Digital VLSI Design

Lecture 10: Routing

Semester A, 2016-17

Lecturer: Dr. Adam Teman

1 February 2017

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email <u>adam.teman@biu.ac.il</u> and I will address this as soon as possible.

Routing: The Problem

Scale

- Millions of wires
- MUST connect them all

Geometric Complexity

- Basic starting point grid representation.
- But at nanoscale Geometry rules are complex!
- Also, many routing layers with different "costs".

Electrical Complexity

- It's not enough to just *connect* all the wires.
- You also have to:
 - Ensure that the delays through the wires are small.
 - Ensure that wire-to-wire interactions (crosstalk) doesn't mess up behavior.

Thousands of macro blocks Millions of gates Millions of wires

Problem Definition

• Problem:

• Given a placement, and a fixed number of metal layers, find a valid pattern of horizontal and vertical wires that connect the terminals of the nets.

• Input:

• Cell locations, netlist

• Output:

• Geometric layout of each net connecting various standard cells

Two-step process

- Global routing
- Detailed routing

Objective

- 100% connectivity of a system
- Minimum area, wirelength

Constraints

- Number of routing layers
- Design rules
- Timing (delay)
- Crosstalk
- Process variations

Routing in Innovus/Encounter

- The detailed routing engine used by Innovus/Encounter is called "NanoRoute"
 - NanoRoute provides concurrent timing-driven and SI-driven routing.
 - In addition, it can perform multi-cut via insertion, wire widening and spacing.

• The commands for running a route with NanoRoute are:

setNanoRouteMode -routeWithTimingDriven true -routeWithSiDriven true
routeDesign

• Following detailed route wire optimization and timing optimization:

```
setNanoRouteMode -routeWithTimingDriven false \
        -droutePostRouteSpreadWire true -drouteUseMultiCutViaEffort high
routeDesign -wireOpt
setNanoRouteMode -routeWithTimingDriven true
optDesign -postRoute -setup -hold
```

1	2	2	3	4	
Intro	Routing Algorithms	Routing in Practice	Sign-off Timing	Chip Finishing and Sign-off Checks	

Routing Algorithms

This section is heavily based on Rob Rutenbar's "From Logic to Layout", Lecture 11 from 2013. For a better © and more detailed explanation, do yourself a favor and go see the original!

Grid Assumption

- Despite the complexity of nanoscaled routing, we will use a grid assumption and add the complexity in later.
 - Layout is a grid of regular squares
 - A legal wire is a set of connected grid cells through unobstructed cells.
 - Obstacles (or blockages) are marked in the grid.
 - Wires are strictly horizontal and vertical (Manhattan Routing)
 - Paths go
 - North/South
 - East/West.

Maze Routers

Also known as "Lee Routers"

• C. Y. Lee, "An algorithm for path connections and its applications" 1961

• Strategy:

- Route one net at a time.
- Find the best wiring path for the current net.

• Problems:

- Early wired nets may block path of later nets.
- Optimal choice for one net may block others.

Basic Idea:

• Expand \rightarrow Backtrace \rightarrow Cleanup

Blocked!

Maze Routing: Expansion

- Start at the source.
- Find all paths 1 cell away.
- Continue until reaching the target.
 - We approach the target with a "wavefront"
 - We found that the shortest path to the target is 6 unit steps.

Maze Routing: Backtrace & Cleanup

• Backtrace:

- Follow the path lengths backwards in descending order.
- This will mark a shortest-path to the target.
- However, there may be *many* shortest paths, so optimization can be used to select the *best* one.

Cleanup

- We have now routed the first net.
- To ensure that future nets do not try to use the same resources, mark the net path from S to T as an obstacle.

Maze Routing: Blockages

How do we deal with blockages?

• Easy. Just "go around" them!

To summarize:

• Expand:

• Breadth-first-search (BFS) to find all paths from S to T in path-length order.

Backtrace:

• Walk shortest path back to source.

• Cleanup:

- Mark net as obstacle
- and erase distance markers.

Multi-Point Nets

- How do we go about routing a net with multiple targets?
 - Actually, pretty straightforward.
 - Start with our regular maze routing algorithm to find the path to the nearest target.
 - Then re-label *all cells* on found path as *sources*, and re-run maze router using all sources simultaneously.

Multi-Point Nets

- How do we go about routing a net with multiple targets?
 - Actually, pretty straightforward.
 - Start with our regular maze routing algorithm to find the path to the nearest target.
 - Then re-label *all cells* on found path as *sources*, and re-run maze router using all sources simultaneously.
 - Repeat until reaching all target points.

Note that this does not *guarantee* the shortest path (="Steiner Tree")

Multi-Layer Routing

Okay, so what about dealing with several routing layers?

- Same basic idea of grid one grid for each layer.
- Each grid box can contain one via.
- New expansion direction up/down.

Multi-Layer Routing

Metal 1

Non-Uniform Grid Costs

- But we know that vias have (relatively) high resistance.
 - Shouldn't we prefer to stay on the same metal layer?
- We also prefer Manhattan Routing
 - Each layer is only routed in one direction.
 - A "turn" requires going through a via or a "jog" should be penalized.
- Is there a way to *prefer* routing in a certain layer/direction?

- Yes.
 - Let's introduce *non-uniform grid costs*.

How do we implement this?

• Grids are huge.

- Assume 1cm X 1cm chip.
- Assume 100 nm track
- Assume 10 routing layers
- That is 10¹⁰ (100 billion) grid cells!

• We need a low cost representation

- Only store the wavefront.
- Remember which cells have been *reached*, at what *cost*, and from *which direction*.
- Use *Dijkstra's algorithm* to find the cheapest cell first.
- Store data in a heap.

All of this is hard!

Use many different heuristics:

- Which net to route first
- Bias towards the right direction
- How to go about fixing problems
- Etc., etc., etc.

Divide and Conquer: Global Routing

- To deal with a big chip, we make our problem smaller
 - Divide the chip into big, course regions
 - E.g., 200 X 200 tracks each.
 - These are called GBOXes.

Now Maze Route through the GBOXes

Divide and Conquer: Global Routing

- Global routing takes care of basic congestion.
 - Balances supply vs. demand of routing resources.
 - Generates regions of confinement for the wires.
- Detailed routing decides on the exact path.

19

1	\backslash	2	2	3	4	
Intro	$\left \right\rangle$	Routing Algorithms	Routing in Practice	Sign-off Timing	Chip Finishing and Sign-off Checks	

Routing in practice

Layer Stacks

• Metal stacks are changing (and growing)

Representative layer stacks for 130 nm - 32 nm technology nodes

U2

U1

Intel 45nm 8 metal stack

UMC 6 metal stack

Global Route

• Divide floorplan into GCells

• Approximately 10 tracks per layer each.

tracks

• Perform fast grid routing:

- Minimize wire-length
- Balance Congestion
- Timing-driven
- Noise/SI-driven
- Keep buses together

Also used for trial route

During earlier stages of the flow

Congestion Map

• Use congestion map and report to examine design routability

Congestion map

Congestion	Report

# #	Layer	Routing Direction	#Avail Track	#Track Blocked	#Total Gcell	%Gcell Blocked
#						
#	Metal 1	Н	7607	9692	1336335	62.57%
#	Metal 2	Н	7507	9792	1336335	55.84%
#	Metal 3	V	7636	9663	1336335	59.51%
#	Metal 4	Н	8609	8691	1336335	52.02%
#	Metal 5	V	5747	11551	1336335	56.39%
#	Metal 6	Н	5400	11899	1336335	55.09%
#	Metal 7	V	1831	2486	1336335	55.30%
#	Metal 8	Н	2415	1903	1336335	43.85%
#						
#	Total		46753	56.99%	10690680	55.07%
#						
#	589 nets	(0.47%) with	1 prefer	red extra spa	acing.	

Detailed Route

- Using global route plan, within each global route cell
 - Assign nets to tracks
 - Lay down wires
 - Connect pins to nets
 - Solve DRC violations
 - Reduce cross couple cap
 - Apply special routing rules

• Flow:

- Track Assignment (TA)
- DRC fixing inside a Global Routing Cell (GRC)
- Iterate to achieve a solution (default ~20 iterations)

Detailed Route Boxes

Signal Integrity (SI)

• Signal Integrity during routing is synonymous with *Crosstalk*.

- A switching signal may affect a neighboring net.
- The switching net is called the Aggressor.
- The affected net is called the *Victim*.

• Two major effects:

- Signal slow down
 - When the aggressor and victim switch in *opposite* directions.
- Signal speed up
 - When the aggressor and victim switch in the *same* direction.

SI Multi-Aggressor Timing Analysis

Net X

addressor

Infinite Window Analysis

- An infinite noise window Net Y aggressor
 applies the maximum delay due to crosstalk during timing analysis.
- This model was sufficient for older (pre-90nm) technologies, but became too severe with the growing sidewall capacitances at scaled nodes.

Propagated Noise Analysis

- Min/Max vectors are propagated through the design to create a transition window for all aggressors in relation to a certain victim.
- Noise is only applied at the overlap of the two windows to determine the worst case noise bump.

Signal Integrity - Solutions

Wire Spreading

Crosstalk Prevention

- Limit length of parallel nets
- Wire spreading
- Shield special nets
- Upsize driver or buffer

Spacing

Design For Manufacturing

- During route, apply additional design for manufacturing (DFM) and/or design for yield (DFY) rules:
 - Via reduction
 - Redundant via insertion
 - Wire straightening
 - Wire spreading

Wire straightening (reduce jogs)

Avoid asymmetrical contacts

Via Optimization

• Post-Route Via Optimization, includes:

- Incremental routing for the minimization of vias.
- Replacement of single vias with multi-cut vias.

• These operations are required for:

- Reliability:
 - The ability to create reliable vias decreases with each process node. If a single via fails, it creates an open and the circuit is useless.
- Electromigration:
 - Electromigration hazards are even more significant in vias, which are essentially long, narrow conductors.

Wire Spreading

• Wire spreading achieves:

- Lower capacitance and better signal integrity.
- Lower susceptibility to shorts or opens due to random particle defects.

 High-density critical area

 High probability of yield-killing defect

- Density reduced, yield risk reduced
- No timing impact!

30

1 Intro		2 Routing	2 Routing in	3 Sign-off	4 Chip Finishing and	
	/ '	Algorithms	Practice	Timing	Sign-off Checks	

Sign-off Timing

Advanced Concepts in Static Timing Analysis

Additional Timing Margins

 Remember those pesky timing margins, we mentioned in the lecture about static timing analysis?

$$T + \delta_{\text{skew}} > t_{CQ} + t_{\text{logic}} + t_{SU} + \delta_{\text{margin}} \qquad t_{CQ} + t_{\text{logic}} - \delta_{\text{margin}} > t_{hold} + \delta_{\text{skew}}$$

- Well, we discussed *skew* and *jitter*, but is that all?
- If it was, there's a good chance that all the CAD engineers could retire...
- So what/why/how do we apply additional timing margins?

On Chip Variation

Spatial variation

- Chips are "big" and delay elements can be far from each other.
- Process/Voltage/Temperature (PVT) variation can affect different parts of the timing path in opposite directions.
- So, why don't we just assume the worst possible case

• During setup:

- The launch (data) path is extra slow.
- The capture (clock) path is super fast.

set_timing_derate -max -early 0.9 -late 1.2

• During hold:

- The launch (data) path is super fast.
- The capture (clock) path is extra slow.

set_timing_derate -min -early 1.2 -late 0.9

setAnalysisMode \

-analysisType

onChipVariation

Clock Reconvergence Pessimism Removal

To limit the pessimism of OCV, apply CRPR

• This basically removes the derating from the clock path shared by both the launch and capture paths.

setAnalysisMode -analysisType onChipVariation -crpr both

Advanced on-chip variation (AOCV)

- Well, OCV derating is still a bit over-doing it, no?
- So let's introduce Advanced OCV:
 - For long paths, the local variation averages out, and therefore, the longer the path, the less variation.
 - So let's apply a model based on the path length and give it a new name!

Is that enough?

- Of course not!
- Location based OCV adds less variation to closer elements.
- Parametric OCV (POCV) provides more accuracy based on statistical libraries.
- Or let's go for the real target Statistical Static Timing Analysis (SSTA)

OCV

RC Extraction

Usually done with an external tool providing several extraction options:

- Cworst
 - largest cell delay, small R
- Cbest
 - smallest cell delay, large R
- RCbest
 - medium C, small R
- RCworst
 - medium C, large R

• Which one to use?

- Only C actually affects the delay...
- Maybe use Cworst for setup, Cbest for hold.

A note about Aging

Another big issue in modern VLSI design is aging

- Device characteristics change over time.
- Hot Carrier Injection (HCI)
- Negative Bias Temperature Instability (NBTI)
- Time Dependent Dielectric Breakdown (TDDB)
- Electromigration

• Dealing with aging effects:

- Operate with low VDD.
- Model aging as an additional timing margin.
- Use aged library models for signoff timing.
- Add aging sensors and adjust frequency/voltage for compensation.

General Sign-off Timing Flow

Use integrated signoff timing

timeDesign -signoff -outDir final_setup
timeDesign -hold -outDir final_hold

• Export design to sign-off extraction tool

• Netlist, GDS

Load parasitics into sign-off timing tool

SPEF for each corner

spefIn rc_corner1.spef -rc_corner rc_corner1

Run Static Timing Analysis in sign-off tool

- Provide SDF for ECO
- Provide SDF for post-layout simulations (Dynamic Timing Analysis)

ath 1: VIOLATED Setup Check with Pin DTMF_INST/TDSP_CO	RE_INST/EXECUTE	E_INST/top_			
adpoint: DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/top_r	eg_0/E (^) chea	ked with			
eading edge of 'vclk1'					
aginpoint: DTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg	_15/Q (v) trig	gered by			
eading edge of 'vclk1'					
ther End Arrival Time 2,000					
Setup 1.119					
Phase Shift 4.000					
Uncertainty 0,250					
Kequired line 4.651					
Hrrival lime 5.//1					
Slack line -2,140					
+ Clock Notwork Latency (Ideal) 2,000					
 Province int Oppius Time 2,000 					
= negraporati errival line 2.000		_			
Loginpoint in Ital The Etter					
Instance	l Arc	Cell	l Delau I	Arrival	Required
Instance	l Arc	Cell	Delay	Arrival Time	Required
Instance	Anc I	Cell	Delay 	Arrival Time	Required Time
Instance	I Anc I I I OK ^	Cell	Delay	Arrival Time 2.000	Required Time -0.140
Instance	Anc 0K ^ 0K ^ → 0 v	Cell SDFFRHQX1	Delay	Arrival Time 2.000 2.326	Required Time -0,140 0,186
Instance IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/i_10028	Anc CK ^ CK ^ -> Q ∨ A ∨ -> Y ∨	Cell SDFFRHQX1 CLKBUFXL	Delay Delay 0,326 0,931	Arrival Time 2,000 2,326 3,256	Required Time -0,140 0,186 1,117
Instance IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTMF_INST/TDSP_CORE_INST/ECOUTE_INST/i_256	Anc CK ^ CK ^ -> Q ∨ A ∨ -> Y ∨ A ∨ -> Y ^	Cell SDFFRH0X1 CLKBUFXL NOR2X1	Delay 0.326 0.931 0.431	Arrival Time 2,000 2,326 3,256 3,688	Required Time -0.140 0.186 1.117 1.548
Instance IDTHF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTHF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTHF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1256 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1256	Anc CK ^ CK ^ -> Q v A v -> Y v A v -> Y ^ B ^ -> Y ^	Cell SDFFRHQX1 CLKBUFXL NOR2X1 AND2X1	Delay 0.326 0.931 0.431 0.285	Arrival Time 2,000 2,326 3,256 3,688 3,972	Required Time -0.140 0.186 1.117 1.548 1.833
Instance IDTHF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTHF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTHF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_256 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1756 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1790	I Anc I CK ^ I CK ^ -> Q ∨ I A ∨ -> Y ∨ I A ∨ -> Y ^ I B ^ -> Y ^ I AN ^ -> Y ^	Cell SDFFRHQX1 CLKBUFXL NOR2X1 ANJ2X1 NOR2BX1	Delay 0.326 0.931 0.431 0.285 0.602	Arrival Time 2,000 2,326 3,256 3,688 3,972 4,574	Required Time -0.140 0.186 1.117 1.548 1.833 2.435
Instance IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_256 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1756 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1790 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_194	Anc CK ^ -> Q v CK ^ -> Q v A v -> Y v A v -> Y ^ B ^ -> Y ^	Cell SDFFRH0X1 CLKBUFXL NOR2X1 AND2X1 NOR2BX1 AND2X1	Delay 0.326 0.931 0.431 0.431 0.285 0.602 0.602	Arrival Time 2,000 2,326 3,256 3,688 3,688 3,972 4,574 4,916	Required Time -0.140 0.186 1.117 1.548 1.833 2.435 2.776
Instance IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_256 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1756 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1740 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_144 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845	Anc CK ^ CK ^ -> Q v A v -> Y v A v -> Y ^ B ^ -> Y ^ A ^ -> Y ^ A ^ -> Y ^	Cell SDFFRHQX1 CLKBUFXL NOR2X1 NOR2X1 NOR2BX1 ANID2X1 ANID2X1	Delay 0.326 0.931 0.431 0.285 0.602 0.602 0.342 0.392	Arrival Time 2,000 2,326 3,256 3,688 3,972 4,574 4,916 5,308	Required Time -0.140 0.186 1.117 1.548 1.833 2.435 2.776 3.169
Instance IDTHF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTHF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTHF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_256 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_2766 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1790 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_194 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845 IDTHF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1415	Anc CK ^ -> Q ∪ A ∪ -> Y ∪ A ∪ -> Y ∧ B ^ -> Y ^ A ^ -> Y ^ A ^ -> Y ^ A ^ -> Y ^ B ^ -> Y ∨	Cell SDFFRHOX1 CLKBUFXL NOR2X1 AND2X1 AND2X1 AND2X1 NAND2X1 NAND2X1	Delay 0.326 0.931 0.431 0.431 0.285 0.602 0.342 0.392 0.392	Arrival Time 2.000 2.326 3.256 3.688 3.972 4.574 4.916 5.308 5.487	Required Time -0.140 0.186 1.117 1.548 1.833 2.435 2.776 3.169 3.347
Instance IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1026 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1756 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1790 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_145 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3501	Anc CK ^ -> Q v CK ^ -> Q v A v -> Y ^ B ^ -> Y ^ A ^ -> Y ^ A ^ -> Y ^ A ^ -> Y ^ B ^ -> Y v B ^ -> Y v	Cell SDFFRHOX1 CLKBUFXL NOR2X1 ANIZX1 ANIZX1 ANIZX1 NANIZX1 NANIZX1	Delay 0.326 0.931 0.431 0.285 0.602 0.342 0.342 0.392 0.392 0.179 0.601	Arrival Time 2,000 2,326 3,256 3,688 3,972 4,574 4,916 5,308 5,487 6,088	Required Time -0.140 0.186 1.117 1.548 1.833 2.435 2.776 3.169 3.347 3.948
Instance IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/i_10028 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_10028 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1256 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1750 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_134 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1345 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1415 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_451 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_451 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3501 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3891	Arc CK ^ -> Q v CK ^ -> Q v A v -> Y v A v -> Y ^ A v -> Y ^ A ^ -> Y ^ A ^ -> Y ^ B ^ -> Y ^ B ^ -> Y ^ B 0 -> Y ^	Cell SDFFRHQX1 CLKBUFXL NOR2X1 AND2X1 AND2X1 AND2X1 AND2X1 NAND2X1 CLKBUFXL	Delay 0.326 0.931 0.431 0.285 0.602 0.342 0.342 0.342 0.392 0.179 0.601 0.680	Arrival Time 2,000 2,326 3,256 3,688 3,972 4,574 4,916 5,308 5,487 6,088 6,768	Required Time -0.140 0.186 1.117 1.548 1.833 2.435 2.776 3.169 3.347 3.348 4.628
Instance IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15 IDTMF_INST/TDSP_CORE_INST/ECOUTE_INST/i_2028 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_276 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1790 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1790 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_194 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_1845 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3501 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3891 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3891 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3891 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_3891 IDTMF_INST/TDSP_CORE_INST/EXECUTE_INST/i_9891	Anc CK ^ CK ^ -> Q v A v -> Y v A v -> Y ^ A n -> Y ^ A ^ -> Y ^ A ^ -> Y ^ B ^ -> Y ^ B v -> Y ^ B v -> Y ^ B ^ -> Y ^ B ^ -> Y ^	Cell SDFFRHQX1 CLKBUFXL NOR2X1 AND2X1 AND2X1 AND2X1 NAND2X1 NAND2X1 NAND2X1 CLKBUFXL SEDFFX1	Delay 0,326 0,331 0,431 0,285 0,332 0,332 0,332 0,332 0,585 0,595 0,5	Arrival Time 2,000 2,326 3,256 3,688 3,972 4,574 4,916 5,308 5,487 6,088 6,768 6,768 6,771	Required Time -0.140 0.186 1.117 1.548 1.833 2.435 2.776 3.169 3.347 3.347 3.348 4.628 4.631

report timing

1		2		2	3	4	
Intro	\rightarrow	Routing Algorithms	\rightarrow	Routing in Practice	Sign-off Timing	Chip Finishing and Sign-off Checks	

Chip Finishing and Sign-off

Chip Finishing Overview

• Chip Finishing for Signoff includes, at the very least:

- Insertion of fillers and DeCaps.
- Application of Design for Manufacturing (DFM) and Design for Yield (DFY) rules.
- Antenna checking.
- Metal filling and slotting for metal density rules.
- IR Drop and Electromigration Analysis
- Logic Equivalence
- Layout (Physical) Verification
- Add Sealring

Filler Cell Insertion

- Standard cell placement never reaches 100% utilization.
- We need to "fill in the blanks"
 - Ensure continuous wells across the entire row.
 - Ensure VDD/GND rails (follow pins) are fully connected.
 - Ensure proper GDS layers to pass DRC.
 - Ensure sufficient diffusion and poly densities.
 - In scaled processes, provide regular poly/diffusion patterning.
- We can also add DeCap cells as fillers.

Metal Density Fill

• Density issues due to etching:

 A narrow metal wire separated from other metal receives a higher density of etchant than closely spaced wires, such that the narrow metal can get overetched.

• Solution:

Less etchant

per um2 of

metal

- Minimum metal density rules
- But, be aware of critical nets!

Metal Density Fill

• Density issues due to CMP:

- Chemical Mechanical Polishing (CMP) is the stage during which the wafer is planarized.
- Since metals are mechanically softer than dielectrics, metal tops are susceptible to "dishing", and very wide metals become thin (erosion).

• Solution:

- Maximum metal density rules
- Apply "Slotting"
- Also solves "metal liftoff" problems.

Antenna Fixing

Antenna Hazards:

44

Antenna Ratios: Area of Metal Connected to Gate Combined Area of Gate Or Area of Metal Connected to Gate Combined Perimeter of Gate

- During metal etch, strong EM fields are used to stimulate the plasma etchant resulting in voltage gradients at MOSFET gates that can damage the thin oxide
- Antenna hazards occur when the ratio of the metal area to gate area during a process step is large.

IR Drop and EM Analysis

Logic Equivalence

Layout (Physical) Verification

• Design Rule Check (DRC)

- DRC run at the fullchip level on a sign-off DRC Tool.
- Extra checks for fullchip are considered, including DFM recommended rules.
- Applied to GDS streamed out from P&R tool with the addition of bonding pads, density fillers, toplevel markings, sealring, and labels.

Layout vs Schematic (LVS)

- Extract layout (GDS) and build Spice netlist
 - Sometimes need to black-box sensitive layouts.
- Export verilog and translate into Spice netlist
- Compare the two with a sign-off LVS tool.

• Electrical Rule Check (ERC)

• Part of LVS. Checks for shorts, floating nets, well biasing.

Layout (Physical) Verification

• Special GDS additions for tapeout:

- Special marker layers are used by DRC and LVS
- Text labels are used for LVS and for commenting
- Chip logo added in toplayer for identification
- Reticle alignment or "fiducial" markings for alignment.

Adding a sealring

49

• To protect the chip from damaging during dicing (sawing), a sealring is added around the periphery.

Resolution Enhancement Techniques (RET)

• Before writing the mask, additional transformations are applied to

Resolution Enhancement Techniques (RET)

Optical Proximity Correction (OPC)

Original Layout

Resolution Enhancement Techniques (RET)

Phase Shift Masks (PSM)

Conventional Mask Alternating PSM

Main References

- Rob Rutenbar "From Logic to Layout" 2013
- Synopsys University Courseware
- IDESA
- Kahng, et al. "VLSI Physical Design: From Graph Partitioning to Timing Closure" – Chapter 6

