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Routing: The Problem

• Scale
• Millions of wires

• MUST connect them all

• Geometric Complexity
• Basic starting point – grid representation.

• But at nanoscale – Geometry rules are complex!

• Also, many routing layers with different “costs”.

• Electrical Complexity
• It’s not enough to just connect all the wires.

• You also have to:
• Ensure that the delays through the wires are small.
• Ensure that wire-to-wire interactions (crosstalk) doesn’t mess up 

behavior.
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Problem Definition

• Problem:
• Given a placement, and a fixed number of metal layers, find a valid pattern 

of horizontal and vertical wires that connect the terminals of the nets.

• Input:
• Cell locations, netlist

• Output:
• Geometric layout of each net 

connecting various standard cells

• Two-step process
• Global routing

• Detailed routing
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• Objective
• 100% connectivity of a system

• Minimum area, wirelength

• Constraints
• Number of routing layers

• Design rules

• Timing (delay)

• Crosstalk

• Process variations



Routing in Innovus/Encounter

• The detailed routing engine used by Innovus/Encounter is called 

“NanoRoute”
• NanoRoute provides concurrent timing-driven and SI-driven routing.

• In addition, it can perform multi-cut via insertion, wire widening and spacing.

• The commands for running a route with NanoRoute are:

• Following detailed route wire optimization and timing optimization:
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setNanoRouteMode -routeWithTimingDriven true -routeWithSiDriven true
routeDesign

setNanoRouteMode -routeWithTimingDriven false \
-droutePostRouteSpreadWire true -drouteUseMultiCutViaEffort high 

routeDesign –wireOpt
setNanoRouteMode -routeWithTimingDriven true
optDesign –postRoute –setup -hold



Routing Algorithms
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Grid Assumption

• Despite the complexity of nanoscaled routing, we will use a grid 

assumption and add the complexity in later.
• Layout is a grid of regular squares

• A legal wire is a set of connected grid

cells through unobstructed cells.

• Obstacles (or blockages) are marked

in the grid.

• Wires are strictly horizontal and vertical

(Manhattan Routing)

• Paths go 
• North/South

• East/West.
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Maze Routers

• Also known as “Lee Routers”
• C. Y. Lee, “An algorithm for path connections and its applications” 1961

• Strategy:
• Route one net at a time.

• Find the best wiring path for the current net.

• Problems:
• Early wired nets may block path of later nets.

• Optimal choice for one net may block others.

• Basic Idea:
• Expand  Backtrace Cleanup
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Maze Routing: Expansion

• Start at the source.

• Find all paths 1 cell away.

• Continue until reaching the target.
• We approach the target with a 

“wavefront”

• We found that the shortest path to

the target is 6 unit steps.
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Maze Routing: Backtrace & Cleanup

• Backtrace:
• Follow the path lengths backwards in 

descending order.

• This will mark a shortest-path to the target.

• However, there may be many shortest 

paths, so optimization can be used to 

select the best one.

• Cleanup
• We have now routed the first net.

• To ensure that future nets do not try to use 

the same resources, mark the net path 

from S to T as an obstacle.
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Maze Routing: Blockages

• How do we deal with blockages?
• Easy. Just “go around” them!

To summarize:

• Expand: 
• Breadth-first-search (BFS) to find all 

paths from S to T in path-length order.

• Backtrace: 
• Walk shortest path back to source.

• Cleanup:
• Mark net as obstacle 

and erase distance markers.10
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Multi-Point Nets

• How do we go about routing a net 

with multiple targets?
• Actually, pretty straightforward.

• Start with our regular maze routing 

algorithm to find the path to the nearest 

target.

• Then re-label all cells on found path as 

sources, and re-run maze router using all 

sources simultaneously.
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Multi-Point Nets

• How do we go about routing a net 

with multiple targets?
• Actually, pretty straightforward.

• Start with our regular maze routing 

algorithm to find the path to the nearest 

target.

• Then re-label all cells on found path as 

sources, and re-run maze router using all 

sources simultaneously.

• Repeat until reaching all target points.

Note that this does not guarantee the 

shortest path (=“Steiner Tree”)
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Multi-Layer Routing

• Okay, so what about dealing with several routing layers?
• Same basic idea of grid – one grid for each layer.

• Each grid box can contain one via.

• New expansion direction – up/down.
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Multi-Layer Routing
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Non-Uniform Grid Costs

• But we know that vias have (relatively) high resistance.
• Shouldn’t we prefer to stay on the same metal layer?

• We also prefer Manhattan Routing
• Each layer is only routed in one direction.

• A “turn” requires going through a via or a “jog” should be penalized.

• Is there a way to prefer routing in a certain layer/direction?

• Yes. 
• Let’s introduce non-uniform grid costs.
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Multi-Layer Routing
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How do we implement this?

• Grids are huge.
• Assume 1cm X 1cm chip.

• Assume 100 nm track

• Assume 10 routing layers

• That is 1010 (100 billion) grid cells!

• We need a low cost representation
• Only store the wavefront.

• Remember which cells have been reached,

at what cost, and from which direction. 

• Use Dijkstra’s algorithm to find the 

cheapest cell first.

• Store data in a heap. 
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All of this is hard!

Use many different heuristics:

• Which net to route first

• Bias towards the right 

direction

• How to go about fixing 

problems

• Etc., etc., etc.



Divide and Conquer: Global Routing

• To deal with a big chip, we make our problem smaller
• Divide the chip into big, course regions

• E.g., 200 X 200 tracks each.

• These are called GBOXes.

• Now Maze Route through the GBOXes
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Divide and Conquer: Global Routing

• Global routing takes care of basic congestion.
• Balances supply vs. demand of routing resources.

• Generates regions of confinement for the wires.

• Detailed routing decides on the exact path.
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Routing in practice
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Layer Stacks

• Metal stacks are changing 

(and growing)
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Global Route

• Divide floorplan into GCells
• Approximately 10 tracks per layer each.

• Perform fast grid routing:
• Minimize wire-length

• Balance Congestion

• Timing-driven

• Noise/SI-driven

• Keep buses together

• Also used for trial route
• During earlier stages of the flow
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Congestion Map

• Use congestion map and report to 

examine design routability
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Congestion map

Congestion Report

#               Routing  #Avail      #Track     #Total     %Gcell
#  Layer      Direction   Track     Blocked      Gcell Blocked
#  --------------------------------------------------------------
#  Metal 1        H        7607        9692     1336335    62.57%
#  Metal 2        H        7507        9792     1336335    55.84%
#  Metal 3        V        7636        9663     1336335    59.51%
#  Metal 4        H        8609        8691     1336335    52.02%
#  Metal 5        V        5747       11551     1336335    56.39%
#  Metal 6        H        5400       11899     1336335    55.09%
#  Metal 7        V        1831        2486     1336335    55.30%
#  Metal 8        H        2415        1903     1336335    43.85%
#  --------------------------------------------------------------
#  Total                  46753      56.99%    10690680    55.07%
#
#  589 nets (0.47%) with 1 preferred extra spacing. 



Detailed Route

• Using global route plan, 
within each global route cell
• Assign nets to tracks

• Lay down wires

• Connect pins to nets

• Solve DRC violations

• Reduce cross couple cap

• Apply special routing rules

• Flow:
• Track Assignment (TA)

• DRC fixing inside a Global Routing Cell (GRC)

• Iterate to achieve a solution (default ~20 iterations)

24

Detailed Route Boxes

Solve

shorts

Notch

Spacing

Notch

Spacing

Thin&Fat

Spacing

Min

Spacing



Signal Integrity (SI)

• Signal Integrity during routing is synonymous with Crosstalk.
• A switching signal may affect a neighboring net.

• The switching net is called the Aggressor.

• The affected net is called the Victim.

• Two major effects:
• Signal slow down

• When the aggressor and victim 

switch in opposite directions.

• Signal speed up
• When the aggressor and victim 

switch in the same direction.
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SI Multi-Aggressor Timing Analysis

• Infinite Window Analysis
• An infinite noise window

applies the maximum delay 

due to crosstalk during timing analysis.

• This model was sufficient for older (pre-90nm) 

technologies, but became too severe with the 

growing sidewall capacitances at scaled nodes.

• Propagated Noise Analysis
• Min/Max vectors are propagated through the design to 

create a transition window for all aggressors in relation 

to a certain victim.

• Noise is only applied at the overlap of the two 

windows to determine the worst case noise bump.
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Signal Integrity - Solutions

• Crosstalk Prevention
• Limit length of parallel nets

• Wire spreading

• Shield special nets

• Upsize driver or buffer
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Design For Manufacturing

• During route, apply additional 

design for manufacturing (DFM) 

and/or design for yield (DFY) rules:
• Via reduction

• Redundant via insertion

• Wire straightening

• Wire spreading

28
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Via Optimization

• Post-Route Via Optimization, includes:
• Incremental routing for the minimization of vias.

• Replacement of single vias with multi-cut vias.

• These operations are required for:
• Reliability:

• The ability to create reliable vias decreases with each process 

node. If a single via fails, it creates an open and the circuit is 

useless.

• Electromigration:
• Electromigration hazards are even more significant in vias, 

which are essentially long, narrow conductors.

29
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Wire Spreading

• Wire spreading achieves:
• Lower capacitance and better signal integrity.

• Lower susceptibility to shorts or opens due to 

random particle defects.
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Sign-off Timing
Advanced Concepts in Static Timing Analysis
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Additional Timing Margins

• Remember those pesky timing margins, we mentioned in the lecture 

about static timing analysis?

• Well, we discussed skew and jitter, but is that all?

• If it was, there’s a good chance that all the CAD engineers could retire…

• So what/why/how do we apply additional timing margins?

skew logic marginCQ SUT t t t     
logic margin skewCQ holdt t t    



On Chip Variation
• Spatial variation

• Chips are “big” and delay elements can be far from each other.

• Process/Voltage/Temperature (PVT) variation can affect 
different parts of the timing path in opposite directions.

• So, why don’t we just assume the worst possible case

• During setup:
• The launch (data) path is extra slow.

• The capture (clock) path is super fast.

• During hold:
• The launch (data) path is super fast.

• The capture (clock) path is extra slow.
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set_timing_derate –max -early 0.9 -late 1.2

set_timing_derate –min -early 1.2 -late 0.9

setAnalysisMode \
-analysisType
onChipVariation

Courtesy: Synopsys

Courtesy: Synopsys



Clock Reconvergence Pessimism Removal

• To limit the pessimism of OCV, apply CRPR
• This basically removes the derating from the clock path shared by both the 

launch and capture paths.

Courtesy: Synopsys

setAnalysisMode -analysisType onChipVariation –crpr both 



Advanced on-chip variation (AOCV)

• Well, OCV derating is still a bit over-doing it, no?

• So let’s introduce Advanced OCV:
• For long paths, the local variation averages out, 

and therefore, the longer the path, the less variation.

• So let’s apply a model based on the path length and give it a new name!

• Is that enough?
• Of course not!

• Location based OCV adds less variation to closer elements.

• Parametric OCV (POCV) provides more accuracy based on statistical libraries.

• Or let’s go for the real target – Statistical Static Timing Analysis (SSTA)

35

Courtesy: Cadence



RC Extraction

• Usually done with an external tool providing several extraction options:
• Cworst

• largest cell delay, small R

• Cbest
• smallest cell delay, large R

• RCbest
• medium C, small R

• RCworst
• medium C, large R

• Which one to use?
• Only C actually affects the delay…

• Maybe use Cworst for setup, Cbest for hold.
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A note about Aging

• Another big issue in modern VLSI design is aging
• Device characteristics change over time.

• Hot Carrier Injection (HCI)

• Negative Bias Temperature Instability (NBTI)

• Time Dependent Dielectric Breakdown (TDDB)

• Electromigration

• Dealing with aging effects:
• Operate with low VDD.

• Model aging as an additional timing margin.

• Use aged library models for signoff timing.

• Add aging sensors and adjust frequency/voltage for compensation. 
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General Sign-off Timing Flow

• Use integrated signoff timing

• Export design to sign-off extraction tool
• Netlist, GDS

• Load parasitics into sign-off timing tool
• SPEF for each corner

• Run Static Timing Analysis in sign-off tool
• Provide SDF for ECO

• Provide SDF for post-layout simulations (Dynamic Timing Analysis)
38

timeDesign –signoff –outDir final_setup
timeDesign –hold –outDir final_hold

spefIn rc_corner1.spef –rc_corner rc_corner1



Chip Finishing and Sign-off
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Chip Finishing Overview

• Chip Finishing for Signoff includes, at the very least:

• Insertion of fillers and DeCaps.

• Application of Design for Manufacturing (DFM) 

and Design for Yield (DFY) rules.

• Antenna checking.

• Metal filling and slotting for metal density rules.

• IR Drop and Electromigration Analysis

• Logic Equivalence

• Layout (Physical) Verification

• Add Sealring



Filler Cell Insertion

• Standard cell placement never reaches 100% utilization.

• We need to “fill in the blanks”
• Ensure continuous wells across the entire row.

• Ensure VDD/GND rails (follow pins) are fully 

connected.

• Ensure proper GDS layers to pass DRC.

• Ensure sufficient diffusion and poly densities.

• In scaled processes, provide regular poly/diffusion patterning.

• We can also add DeCap cells as fillers.
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Metal Density Fill

• Density issues due to etching:
• A narrow metal wire separated from other metal receives a higher density of 

etchant than closely spaced wires, such that the narrow metal can get over-

etched.

• Solution:
• Minimum metal density rules

• But, be aware of critical nets!
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Metal Density Fill

• Density issues due to CMP:
• Chemical Mechanical Polishing (CMP) is the stage during which the 

wafer is planarized. 

• Since metals are mechanically softer than dielectrics, metal tops are 

susceptible to “dishing”, and very wide metals become thin (erosion).

• Solution:
• Maximum metal density rules

• Apply “Slotting”

• Also solves “metal liftoff” problems.
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Antenna Fixing

• Antenna Hazards:
• During metal etch, strong EM fields are used to stimulate the plasma etchant 

resulting in voltage gradients at MOSFET gates that can damage the thin oxide

• Antenna hazards occur when the ratio of the metal area to gate area during a 

process step is large.

• Fixing Antenna Problems:
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IR Drop and EM Analysis
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Logic Equivalence

46

Logic 

optimization

Physical 

design

RTL

Synthesis

HDL

Netlist

Netlist

Netlist

Formal 

verification 

Logic 

equivalence 

check 

LVS 

Layout

Logic 

equivalence 

check 

Verilog_in

P&R

GDSII         Verilog_out

LEQ

LVS



Layout (Physical) Verification

• Design Rule Check (DRC)
• DRC run at the fullchip level on a sign-off DRC Tool.

• Extra checks for fullchip are considered, including DFM recommended rules.

• Applied to GDS streamed out from P&R tool with the addition of bonding pads, 

density fillers, toplevel markings, sealring, and labels.

• Layout vs Schematic (LVS)
• Extract layout (GDS) and build Spice netlist

• Sometimes need to black-box sensitive layouts.

• Export verilog and translate into Spice netlist

• Compare the two with a sign-off LVS tool.

• Electrical Rule Check (ERC)
• Part of LVS. Checks for shorts, floating nets, well biasing.

47



Layout (Physical) Verification

• Special GDS additions for tapeout:
• Special marker layers are used by DRC and LVS

• Text labels are used for LVS and for commenting

• Chip logo added in toplayer for identification

• Reticle alignment 

or “fiducial” markings 

for alignment.
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Adding a sealring

• To protect the chip from damaging during dicing (sawing), 
a sealring is added around the periphery.
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Resolution Enhancement Techniques (RET)

• Before writing the mask, additional transformations are applied to 

the GDS:
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Resolution Enhancement Techniques (RET)

• Optical Proximity Correction (OPC)
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Resolution Enhancement Techniques (RET)

• Phase Shift Masks (PSM)
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