Diffusion (Furnace Annealing, Rapid Thermal Annealing RTA)

• Metal Plating

• Others…
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Manufacturing Issues
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Hillocking and Electromigration

• Hillocking: 

• The development of small “hills” in the 

interconnect due to stress on the Aluminum.

• Can short between metal layers, crack SiO2,

cause bumpiness.

• Adding Cu to Al helps reduce hillocking.

• Electromigration:

• Movement of Aluminum atoms due to high

current densities that can eventually 

cause hillocks (shorts) or voids (opens).

• Proper design (keep J [A/cm2] under a limit) 

helps prevent electromigration.

• Cu interconnect is very efficient against electromigration.
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Antenna Effect

• Charge is built up on interconnect layers during deposition.

• If enough charge is created, this can cause 

a high voltage to breakdown the thin gates.
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Antenna Effect

• “Bridging” or “Antenna Diodes” are used to eliminate 

the Antenna Effect.
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Layer Density

• Metal layers should have between ~30% to ~70% density.

• Maximum metal widths require slotting.
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Process Variations
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Process Variations

• Variation can occur at different levels:
• Fab to Fab variation

• Lot to Lot variation

• Wafer to Wafer variation

• Die to Die Variation

• Device to Device Variation

• Process Parameters
• Such as impurity concentrations, oxide thickness, diffusion depth.

• Caused during Deposition and Diffusion steps.

• Affect VT and tox.

• Device Dimensions
• Lengths and widths of gates, metals, etc.

• Caused due to photolithographic limitations.
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Types of Process Variation

• Random Variation:
Occurs without regards to the location and patterns of the transistors within the chip (e.g., RDF)

• For example – Random Dopant Fluctuation (RDF)

• Systematic Variation:
Related to the location and patterns

• For example – layout density, well-proximity, distance from center of wafer

• Intra-die (Within-die) Variations
Variations between elements in the same chip

• A.k.a. – “Local Variation”

• Inter-die (Die-to-Die)
Variations between chips in the same wafer or in different wafers

• A.k.a. – “Global Variation”
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Random Doping Fluctuation (RDF)

• The most significant factor in variations of 

the threshold voltage is due to the number 

and location of dopant atoms in the 

channel.
• In 1μm technology, 

there were many thousands of dopants.

• In 32 nm technology, 

there are less than 100 dopants!

• RDF accounts for about 60% of the 

threshold variation.
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Line Edge/Width Roughness (LER/LWR)

• Line Edge Roughness (LER) and Line Width Roughness (LWR) cause 

changes in sub-threshold current and threshold voltage.

• These problems are expected to surpass RDF as the main cause of 

variations at deep nanoscale technologies.

36



• Threshold voltage depends on distance to well edge.

Well Proximity Effects (WPE)
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Additional Variations

• Gate Dielectric Variation
• Oxide Thickness

• Fixed Charge

• Defects and Traps

• CMP Variations
• STI Steps

• Metal Gate height

• ILD (Insulation Layer Dielectric) and Interconnect Thickness

• Strain Variation

• Implant Variation

• Rapid Thermal Anneal (RTA) Variation
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• Properties of Random Variables
• The probability distribution function (PDF) f(x) specifies the probability that a 

value of a continuous random variable X falls in a particular interval: 

• The cumulative distribution function (CDF) F(x) specifies the probability that X

is less than some value x:

• The mean (µ) and variance (σ2) are defined as:

Probability Reminder
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• Normal Random Variables
• A normal (Gaussian) random variable, shifted to have a zero mean (µ=1) and a 

normalized standard variation (σ2=1) has:

Probability Reminder
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Process Corners

• Devices are tested at fast, slow and nominal corners.

• Changes in VT, W, L, tox

• Devices are tested at various temperatures

• Higher temperatures cause a 

reduction in mobility.

• Devices are tested at various supply voltages

• Higher voltages cause increased currents
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Impact of Process Variations
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Process Corners
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What about Local Variation?

• Often there are too many parameters to think about and setting a 

specific corner case is insufficient.

• The basic approach is then to “roll the dice” for each parameter and 

run a simulation.

• These are called Monte Carlo Statistical Simulations.

• Both Global and Local Variations can be taken into consideration.
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Further Reading

• J. Plummer “Silicon VLSI Technology”, 2000 – especially Chapter 2

• J. Rabaey, “Digital Integrated Circuits” 2003, Chapters 2.2-2.3

• C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010, Chapter 3  
http://www.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html

• E. Alon, Berkeley EE-141, Lectures 2,4 (Fall 2009)
http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/

• Berkeley EE-143 (Lectures – Nguyen 2014, Slides Cheung 2010)

• Tel Aviv University - Yossi Shacham
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