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Basic Process Flow

E n "CS i;i’a) Bar-llan University

IN- I )
4 Emerging Nanoscaled |.) NX-12 NU'012"JIN
Integrated Circuits and Systems Labs



Basic Process Flow

Lightly Doped Wafer

Grow Field Oxide

Define Wells

Grow Gate Oxide

« DY
Deposit Poly Gate
« DY
Etch Gates
« DY

Implant Source/Drain

Deposit Isolation
Oxide and Contacts

Deposit Metal 1

Deposit Isolation
Oxide and Via 1
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Detailled Process Flow
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The Silicon Wafer

Seed

WMV E Vil
VAL,

L Lightly Doped Wafer J

Single Silicon Crustal
(uartz Crucible
Water Cooled Chamber
Heat Shield

Carbon Heater
Graphite Crucible
Crucible Support

Spill Tray

Electrode

Smithsonian (2000)

&nlCS



Field Oxide — The LOCOS Process

Lightly Doped Wafer
Y

/4 D

Grow Field Oxide
ey

Photoresist

Field Oxide (FOX)

Active
Area

Photoresist Application
(Ontrak)
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Field Oxide - The STl Process
* The LOCOS Process has two problems:

* Bird's Beak makes it hard to make transistors close to each other. |

« A parasitic MOSFET can turn on underneath the FOX.

* Solution: ] u
« Shallow Trench Isolation (STI) W-;-
2

Lightly Doped Wafer

Grow Field Oxide

« Field Implants

Sio,

Active

POI’GSl'Tl e —
+~ MOSFET

Active
Area

p
P - .

Active
Area

ICS
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Well Implantation

[ Lightly Doped Wofer}

* Cover wafer with thin layer of oxide.
Implant wells through photolithographic process. | GrowreOde |

* After implant we must Anneal to the  _ Reduced Diffusiorr==>

. Silicon Melt N
covalent bonds, and Diffuse to get 5 | rmeoue W\
O 1300 } &\
the wells to the depth we want. SO
. ..éo 1200 | u Tnet aser eyon
 Annealing: Heating up the wafer to fix g S S =
i £ =
covalent bonds. Done after every ion G 1100 . g
Implantation or similar damaging step. E; v L ey e 1 2
. . RTP Spike
- Diffusion: Movement of dopants due to g A | 8
. . . c E
heating of the wafer. Usually this is g™ U
unwanted, as it changes the doping 800 : ﬁ . ; ; £
d e pth Hours Minutes Seconds 59:'::(15 SLV::I:;ZS s::;nnods F
Source: Ultratech O==t1n<=u)
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Well Implantation - Deep N-Wells

 Can we change the body voltage of an nMOS transistor?

* Yes, using a “triple well” process!
Deep NWell

Layer

 BUT... it “costs” a lot of area:

Don’t forget to NMOS

connect to VDD!

Regular NWell Layers
around boundary

iy oped wrer |

Non-GND
Bulk Contact
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Transistor Fabrication: V; Implant
* The threshold voltage of a transistor is approximately:

V. =V +2¢, + \/ngqNA (2¢f ) + 99,

Lightly Doped Wafer

Grow Field Oxide

C C

10).4 (0),4

* So the first step is to implant Q,.

* Random Dopant Fluctuations (RDF) cause a problematic
distribution in V-, between devices.

Well Implants

Transistor Fabrication

* Native Transistors are transistors that didn’t go through this step

(i.e. V=0 -> Depletion)
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lon Implantation

© 1998 Copyright Eaton Corporation

p-

.

Lightly Doped Wafer

4

.

Grow Field Oxide

4

p-

.

Well Implants

p-

A

Transistor Fabrication

4

&nlCS



14

Transistor Fabrication: Gate Oxide

» Gate Oxide thickness (t,,) is one of the most important
device parameters.

* 45nm technology has a
1.2nm thick layer (about 5 atoms!).

* Gate oxide growth has to be done
in super-clean conditions to Silicon

"

|

Lightly Doped Wafer

Grow Field Oxide

Well Implants

eliminate traps and defects.
* New high-K materials extremely complicate this process.

Transistor Fabrication
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Transistor Fabrication: Gate Eich

* Originally Aluminum was used as the gate material,
then polysilicon, now metal again.

* The gate is the smallest dimension that is fabricated
through photolithography.

Lightly Doped Wafer

Grow Field Oxide

Well Implants

Transistor Fabrication

* The oxide is self-aligned to the gate through the etching process.

lliil [

P-well (p)
P-sub (p-)

ZnlCS



Photolithography

* Photolithographic resolution is setby D=k «

Lightly Doped Wafer

nsin o
* Therefore, to get better resolution, we could:

Use a smaller wavelength (today 193 nm).
At 7nm, EUV (13 nm) will be used.

Use immersion (wet) lithography (n,;=1.43)
Use mask and layout techniques.
Use nanoimprinting.

-<+—— Photo Mask——————- s
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Grow Field Oxide

Well Implants

Transistor Fabrication

60,5X 25KV HD:15HH 5:000080 P:060008




Photolithography

o “Step and Scan”
* Optical Proximity Corrections (OPC)
* Phase Shift Masks

N\, Light

tf
"
i LN
b
@Cs{m denser

i Lens

Mask or
Hetl cle

Pro jection
Lens

. Wafer

Scan directions
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a

Lightly Doped Wafer

N

=

Grow Field Oxide

N

Well Implants

a

Transistor Fabrication

N

Without PSM

Light source

e e

/N

Waler ——»

With PSM

Light source

>
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Photolithography

Lithography scaling

SEMATECH o1

6.1 ym (Nodes)

Lamp

2 um
1.5 um

1um

KrF

0.8 um™=
436 nm

356 nm

0.7 ym

0.5 ym

0.25 um

y, 0.35 um

w248 nm

---
P e
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Transistor Fabrication: Tip Extension

* For various reasons, we need a Lightly Doped Drain (LDD).

 But for source/drain resistance,
we need a heavily doped area away from the channel.

* Therefore, a Tip or Spacer is formed:

Thin Spacer for

&\u/

Lightly Doped Wafer

Grow Field Oxide

Well Implants

Transistor Fabrication




Contacts - Damascene Process

« D

« The Damascene Process is used to make contacts/vias e Bee e
« Athick isolation oxide is grown. | GrowField Oide |
* The bumpy oxide is planarized through R——
Chemical-Mechanical Polishing (CMP.)
» Contacts are etched, lined and plugged. Tronsistor Fabrication |
« The remaining metal is etched away. AE——

FOX

O
P-sub (p-) el ho_ n “C S
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Contacts

e DY

Lightly Doped Wafer
& 4
CONTACTS TO DIFFUSION, POLY - @ >

(After Metal 1) OoREEReL A - Grow Field Oxide
. R ] L )
METAL 1 p N
Well Implants
CONTACT < D
TO

POLY p N

Co SILICIDE Transistor Fabrication
& v

Contacts

& v

CONTACT

DIFFUSION

97817-090019

£ chipworks

Contacts in 28nm Apple A7
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Misalignment Problems

goal: contact to diffusion problem: misalignment

W/////////////// Al between Process steps
/.

solution: make diffusion larger than contact (overlap)

AI




Planarization

Lightly Doped Wafer

 Planarization is achieved with \ )

Chemical-Mechanical Polishing (CMP) | Grow Field Oide

Draufsicht (top view)

Well Implants

Transistor Fabrication

& 4

Contacts

Backend (Metals)

A\ 4
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Metal Layers (Backend) "f‘

* ILD = Inter-layer Dielectric (low-k) Lightly Doped Water
» Passivation protects the final layer S

« Al or Cu for Metal layers i
« W for Plugs, TIN for barrier layer Well implants |

Passivation Transistor Fabrication
4
Metal 5 (copper)
Contacts
' 4
METAL 5 ‘ Backend (Metals)
' < ILD4 g
Metal 3 (copper
( PP ) METAL 4
Titonwlacral Aialantei~ (TT D) 4
IIETICVEL GiCIECHIC (1 ILD
METAL 3 l * 3
. < ILD2
Via (tungsten) METAL 2 AT ' i
- Metal 1 (copper) METAL 1—»% % R P ~l*“ ,;,4' % 1LD1
. | o Bt FISIEN AN o N
Tungsten Plug to Si STI ->§ O RPN BN R+ DO

| L Slllcon 4 —"h ) 717-09033 ﬁ n “ C S
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Copper Interconnect

 Copper cannot be deposited directly on SiO2
* To solve this, the dual-Damascene process was introduced.

P-sub (p-)

ZnlCS



26

Microfabrication Summary List

» , ® 1400
1 I 0 ra o 1200 ]
grap y | £ 1000 -
« Thermal Oxidation : oo
. | 3 400 -

Etching 200 -
* lon Implantation v

« Epitaxial Growth (PECVD)
- Chemical Mechanical Polishing (CMP) &°

- Si Melting Point (1450C)
F Al-Si Eutectic (560C)
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* Deposition (Physical Vapor Deposition PVD, Chemical Vapor Deposition CVD)

* Diffusion (Furnace Annealing, Rapid Thermal Annealing RTA)

 Metal Plating
* Others...
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Manufacturing Issues
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Hillocking and Electromigration
. a
* Hillocking:
* The development of small “hills” in the
Interconnect due to stress on the Aluminum.

» Can short between metal layers, crack SiO,,
cause bumpiness.

« Adding Cu to Al helps reduce hillocking.

* Electromigration:

« Movement of Aluminum atoms due to high
current densities that can eventually
cause hillocks (shorts) or voids (opens).

* Proper design (keep J [A/cm?] under a limit)
helps prevent electromigration.

« Cu Iinterconnect is very efficient against electromigration.




Antenna Effect

* Charge is built up on interconnect layers during deposition.

* If enough charge is created, this can cause i atracts charge during plasma processing
. . and builds up voltage V=Q/C
a high voltage to breakdown the thin gates.

-

> metal area not tied to diffusion L2
<100-=5000 L Length L2 exceeds allowed limit
gate area

m4
m3 Any source/drain can actas a ——— | =—
m?2 discharge element
ml

gat

Safe: m3 is too short to Dangerous: lots of m3; will

accumulate very much probably accumulate lots of

: : o_:
charge; won'’t kill gate charge and then blow oxide n “C S
O



Antenna Effect

* “Bridging” or “Antenna Diodes” are used to eliminate
the Antenna Effect.

metal 4

metal 3
Added link solves problem-L1 satisfies design rule
m4 EF; 2000\
m3 | / \/iz
m2
ml
ate di ate ndiff
Bridging keeps gate away Node diodes are inactive during
from long metals until they chip operation (reverse-biased p/n);

@
drain through the diffusion let charge leak away harmlessly O= n “C s
O



Layer Density

* Metal layers should have between ~30% to ~70% density.

» Maximum metal widths require slotting.

This etching step

takes a lot longer
- o

High density Low density

. e

Softness of Cu
results in “dishing”

Solution: Add dummy
metal structures here
to maintain minimum
metal density

ZnlCS



Process Variations
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Process Variations

y (nsec)

 Variation can occur at different levels:

 Fab to Fab variation
Lot to Lot variation

Dela

 Die to Die Variation
* Device to Device Variation

* Process Parameters

e Such as impurity concentrations, oxide thickness, diffusion depth.

« Caused during Deposition and Diffusion steps.
« Affect V;andt,,.

* Device Dimensions

« Lengths and widths of gates, metals, etc.
« Caused due to photolithographic limitations.

—
w
j=

Delay (nsec)

1.70

 Wafer to Wafer variation 150 120

‘I—Eﬁ (in mmj

L Ll 210 ¢+

—
o
==

1 “1.70

1.50

090 D80 070 060 -0.50

Vip (V)

Delay of Adder circuit as a function of variations in L and V;
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Types of Process Variation

 Random Variation:

Occurs without regards to the location and patterns of the transistors within the chip (e.g., RDF)
* For example — Random Dopant Fluctuation (RDF)

 Systematic Variation:

Related to the location and patterns
« For example — layout density, well-proximity, distance from center of wafer

* Intra-die (Within-die) Variations
Variations between elements in the same chip
« A.k.a. - "“Local Variation”

* Inter-die (Die-to-Die)
Variations between chips in the same wafer or in different wafers
 A.k.a. - "“Global Variation”

ZnlCS



Random Doping Fluctuation (RDF)

* The most significant factor in variations of
the threshold voltage is due to the number
and location of dopant atoms in the
channel.

e In ]_um tech n0|0gy Figure 1: Random dopant fluctuations (RDF) are an
’ important effect in sub-micron CMOS technologies
there were many thousands of dopants.

100000 .\
10000

* |n 32 nm technology, 52
there are less than 100 dopants! 53 e
 RDF accounts for about 60% of the S
T <e 7 N
threshold variation. e

Technology Node (nm)
Managing Process Variation in Intel’s 45nm CMOS Technology,

O
Figure 2: Average number of dopant atoms in the Ouum n C
35 Intel Technology Journal, Volume 12, Issue 2, 2008 channel as a function of technology node h



Line Edge/Width Roughness (LER/LWR)

* Line Edge Roughness (LER) and Line Width Roughness (LWR) cause
changes in sub-threshold current and threshold voltage.

* These problems are expected to surpass RDF as the main cause of
variations at deep nanoscale technologies.

: %

Line Edge
Roughness (LER)

3c deviation of an
edge from a line fit
to that edge

Line Width
Roughness (LWR)

3¢ deviation of width

/—-—'\./

ZnlCS
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Well Proximity Effects (WPE)

* Threshold voltage depends on distance to well edge.

Well lon Implant

ZnlCS
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Additional Variations

» Gate Dielectric Variation

« Oxide Thickness
* Fixed Charge
« Defects and Traps

 CMP Variations

 STI Steps
« Metal Gate height
« ILD (Insulation Layer Dielectric) and Interconnect Thickness

o Strain Variation
* Implant Variation
 Rapid Thermal Anneal (RTA) Variation

ZnlCS
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Probability Reminder

* Properties of Random Variables

« The probabillity distribution function (PDF) f(x) specifies the probability that a
value of a continuous random variable X falls in a particular interval:

Pla<X sb]zjbf(x)dx

a

* The cumulative distribution function (CDF) F(x) specifies the probability that X
IS less than some value x:

F(x)=P[X<x]=] f(u)du  f(x)=—F(x)

« The mean (i) and variance (¢°) are defined as:

u(X)=X =E[X]=["x-f(x)dx o (X)=E| (x=X) |=[" (x- )f(x dx



Probability Reminder

 Normal Random Variables

« A normal (Gaussian) random variable, shifted to have a zero mean (u=1) and a
normalized standard variation (¢%=1) has:

F(x) 1-F(x)
1.0 q 1 -
0.8 - 1072 4

—4 ]
0.6 - 10

1076_
0.4

10—8_
0.2 4

10—10_
0 T T T T T TX
-3 -2 -1 0o 1 2 3 ' ' - ' — X

30‘:998% Fx) 1 - F(x)

0.8413 1.59x 107!
0.9772 2.28 x 1072 _
0.998650 1.35x 1073 . 60 -
0.9999683 317 x 10 1 in a billion
0.999999713 2.87 x 1077
0.999999999013 9.87 x 10710

40




41

Process Corners

* Devices are tested at fast, slow and nominal corners.
 Changes in V, W, L, t,,

fast

* Devices are tested at various temperatures

* Higher temperatures cause a
reduction in mobility.

pPMOS

* Devices are tested at various supply voltages
» Higher voltages cause increased currents

& lonay

FF

slow

HMDS fast

ZnlCS
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Impact of Process Variations

2.5 , . '
2F
Fast PMOS
—* Slow NMOS
H1-5r
= }\Iuminal
g
> ,|FastNMOS
Slow PMOS
0.5+ EEE .
D i i i
0 0.5 1 1.5 2 2.5
Vin V)
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Process Corners

Corner

Fast

Typical X X X X X

Slow

High
Leakage

What about temperature inversione¢?¢

niCS
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What about Local Variation?

* Often there are too many parameters to think about and setting a
specific corner case is insufficient.

* The basic approach is then to “roll the dice” for each parameter and
run a simulation.

* These are called Monte Carlo Statistical Simulations.
* Both Global and Local Variations can be taken into consideration.

ZnlCS
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Further Reading

* J. Plummer “Silicon VLSI Technology”, 2000 — especially Chapter 2
* J. Rabaey, “Digital Integrated Circuits” 2003, Chapters 2.2-2.3

* C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010, Chapter 3
* E. Alon, Berkeley EE-141, Lectures 2,4 (Fall 2009)

* Berkeley EE-143 (Lectures — Nguyen 2014, Slides Cheung 2010)

* Tel Aviv University - Yossi Shacham
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