
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Prof. Adam Teman

10 June 2021

Digital Integrated Circuits
(83-313)

Lecture 10:

Arithmetic Circuits

mailto:adam.teman@biu.ac.il

June 10, 2021 Adam Teman,

Lecture Content

2

DataPaths

3

June 10, 2021 Adam Teman,

Multiple functional units

• A complex processor may have multiple functional units working in parallel:

4

Source: Kuchuk, 2003

June 10, 2021 Adam Teman,

Bit-Sliced Design

5

Fetzer, Orton, ISSCC’02

Design for energy efficiency!

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6

bit 62
bit 63

Data
In

Data
out

Tile identical Processor Elements

Control
R

e
g

is
te

rs

A
d

d
e
r

S
h

if
te

r

M
u

lt
ip

le
x
e
r

Basic Addition

6

June 10, 2021 Adam Teman,

Serial Adder Concept

• At time i, read ai and bi.

Produce si and ci+1

• Internal state stores ci.

Carry bit c0 is set as cin

7
Source: Gate Overflow

June 10, 2021 Adam Teman,

Basic Addition Unit – Full Adder

8

X Y Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

inS x y C

out in inC xy xC yC

Kill x y

Generate x y

Propagate x y

inS P C

out inC G P C x y

Cout=MAJ(X,Y,Cin)

June 10, 2021 Adam Teman,

Full-Adder Implementation

• A full-adder is therefore a majority gate and a 3-input XOR:

9

Total: 32 Transistors

Source: CMOS VLSI Design

June 10, 2021 Adam Teman,

Ripple Carry Adder

10

tpd = O(N)tadder = (N-1)tcarry + tsum

• So, it is clear, the Cout output of the

Full Adder is on the critical path.

• Can we exploit this to improve the

design?

in

in in out

S A B C

ABC A B C C

Source: CMOS VLSI Design

June 10, 2021 Adam Teman,

Full-Adder Implementation

11

A B

B

A

Ci

Ci A

X

VDD

VDD

A B

Ci BA

B VDD

A

B

Ci

Ci

A

B

A CiB

Co

VDD

S

28 Transistors

 in in outS ABC A B C C

out i iC AB AC BC

2 2

2 2

2

6

6

6

4

4

2 4 2 3 12 4
9

3iCLE

4 4 4

4

12

12

12

2

2 2 2

3

3

3

2 2

2

4 4

4

4

4

4 4 4 6

6

6

3

3

3222

2

2

2

4

2 4 2 4 6 3
7

3iCLE

…BUT ~64 stages to propagate

i.e., PEopt=464

G A B

P A B

G!

P!

K
P

24 Transistors

 in in outS ABC A B C C

June 10, 2021 Adam Teman,

Exploiting the Inversion Property

12

A B

S

Co
Ci FA

A B

S

CoCi FA

S A B Ci S A B Ci =

C
o

A B C
i

 C
o

A B C
i

 =

A3

FA FA FA

Even cell Odd cell

FA

A0 B0

S0

A1 B1

S1

A2 B2

S2

B3

S3

Ci,0 Co,0 Co,1 Co,3Co,2

We saved the
inverter, so PEopt=432

June 10, 2021 Adam Teman,

Sizing the Mirror Adder
• Problem: How can we make a high speed bitslice layout?

• If we upsize each stage according to Logical Effort,

we will have non-identical bitslices.

• Such upsizing will result in huge gates.

• Why not design the adder to inherently achieve optimal Electrical Effort (EFopt=4)?
• Assume everything not on the carry path can be sized like a minimum inverter!

13

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4
Not on the critical path!

June 10, 2021 Adam Teman,

Sizing the Mirror Adder

• Now, let’s try to size the first stage to get EF=4:

• Remember, logical effort is a function of gate topology and not sizing!

• Therefore, we can temporarily size the first stage as a minimum sized inverter,

giving us:

• So to get EF=4:

• But what is CL,Cout?

14

4 2
2

3
CinLE

, ,

,

4

2
Cin L Cout L Cout

FA Cin

Cin Cin EF

LE C C
EF

C C

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4

Cin

CL,Cout

June 10, 2021 Adam Teman,

Sizing the Mirror Adder

• What is CL,Cout?

• Obviously, we have the second stage…

• But don’t forget the next full adder!

• So CL,Cout is:

• And now, we can find Cin using the EF constraint we found:

15

,

4

2 21
L Cout

Cin

Cin EF

C
C

C

, 6 6 9 21L Cout Cin CinC C C

14

7

14

7

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4

Cin

CL,Cout
Cin, i+1

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4

June 10, 2021 Adam Teman,

Subtraction

• To subtract two’s complement, just remember that:

• So, to subtract:

• Invert one of the operands.

• Add a carry in to the first bit.

• Therefore, to provide an adder/subtractor:

• Add an XOR gate to the B-input

• Use the sub/add selector to the XOR and carry in.

16

1x x 1A B A B

Faster Adders

June 10, 2021 Adam Teman,

Carry-Skip (Carry Bypass) Adder

18

M Sections of (N/M) Bits Each

 skip p/g carry bypass sum1 1
N

t t t M t t
M

Carry
propagation

Setup

Bit 0–3

Sum

M bits

tsetup

tsum

Carry
propagation

Setup

Bit 4–7

Sum

tbypass

Carry
propagation

Setup

Bit 8–11

Sum

Carry
propagation

Setup

Bit 12–15

Sum

 N
M

June 10, 2021 Adam Teman,

Carry-Select Adder

19

Let’s guess the answer for

each value of the carry.

select p/g carry mux sum

N
t t t M t t

M

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry

Setup

Ci,0 Co,3 Co,7 Co,11 Co,15

S0–3

Bit 0–3 Bit 4–7 Bit 8–11 Bit 12–15

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry

Setup

S4–7

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry 0-Carry

Setup

S8–11

0

1

Sum Generation

Multiplexer

1-Carry

Setup

S12–15

N-bit input with M CSA blocks

 N
M

June 10, 2021 Adam Teman,

Square Root Carry Select

20

sqrt p/g carry mux sum2t t Mt Nt t 2N

June 10, 2021 Adam Teman,

Carry Lookahead Adder – Basic Idea

• Problem – Cout,k takes approximately k gate delays to ripple.

• Question – can we calculate the carry without any ripple?

21

AN-1, BN-1A1, B1

P1

S1

• • •

• • • SN-1

PN-1
Ci, N-1

S0

P0
Ci,0 Ci,1

A0, B0

out, out, 1 out, 1

out, 1 1 out, 2

out, 1 1 1 0 0 in,0

(, ,)

()

((()))

k k k k k k k

k k k k k k

k k k k k

C f A B C G P C

C G P G P C

C G P G P P G PC

Co,3

Ci,0

VDD

P0

P1

P2

P3

G0

G1

G2

G3

i i iG A B

i i iP A B

June 10, 2021 Adam Teman,

Tree Adders (Logarithmic CLA)

• Can we reduce the complexity of calculating Pi, Gi ?

22

1:0 1 0 1:0 1 1 0

out,1 1:0 1:0 in,0

P P P G G P G

C G P C

3:2 3 2 3:2 3 3 2

out,3 3:2 3:2 ,2in

P P P G G P G

C G P C

3:0 3:2 1:0 3:0 3:2 3:2 1:0

out,3 3:0 3:0 in,0

P P P G G P G

C G P C

i i iG A B
i i iP A B

 2logO Ntree p/g 2 AND/OR sumlogt t N t t

inS P C

out inC G P C

June 10, 2021 Adam Teman,

Tree Adders (Logarithmic CLA)
• Many ways to construct these CLA or tree adders, based on:

• Radix: How many bits combined in each gate

• Tree Depth: How many stages of logic to the final carry (>=logradixN)

• Fanout: Maximal logic branching in tree

23

June 10, 2021 Adam Teman,

Manchester Carry-Chain Adder

24 Dynamic Circuit

C
oC

i

G
i

P
i

V
DD

Static Circuits

P
i + 1

G
i + 1

C
i

Inverter/Sum Row

Propagate/Generate Row

P
i

G
i

C
i - 1

C
i + 1

V
DD

GND

CCRR

RC
NN

RCt

ij

i

j

j

N

i

iP

, where

2

)1(
69.0

69.0
11

G
2

C
3

G
3

C
i,0

P
0

G
1

V
DD

G
0

P
1

P
2

P
3

C
3

C
2

C
1

C
0

The Computer Hall of Fame

• The home computer that 80s kids learned

how to play games on and program with:

• Introduced in Dec. 1982 for $595. Continued selling until 1992!

• 8-bit, 1 MHz, 64KB RAM, 16KB ROM

• Ran BASIC as it’s interface.

• The highest selling single computer model of all time.

• It has been compared to the Ford Model T for its role in

bringing a new technology to middle-class households

via creative and affordable mass-production.

• Considered the computer that provided the foundation

for the development of open-source software (freeware)

Source:
http://www.gondolin.org.uk

Source: wikipedia

Basic Multiplication

27

June 10, 2021 Adam Teman,

Grade School Multiplication

28

1 2 3 4

X 1 2

June 10, 2021 Adam Teman,

Multiplication using serial addition

29

1 0 1 0 1 0

X 1 0 1 1

Multiplicand

Multiplier

1 0 1 0 1 0

1 0 1 0 1 0

0 0 0 0 0 0

+ 1 0 1 0 1 0

1 1 1 0 0 1 1 1 0

Partial
Products

Result

June 10, 2021 Adam Teman,

Binary Multiplication

30

multiplicand

multiplier

partial

product

array

double precision product

N

2N

N can be formed in parallel

June 10, 2021 Adam Teman,

Serial Shift and Add

• Concept:

• Multiplying by ‘1’ is copying the multiplicand

• Multiplying by ‘0’ is a row of zeros

• Select multiplicand or zeros

according to multiplier bit

• Add to result

• Shift multiplier and accumulated result

31

 2

adder
for RCA

serialt O N t O N

June 10, 2021 Adam Teman,

Array Multiplier

32

• Calculate the final product in

a single combinatorial calculation

(=potentially one cycle)

June 10, 2021 Adam Teman,

Array Multiplier Implementation

• Stack 2-input Adders:

Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

June 10, 2021 Adam Teman,

Many Critical Paths

34

 mult AND carry sum1 2 1t t M N t N t

 O N M

June 10, 2021 Adam Teman,

Can we do it better?

Source: CMOS VLSI Design

June 10, 2021 Adam Teman,

Carry-Save Multiplier

36

 mult AND carry merge1t t N t t

 2logO N N

June 10, 2021 Adam Teman,

Multiplier Floorplan

37

SCSCSCSC

SCSCSCSC

SCSCSCSC

S
C

S
C

S
C

S
C

Z0

Z1

Z2

Z3Z4Z5Z6Z7

X0X1X2X3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted

through the complete array.

()
SCSCSCSC

SCSCSCSC

SCSCSCSC

S
C

S
C

S
C

S
C

Z0

Z1

Z2

Z3Z4Z5Z6Z7

X0X1X2X3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted

through the complete array.

()

Half Adder

Full Adder

Vector

Merging Cell

X and Y signals are broadcast

through the complete array

Faster Multipliers

June 10, 2021 Adam Teman,

Booth Recoding

• Multiplying by ‘0’ is redundant.

• Can we reduce the number of partial products?

• Based on the observation that

• We can turn sequences of 1’s

into sequences of 0’s. For example: 0111=1000-0001

• So we can introduce a ‘-1’ bit and recode the multiplier:

• For example, the number 56

39

1

0

2 2 1
n

i n

i

June 10, 2021 Adam Teman,

Radix-2 Booth Recoding

• Parse multiplier from left to right

• For each change from 0 to 1, encode a ‘1’

• For each change from 1 to 0, encode a ‘-1’

• For bit 0, assume bit i=-1 is a 0

• Example: 0011 0111 0011 = 0x373

40

0 1 0 1 1 0 0 1 0 1 0 1

0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

 0x 484

0x 111

 0x 373

June 10, 2021 Adam Teman,

Modified (Radix-4) Booth Recoding
• Radix-2 Booth Recoding doesn’t work for parallel hardware implementations:

• A worst case (010101010101010) doesn’t reduce the number of partial products.

• Variable length recoders (according to the length of ‘1’ strings)

cannot be implemented efficiently.

• Instead, just assume a constant length recoder.

• First apply standard booth recoding.

• Next encode each pair of bits:

• This can be summarized in a truth table:
41

Partial Product Selection Table

Multiplier Bits Recorded Bits

000 0

001 + Multiplicand

010 + Multiplicand

011 +2 × Multiplicand

100 -2 × multiplicand

101 - Multiplicand

110 - Multiplicand

111 0

June 10, 2021 Adam Teman,

Modified (Radix-4) Booth Recoding

• For example, let’s take our previous example:

• 0011 0111 0011 = 01 0-1 10 0-1 01 0-1

• This comes out: 1 -1 2 -1 1 -1.

• We could have done this by using the table:

• 0 0 1 1 0 1 1 1 0 0 1 1

• To implement this we need pretty simple hardware:
42

Source:

CMOS VLSI Design

June 10, 2021 Adam Teman,

Tree Multipliers

• Can we further reduce the multiplier

delay by employing logarithmic (tree)

structures?

43

PP1 PP2 PP3 PP4 PP5

+

CLA

Result

PP6 PP7 PP8

+ +

+ +

PP0

+

+

June 10, 2021 Adam Teman,

Wallace-Tree Multiplier

44

FA

FA

FA

FA

y0 y1 y2

y3

y4

y5

S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

FA

y0 y1 y2

FA

y3 y4 y5

FA

FA

C
C S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

June 10, 2021 Adam Teman,

Wallace-Tree Multiplier

45

June 10, 2021 Adam Teman,

Wallace-Tree Multiplier

46

6 5 4 3 2 1 0 6 5 4 3 2 1 0

Partial products First stage

Bit position

6 5 4 3 2 1 0 6 5 4 3 2 1 0

Second stage Final adder

FA HA

(a) (b)

(c) (d)

H

A

June 10, 2021 Adam Teman,

Pipelining Multipliers

• Pipelining can be applied to most multiplier structures:

47

June 10, 2021 Adam Teman,

Further Reading

• Rabaey, et al. “Digital Integrated Circuits” (2nd Edition)

• Elad Alon, Berkeley ee141 (online)

• Weste, Harris, “CMOS VLSI Design (4th Edition)”

48

