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Multiple functional units

• A complex processor may have multiple functional units working in parallel:
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Source: Kuchuk, 2003
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Bit-Sliced Design

5

Fetzer, Orton, ISSCC’02
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Basic Addition
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Serial Adder Concept

• At time i, read ai and bi. 

Produce si and ci+1

• Internal state stores ci. 

Carry bit c0 is set as cin

7
Source: Gate Overflow
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Basic Addition Unit – Full Adder
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Full-Adder Implementation

• A full-adder is therefore a majority gate and a 3-input XOR:
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Total: 32 Transistors

Source: CMOS VLSI Design
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Ripple Carry Adder
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tpd = O(N)tadder = (N-1)tcarry + tsum

• So, it is clear, the Cout output of the 

Full Adder is on the critical path.

• Can we exploit this to improve the 

design?
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Full-Adder Implementation
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Exploiting the Inversion Property
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Sizing the Mirror Adder
• Problem: How can we make a high speed bitslice layout?

• If we upsize each stage according to Logical Effort, 

we will have non-identical bitslices.

• Such upsizing will result in huge gates.

• Why not design the adder to inherently achieve optimal Electrical Effort (EFopt=4)?
• Assume everything not on the carry path can be sized like a minimum inverter!
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Sizing the Mirror Adder

• Now, let’s try to size the first stage to get EF=4:

• Remember, logical effort is a function of gate topology and not sizing!

• Therefore, we can temporarily size the first stage as a minimum sized inverter, 

giving us:

• So to get EF=4:

• But what is CL,Cout?
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Sizing the Mirror Adder

• What is CL,Cout?

• Obviously, we have the second stage…

• But don’t forget the next full adder!

• So CL,Cout is: 

• And now, we can find Cin using the EF constraint we found: 
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Subtraction

• To subtract two’s complement, just remember that:

• So, to subtract:

• Invert one of the operands.

• Add a carry in to the first bit.

• Therefore, to provide an adder/subtractor:

• Add an XOR gate to the B-input

• Use the sub/add selector to the XOR and carry in.
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1x x   1A B A B   
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Carry-Skip (Carry Bypass) Adder
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Carry-Select Adder
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Square Root Carry Select

20

sqrt p/g carry mux sum2t t Mt Nt t     2N
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Carry Lookahead Adder – Basic Idea

• Problem – Cout,k takes approximately k gate delays to ripple.

• Question – can we calculate the carry without any ripple?
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Tree Adders (Logarithmic CLA)

• Can we reduce the complexity of calculating Pi, Gi ?
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Tree Adders (Logarithmic CLA)
• Many ways to construct these CLA or tree adders, based on:

• Radix: How many bits combined in each gate

• Tree Depth: How many stages of logic to the final carry (>=logradixN)

• Fanout: Maximal logic branching in tree
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Manchester Carry-Chain Adder
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The Computer Hall of Fame

• The home computer that 80s kids learned

how to play games on and program with:

• Introduced in Dec. 1982 for $595. Continued selling until 1992!

• 8-bit, 1 MHz, 64KB RAM, 16KB ROM

• Ran BASIC as it’s interface.

• The highest selling single computer model of all time.

• It has been compared to the Ford Model T for its role in 

bringing a new technology to middle-class households 

via creative and affordable mass-production.

• Considered the computer that provided the foundation

for the development of open-source software (freeware)

Source: 
http://www.gondolin.org.uk

Source: wikipedia





Basic Multiplication
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Grade School Multiplication
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1 2 3 4

X    1 2
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Multiplication using serial addition
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Binary Multiplication
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Serial Shift and Add

• Concept:

• Multiplying by ‘1’ is copying the multiplicand

• Multiplying by ‘0’ is a row of zeros

• Select multiplicand or zeros 

according to multiplier bit 

• Add to result

• Shift multiplier and accumulated result
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Array Multiplier
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• Calculate the final product in

a single combinatorial calculation

(=potentially one cycle)
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Array Multiplier Implementation

• Stack 2-input Adders:
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Many Critical Paths
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Can we do it better?

Source: CMOS VLSI Design
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Carry-Save Multiplier
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 mult AND carry merge1t t N t t   

 2logO N N 



June 10, 2021 Adam Teman, 

Multiplier Floorplan
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Faster Multipliers
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Booth Recoding

• Multiplying by ‘0’ is redundant.

• Can we reduce the number of partial products?

• Based on the observation that 

• We can turn sequences of 1’s 

into sequences of 0’s. For example: 0111=1000-0001

• So we can introduce a ‘-1’ bit and recode the multiplier:

• For example, the number 56
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Radix-2 Booth Recoding

• Parse multiplier from left to right

• For each change from 0 to 1, encode a ‘1’

• For each change from 1 to 0, encode a ‘-1’

• For bit 0, assume bit i=-1 is a 0

• Example: 0011 0111 0011 = 0x373
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0 1 0 1 1 0 0 1 0 1 0 1  

0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

  0x  484

0x  111
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Modified (Radix-4) Booth Recoding
• Radix-2 Booth Recoding doesn’t work for parallel hardware implementations:

• A worst case (010101010101010) doesn’t reduce the number of partial products.

• Variable length recoders (according to the length of ‘1’ strings) 

cannot be implemented efficiently.

• Instead, just assume a constant length recoder.

• First apply standard booth recoding.

• Next encode each pair of bits:

• This can be summarized in a truth table:
41

Partial Product Selection Table

Multiplier Bits Recorded Bits

000 0

001 + Multiplicand

010 + Multiplicand

011 +2 × Multiplicand

100 -2 × multiplicand

101 - Multiplicand

110 - Multiplicand

111 0
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Modified (Radix-4) Booth Recoding

• For example, let’s take our previous example:

• 0011 0111 0011 = 01 0-1 10 0-1 01 0-1

• This comes out: 1 -1 2 -1 1 -1.

• We could have done this by using the table:

• 0 0 1 1 0 1 1 1 0 0 1 1

• To implement this we need pretty simple hardware:
42

Source: 

CMOS VLSI Design
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Tree Multipliers

• Can we further reduce the multiplier 

delay by employing logarithmic (tree) 

structures?
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Wallace-Tree Multiplier
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Wallace-Tree Multiplier
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Wallace-Tree Multiplier
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Pipelining Multipliers

• Pipelining can be applied to most multiplier structures:
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Further Reading

• Rabaey, et al. “Digital Integrated Circuits” (2nd Edition)

• Elad Alon, Berkeley ee141 (online)

• Weste, Harris, “CMOS VLSI Design (4th Edition)”
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