Digital Integrated Circuits (83 - 313)Lecture 2: Technology and Standard Cell Layout

Semester B, 2016-17

Lecturer: Dr. Adam Teman

Itamar Levi, Robert Giterman

26 March 2017

Emerging Nanoscaled Integrated Circuits and Systems Labs

<u>TAs</u>:

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email <u>adam.teman@biu.ac.il</u> and I will address this as soon as possible.

Lecture Content

CS

A Process Primer

A Quick Introduction to the CMOS Process

Motivation

"I'm exhausted — I just spent all morning writing a note to the milkman!"

I'VE DECIDED TO WRITE A NOVEL ".

1~3 Years...

Solution: The Printing Process

5

CMOS Process/Transistors

Basic Process Flow

Lightly Doped Wafer
Grow Field Oxide
Define Wells
Grow Gate Oxide
Deposit Poly Gate
Etch Gates
Implant Source/Drain
Deposit Isolation Oxide and Contacts
Deposit Metal 1
Deposit Isolation Oxide and Via 1
Deposit Metal 2

8

The Result

Layout and Design Rules

Living in a 3D world

• Create cells that look like this:

• So the fab can transform it into this:

How do we layout a transistor?

The Design Rule Manual

- Design Rules (also known as DRCs), are the interface between the designer and process engineer.
 - The Design Rule Manual (DRM) provides guidelines for constructing process masks.
- These are generally categorized as:
 - Intra-layer rules: minimum widths, spacing, area, etc., only relating to a single layer.
 - Inter-layer rules: minimum enclosures, extensions, overlaps, etc., between two layers.
 - **Special rules**: non geometric rules, such as antenna rules, density, distance to welltap, etc.

Common colors for layers

Layer	Color	Representation
Well (p,n)	Yellow	
Active Area (n+,p+)	Green	
Select (p+,n+)	Green	
Polysilicon	Red	
Metal1	Blue	3
Metal2	Magenta	
Contact To Poly	Black	
Contact To Diffusion	Black	5
Via	Black	

Design Rules Example

Rule name (minimum)
Poly width
Space poly and active
Poly ext. beyond active
Enc. active around gate
Spc. field poly to active
Spc. field poly

	Rule name (minimum)	Length
M1.1	Metal1 width	65 nm
M1.2	Space metal1	65 nm
M1.3	Enclosure around contact (two opposite sides)	35 nm
M1.4	Enclosure around via1 on two opposite sides	35 nm
M1.5	Space metal1 wider than 90 nm and longer than 900 nm	90 nm
M1.6	Space metal1 wider than 270 nm and longer than 300 nm	270 nm
M1.7	Space metal1 wider than 500 nm and longer than 1.8 um	500nm

Source: FreePDK 45nm

Multi-finger Devices

• We can create wider or longer transistors using fingers:

Latchup

- The multiple n-type and p-type regions in the CMOS process create parasitic BJT transistors.
- Unintentional "Thyristors" can turn on and short V_{DD} and $G_{\text{ND}}.$
 - This requires power down at the least, and sometimes causes chip destruction.

• To eliminate some latchup, distribute well/substrate contacts across the chip.

Bulk Contacts

• To ensure a constant body voltage across large areas, Bulk Contacts or *Taps* have to be added frequently.

Standard Cell Layout

How to place millions of gates on a chip

• Reminder:

• ASIC design with Standard Cells

Standard cells are like Legos

• They must meet certain design standards to be used together.

Courtesy: Mantra VLSI

Standard Cell Properties

• Size:

- All cells have the same specified height, which is a multiple of track size.
- VDD and GND rails with specified width.
- N-well, p-active, n-active with specified width.
- Width is a multiple of the cell SITE minimum unit.
- Use fingers to implement wide transistors.
- Cell origin is set at (0,0)

• Routing:

- Only Metal 1 and Poly are used for routing.
- Pins are defined in Metal 1 on cross point of Metal 2 tracks for easy access.
- Half DRC pitch on sides to eliminate spacing violation.

How to layout a standard cell

Good layout: dense and reliable

- Meets the manufacturing design rules (DRC)
- Matches the circuit being built (LVS)

Good or Bad?

Good Layout/Bad Layout!

- The previous layout was bad.
- The proper way to layout an inverter:

Power Rails Feed through

Fitting in Large Devices

- What if you had to layout an inverter with wide devices?
 - You could do this...
 Image: A state of the state of
- However, by doing so you are creating a layout that:
 - Has long poly routes (high resistance)
 - Has long source drain metal pickups (high resistance)
 - Has an aspect ratio that is difficult to make work with other cells
 - Has more periphery component of diffusion cap then it needs to

Instead "leg" or "fold" transistors

• Small devices in parallel = same drive strength as one large device

Only use a single metal layer

• This can be very hard in a complex cell

Routing Grids

- Cell pins (except VDD/GND abutment pins) must be placed on the intersections of the vertical and horizontal routing grids.
- The routing grids are where the over-the-cell metal routing will be routed.
- Grids should usually be "via-on-via" to allow easy via placement in the cell.

Another short point about Standard Cells

- Standard Cells are a "black-box" abstraction for digital design.
- Therefore, we need to provide "abstract views" of our finalized gate:
 - Behavioral model (Verilog) for logic simulation.
 - Layout abstract for place and route (i.e., only essential information, such as cell size and pin locations)
 - Timing and power characterizations, such as propagation delay, output transitions, input capacitance, static and dynamic power.
 - Other views used by various EDA tools.
- We will learn how to extract layout abstracts and timing/power characterizations in the lab.

Basic Layout Planning

Basic Layout Planning

• Okay, time to layout our new standard cell.

• Where do we start?

• Let's start with the obvious:

- Choose global directions for routing layers.
 - Adjacent levels should route perpendicular
 - Example: m2 horizontal, m1 vertical
- Position power lines first in top layer of metal
- Cluster together NMOS with NMOS and PMOS with PMOS

And a bit less trivial:

- Arrange transistors so that common sources/drains can be shared
- Arrange transistors so that common gates line up
- Limit lengths of diffusion and poly routing use metal instead

- Choose global directions for routing layers
- Position power lines in top layer of metal

- Cluster together NMOS with NMOS and PMOS with PMOS
- Generally keep gate orientation the same

- Arrange transistors so that common sources/drains can be shared
- Give precedence to shared signals over shared vdd/ground
- Arrange transistors so that common gates line up

Connect everything up and convert to layout

How do we choose the order of the signals?

- Let's take for example the function $X = C \cdot (A + B)$
- We could implement this in several ways.

EnICS

credit: NC State

• So how do we find the better one?

The consistent Euler Path algorithm

Let's choose the path $A \rightarrow B \rightarrow C$

The consistent Euler Path algorithm

Two single Diffusion strips No separations

Another Example

Vout (internal node)

• GND

Now find the consistent Euler paths

Plan the standard cell layout

The Euler path we found was DACB:

Final Layout

Further Reading

- Arizona State University EEE 525 (Lawrence Clark)
- NC State University

