Digital VLSI Design: From RTL to GDS

Lecture 11: Chip Finishing and Signoff

Prof. Adam Teman EnICS Labs, Bar Ilan University

adam.teman@biu.ac.il

Emerging Nanoscaled Integrated Circuits and Systems Labs September 13, 2024 The Alexander Kofkin Faculty of Engineering Bar-Ilan University

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email <u>adam.teman@biu.ac.il</u> and I will address this as soon as possible.

Lecture Outline

Sign-off Timing

Sign-off Timing

Advanced Concepts in Static Timing Analysis

2

Chip Finishing and

Sign-off Checks

Additional Timing Margins

 Remember those pesky timing margins that we mentioned in the lecture about static timing analysis?

$$T + \delta_{\text{skew}} > t_{CQ} + t_{\text{logic}} + t_{\text{setup}} + \delta_{\text{margin}}$$
$$\overline{t_{CQ} + t_{\text{logic}} - \delta_{\text{margin}}} > t_{\text{hold}} + \delta_{\text{skew}}$$

- Well, we discussed skew and jitter, but is that all?
- If it was, there's a good chance that all the CAD engineers could retire...
- So what/why/how do we apply additional timing margins?

Best Case-Worst Case (BC-WC) Timing

- This is the straightforward and traditional way to run STA:
 - Max-delay (setup) checks are run on worst-case (slow) conditions.
 - Min-delay (hold) checks are run on best-case (fast) conditions.

On Chip Variation

Spatial variation

- Chips are "big" and gates can be far from each other.
- Process/Voltage/Temperature (PVT) variation can affect
 different parts of the timing path in opposite directions.
- So, why don't we just assume the worst possible case
- And, we can add during setup that:
 - The launch (data) path is extra slow.
 - The capture (clock) path is super fast.

set_timing_derate -max -early 0.9 -late 1.2

And during hold:

- The launch (data) path is super fast.
- The capture (clock) path is extra slow.

```
set_timing_derate -min -early 1.2 -late 0.9
```


Ultra Pessimism...

- A common practice in VLSI design implementation is to be over pessimistic.
 - If you are optimistic, your chip may not work.
 - If you over-design, your yield will go up.
- But over pessimism is painful
 - Time-to-market increases
 - Performance is hindered
 - Less efficient in all parameters: size, power, performance
- So, we have to ask, can the defined OCV methodology actually occur?
 - We choose <u>one library</u> (slow/fast) for data and <u>another</u> (fast/slow) for clock...
 - We then add <u>derating</u> on top of that!
- Well, that's too harsh... let's recover some of our pessimism!

Clock Reconvergence Pessimism Removal

• To limit the pessimism of OCV, apply CRPR

8

 This basically removes the derating from the clock path shared by both the launch and capture paths.

© Adam Teman, 2024

Advanced on-chip variation (AOCV)

- Well, CRPR helped, but those derates are gruesome.
 - Do all paths derate the same?
- No, variation is *statistical*...
 - But statistical behavior is hard to compute.
 - So, let's do something easier.
- Someone noticed that worst-case conditions in a path depend on:
 - Distance between gates on the path
 - Depth (number of stages) of the path
- So let's provide libraries with new derating factors based on these factors.
 - We'll call it "Advanced On-Chip Variation"!

update_library_set -name slow -aocv test.aocv.lib set_db timing_analysis_aocv true

Depth	1	3	5	7	10	15	20	30
Late derate	1.6	1.4	1.3	1.25	1.21	1.17	1.12	1.1
Early derate	0.5	0.6	0.7	0.8	0.88	0.89	0.91	0.95

Parametric on-chip variation (POCV)

AOCV is cool!

- But still too pessimistic...
- Remember, variation is statistical.
- And is different for each gate.
- Well, let's just run Monte Carlo simulations for every path!
 - Yeah... that's known as Statistical STA (SSTA)
 - But it's really computationally intensive.
- So, I guess we'll have to be more realistic.
 - Let's just provide a distribution for each gate in the library.
 - Then calculate the delay according to the gates in the path.
 - This is known as **Parametric OCV** (POCV) or **Statistical OCV** (SOCV)
 - Use Liberty Variation Format (LVF) libraries.

set_db timing_analysis_socv true

Source: Cadence

10

Path-based and Graph-based Analysis

- Another point of pessimism removal is to run Path-based Analysis (PBA)
- Due to long runtimes, STA is usually run with Graph-based Analysis (GBA)
- What is the difference?
 - GBA chooses the worst case propagation from all inputs through a gate
 - PBA chooses the propagation of the specific path
 - This results in a 10X longer run time but highly reduced pessimism

source:

RC Extraction

• Usually done with several extraction options:

Cworst

- Min metal spacing, Tall wires, Max surface area
- Cbest
 - Max metal spacing, Short wires, Min surface area

RCworst

- Min Inter-layer metal spacing, Max Intra-layer spacing
- Short wires, Min surface area

RCbest

- Max Inter-layer metal spacing, Min Intra-layer spacing
- Short wires, Max surface area

Drawn layout (Ideal)

15

C Wost

C Best

Drawn layout (Ideal)

R Best

RC Extraction

- How do these affect RC values?
 - Cworst: Max C, Min R
 - **Cbest**: Min C, Max R
 - RCworst: Max R, Wide wires: Max C, Narrow wires: Min C
 - RCbest: Min R, Wide wires: Min C, Narrow wires: Max C
- Which corner to use?

16

- Only C affects the cell delay...
- Maybe use Cworst for setup, Cbest for hold.
- RCbest, RCworst for long interconnects

© Adam Teman, 2024

A note about Aging

- Another big issue in modern VLSI design is aging
 - Device characteristics change over time.
 - Hot Carrier Injection (HCI)
 - Negative Bias Temperature Instability (NBTI)
 - Time Dependent Dielectric Breakdown (TDDB)
 - Electromigration
- Dealing with aging effects:
 - Operate with low VDD.
 - Model aging as an additional timing margin.
 - Use aged library models for signoff timing.
 - Add aging sensors and adjust frequency/voltage for compensation.

General Sign-off Timing Flow

Use integrated signoff timing

time_design -signoff -out_dir final_setup
time_design -hold -out_dir final_hold

- Export design to sign-off extraction tool
 - Netlist, GDS
- Load parasitics into sign-off timing tool
 - SPEF for each corner

read_spef rc_corner1.spef -rc_corner rc_corner1

- Run Static Timing Analysis in sign-off tool
 - Provide SDF for ECO
 - Provide SDF for post-layout simulations (Dynamic Timing Analysis)

<pre><cmd> report_timing Path 1: VIOLATED Setup Check with Pin DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/top_</cmd></pre>											
reg_0/CK											
Endpoint: DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/top_reg_0/E (^) checked with											
leading edge of 'vclk1'											
Beginpoint: DTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15/0 (v) triggered by											
leading edge of 'vclk1'											
Other End Arrival Time 2,000											
• Setup 1.119											
+ Phase Shift 4.000											
- Uncertainty 0.250											
= Required Time 4.631											
Arrival Time 6.771											
Slack Time -2,140											
Clock Rise Edge 0.000											
+ Clock Network Latency (Ideal) 2,000											
= Beginpoint Arrival Time 2,000											
+					+						
I Instance	Anc	Cell	Delay	Arrival	Required						
				Time	Time I						
		·		+							
DTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15		· 🗸	i 1	2,000	-0.140 I						
DTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15	CK ^ -> 0 v	SDFFRH0X1	0,326	2,326	0.186 I						
DTHE INST/TDSP CORE INST/DECODE INST/i 10028	Av->Yv	CLKBUFXL	0.931	3,256	1.117						
DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i 256	A v -> Y ^	NOR2X1	0.431	3,688	1.548						
DTME_INST/TDSP_CORE_INST/EXECUTE_INST/i 1756	B ^ -> Y ^	AND2X1	0.285	3,972	1.833						
DTHE INST/TDSP CORE INST/EXECUTE INST/i 1790	AN ^ -> Y ^ I	N0R2B(1	0.602	4.574	2,435						
LIDTHE INST/TOSP CORE INST/EXECUTE INST/i 194		ANTI2X1	0.342	4,916	2,776 1						
DIME INST/IDSP CORE INST/EXECUTE INST/i 1845	A ^ -> Y ^ I	AND2X1	0.392	5,308 1	3.169 L						
DITHE INST/IDSP CORE INST/EXECUTE INST/1 415	B^->Yv	NANT/2X1	0.179	5,487	3,347 1						
DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3501	Bu->Y^	NAND2X1	0.601	6,088	3,948 1						
I DIME INST/TOSP CORE INST/EXECUTE INST/i 9891	A ^ -> Y ^	CLKBUEX	0.680	6.768 I	4.628 1						
DITME_INST/TDSP_CORE_INST/EXECUTE_INST/top_reg_0	E ^	SEDEEX1	0.003	6.771	4,631						
+					+						

© Adam Teman, 2024

Chip Finishing and Sign-off

Chip Finishing Overview

- Chip Finishing for Signoff includes, at the very least:
 - Insertion of fillers and DeCaps.
 - Application of Design for Manufacturing (DFM) and Design for Yield (DFY) rules.
 - Antenna checking.
 - Metal filling and slotting for metal density rules.
 - IR Drop and Electromigration Analysis
 - Logic Equivalence
 - Layout (Physical) Verification
 - Add Sealring

Filler Cell Insertion

- Standard cell placement never reaches 100% utilization.
- We need to "fill in the blanks"
 - Ensure continuous wells across the entire row.
 - Ensure VDD/GND rails (follow pins) are fully connected.
 - Ensure proper GDS layers to pass DRC.
 - Ensure sufficient diffusion and poly densities.
 - In scaled processes, provide regular poly/diffusion patterning.
- We can also add DeCap cells as fillers.

Metal Density Fill

• Density issues due to etching:

- A narrow metal wire separated from other metal receives a higher density of etchant than closely spaced wires, such that the narrow metal can get over-etched.
- Solution:

metal

- Minimum metal density rules
- But, be aware of critical nets!

Metal Density Fill

• Density issues due to CMP:

23

- Chemical Mechanical Polishing (CMP) Metal Slotting (Cheesing) is the stage during which the wafer is planarized.
- Since metals are mechanically softer than dielectrics, metal tops are susceptible to "dishing", and very wide metals become thin (erosion).

Antenna Fixing

Antenna Hazards:

Antenna Ratios:

Area of Metal Connected to Gate Combined Area of Gate Or Area of Metal Connected to Gate Combined Perimeter of Gate

- During metal etch, strong EM fields are used to stimulate the plasma etchant resulting in voltage gradients at MOSFET gates that can damage the thin oxide
- Antenna hazards occur when the ratio of the metal area to gate area during a process step is large.

IR Drop and EM Analysis

• Static IR drop analysis:

- Average voltage drop assuming constant current.
- Insufficient for modern technologies.

• Dynamic IR drop analysis:

- Depends on switching activity of the logic.
- Is vector dependent, using VCD files produced with SDF timing data.
- Analyzes peak current demand.
- Often run at FF corner, high VDD, high temp, RCWorst extraction.

Electromigration Analysis

- Check current density.
- Focuses on power lines, but "Signal EM" is also required nowadays.

Logic Equivalence

Layout (Physical) Verification

Design Rule Check (DRC)

DRC run at the fullchip level on a sign-off DRC Tool.

For many further details, see my short course called "Digital-on-top Physical Verification" on <u>YouTube</u>

- Extra checks for fullchip are considered, including DFM recommended rules.
- Applied to GDS streamed out from P&R tool with the addition of bonding pads, density fillers, toplevel markings, sealring, and labels.

Layout vs Schematic (LVS)

- Extract layout (GDS) and build Spice netlist
 - Sometimes need to black-box sensitive layouts.
- Export Verilog and translate into Spice netlist
- Compare the two with a sign-off LVS tool.
- Electrical Rule Check (ERC)
 - Part of LVS. Checks for shorts, floating nets, well biasing.

Layout (Physical) Verification

• Special GDS additions for tapeout:

- Special marker layers are used by DRC and LVS
- Text labels are used for LVS and for commenting
- Chip logo added in toplayer for identification

Reset

 Reticle alignment or "fiducial" markings for alignment. e.g : special DRC rules for RAM e.g : Layer to indicate no metal fill in this analog block Digital_VLSI_design

Logo

© Adam Teman, 2024

Adding a sealring

30

 To protect the chip from damaging during dicing (sawing), a sealring is added around the periphery.

© Adam Teman, 2024

Resolution Enhancement Techniques (RET)

• Before writing the mask, additional transformations are applied to

31

Resolution Enhancement Techniques (RET)

• Optical Proximity Correction (OPC)

2024

e Auum remun,

Resolution Enhancement Techniques (RET)

• Phase Shift Masks (PSM)

© Adam Teman, 2024

33

And for some really nice examples...

 My friends at ETH-Zurich have taped out close to 500 ICs and have a beautiful display of them on the IIS Chip Gallery:

Noteworthy References

- Rob Rutenbar "From Logic to Layout" 2013
- Cadence
- IDESA
- Kahng, et al. "VLSI Physical Design: From Graph Partitioning to Timing Closure" – Chapter 6