Digital Integrated Circuits (83-313)

Lecture 6:

Arithmetic Circuits

Semester B, 2016-17

Lecturer: Dr. Adam Teman

TAs: Itamar Levi,

Robert Giterman

Emerging Nanoscaled
Integrated Circuits and Systems Labs

7 May 2017

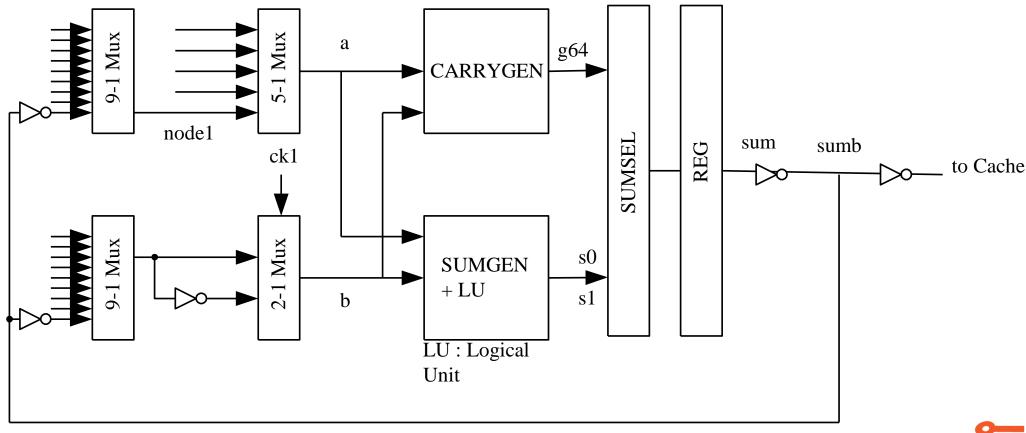
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Lecture Content

DataPaths

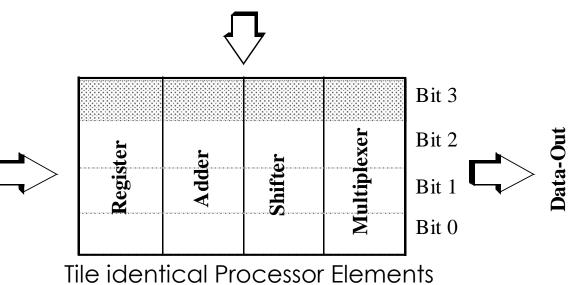
Intel Microprocessor

Itanium has 6 integer execution units like this



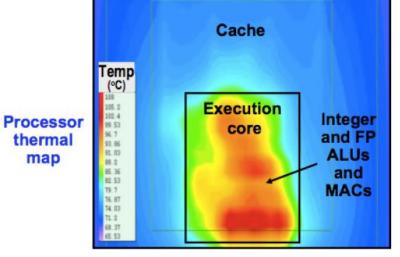
Bit-Sliced Design

Control



Integer Datapath (IEU) Bupass Control Register File

Fetzer, Orton, ISSCC'02



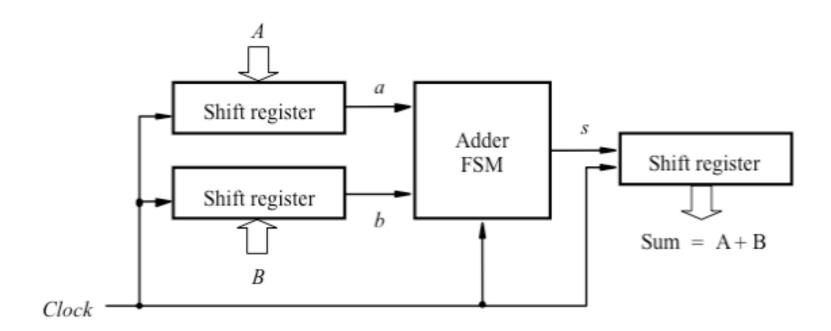
Design for energy efficiency!

Data-In

Adders

Serial Adder Concept

- At time i, read a_i and b_i . Produce s_i and c_i+1
- Internal state stores c_i . Carry bit c_0 is set as c_{in}



Basic Addition Unit – Full Adder

X		Cin	S	Cout
	ı	Ciri		Coul
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

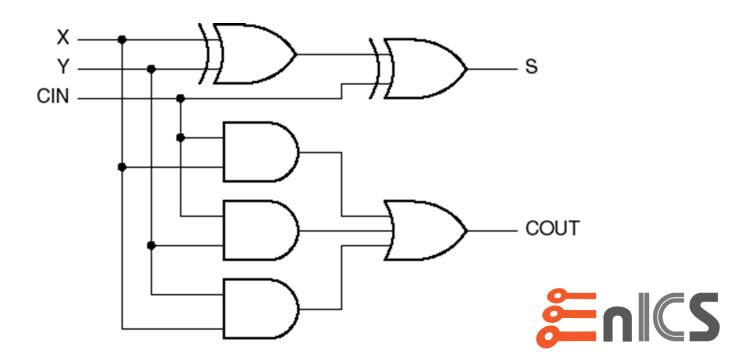
$$S = x \oplus y \oplus C_{in}$$
$$\Rightarrow S = P \oplus C_{in}$$

$$C_{out} = xy + xC_{in} + yC_{in}$$
 Propagate = $x \oplus y$
 $\Rightarrow C_{out} = G + P \cdot C_{in}$ $\approx x + y$

$$Kill = \overline{x} \cdot \overline{y}$$

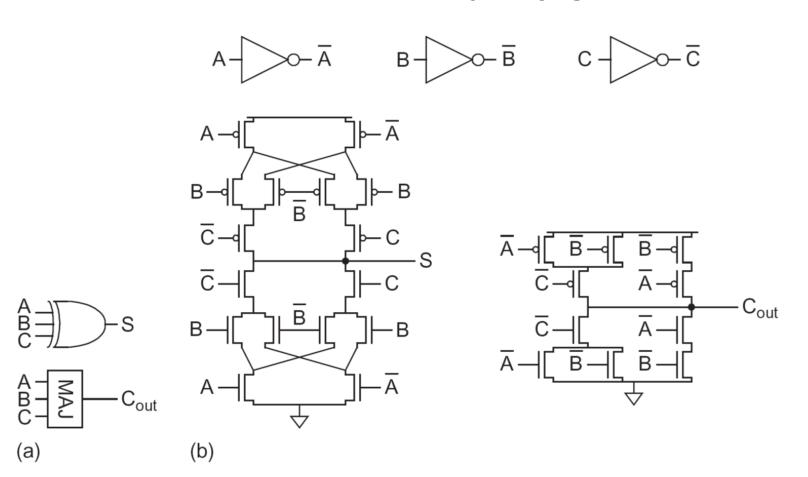
Generate = $x \cdot y$

 $\approx x + y$



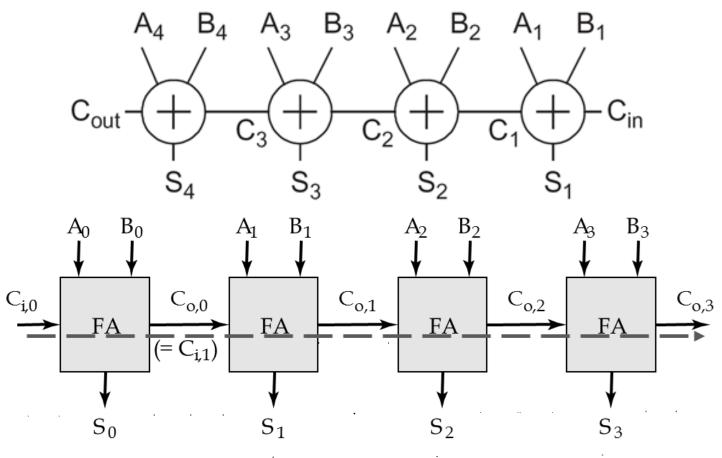
Full-Adder Implementation

A full-adder is therefore a majority gate and a 3-input XOR:



Total: 32 Transistors

Ripple Carry Adder



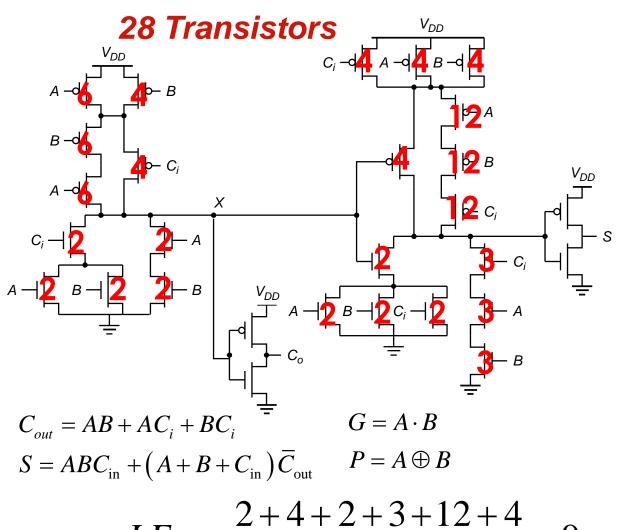
- So it is clear, the $C_{\rm out}$ output of the Full Adder is on the critical path.
- Can we exploit this to improve the design?

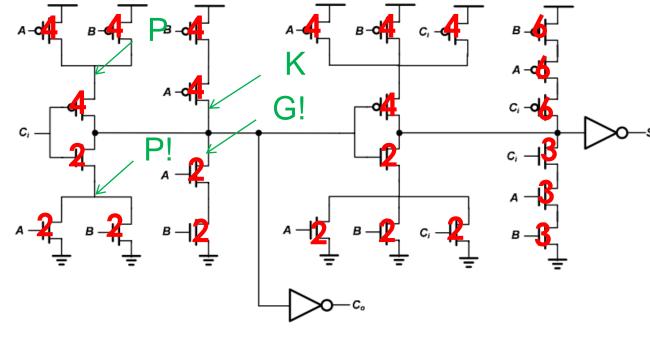
$$\begin{split} S &= A \oplus B \oplus C_{\text{in}} = \\ &= ABC_{\text{in}} + \left(A + B + C_{\text{in}}\right) \overline{C}_{\text{out}} \end{split}$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$
 $t_d = O(N-1)t_{carry}$

Full-Adder Implementation

24 Transistors



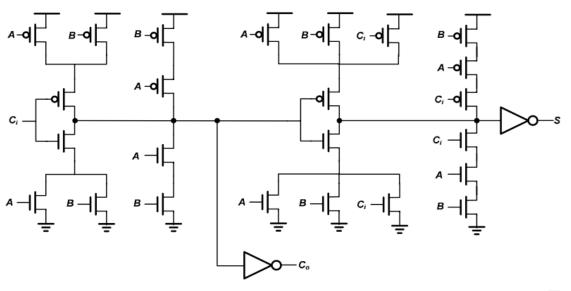


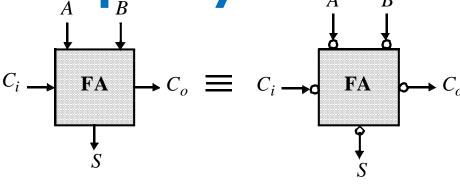
$$LE_{C_i} = \frac{2+4+2+4+6+3}{3} = 7$$

...BUT ~64 stages to propagate

i.e.
$$PE_{\text{opt}} = 4^{64}$$

Exploiting the Inversion Property

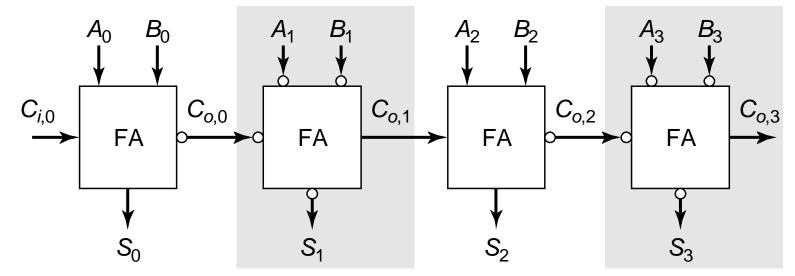




$$\bar{S}(A,B,C_{i}) = S(\bar{A},\bar{B},\overline{C}_{i})$$

$$\overline{C_o}(A,B,C_i) = C_o(\overline{A},\overline{B},\overline{C_i})$$

Even cell Odd cell



We saved the inverter, so $PE_{\text{opt}}=4^{32}$

Sizing the Mirror Adder

 $LE_{Cin} = \frac{4+2}{3} = 2$

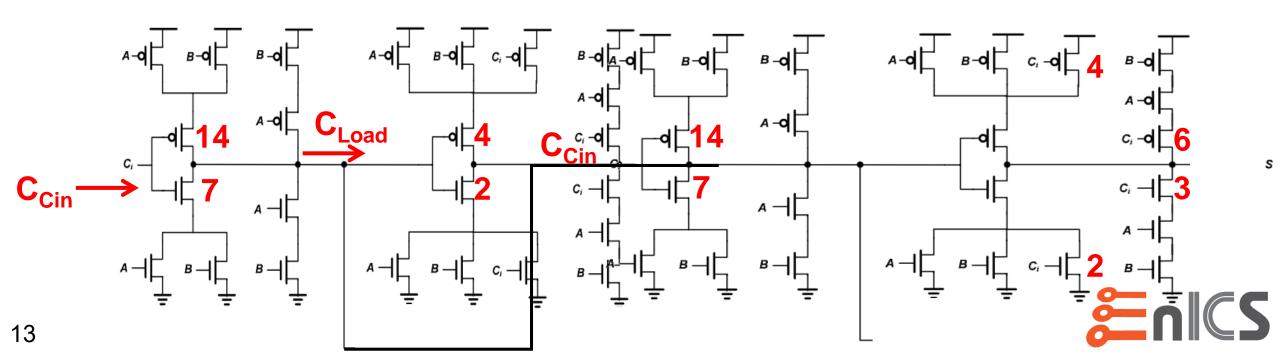
Problem: How can we make a high speed bitslice layout?

- If we upsize each stage according to Logical Effort, we will have non-identical bitslices.
- Such upsizing will result in huge gates.

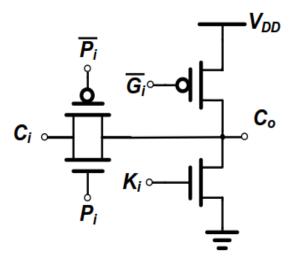
$$EF_{FA,Cin} = \frac{LE_{Cin} \cdot C_{L,Cout}}{C_{Cin}} \Rightarrow \frac{C_{L,Cout}}{C_{Cin}} \bigg|_{EF=4} = 2$$

$$C_{L,Cout} = 6 + C_{Cin} + 6 + 9 \Rightarrow C_{Cin} = 21$$

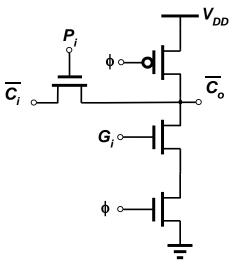
- Why not design the adder to inherently achieve optimal Electrical Effort ($EF_{opt}=4$)?
 - Assume everything not on the carry path can be sized like a minimum inverter!



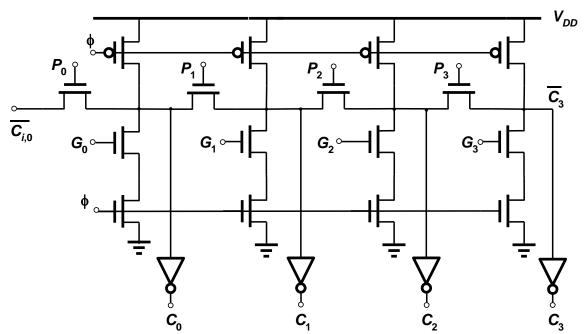
Manchester Carry-Chain Adder



Static Circuits

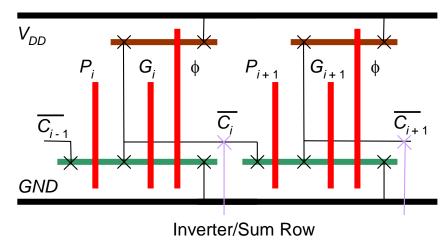


Dynamic Circuit



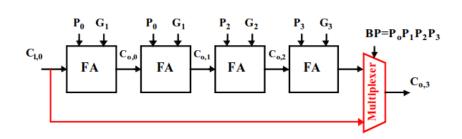
$$t_P = 0.69 \sum_{i=1}^{N} C_i \cdot \left(\sum_{j=1}^{i} R_j\right)$$
$$= 0.69 \frac{N(N+1)}{2} RC$$
where $R_j = R$, $C_i = C$

Propagate/Generate Row



Carry-Skip (Carry Bypass) Adder

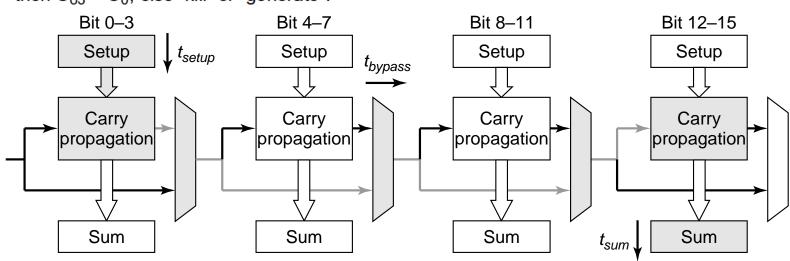


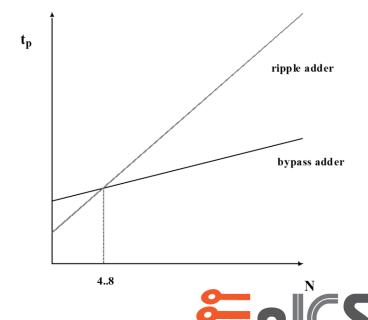


M Sections of (N/M) Bits Each

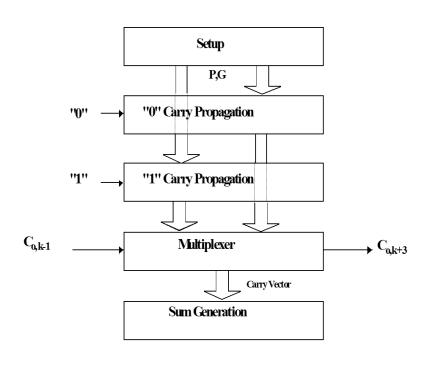
$$t_{adder} = t_{setup} + \left(\frac{N}{M} - 1\right) t_{carry} + \left(M - 1\right) t_{bypass} + t_{sum}$$

Idea: If (P0 and P1 and P2 and P3 = 1) then $C_{o3} = C_0$, else "kill" or "generate".

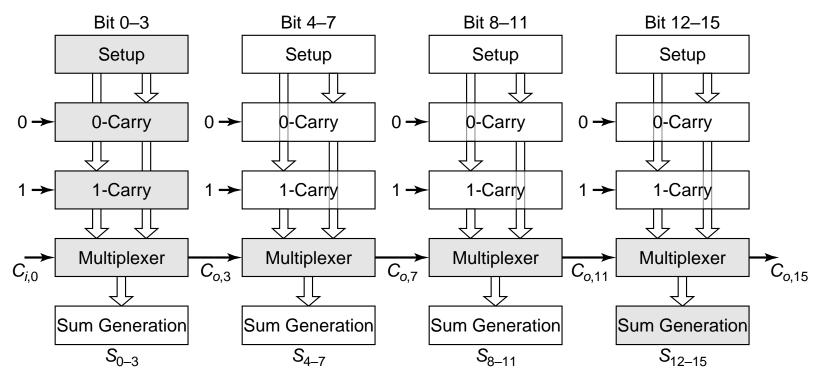




Carry-Select Adder



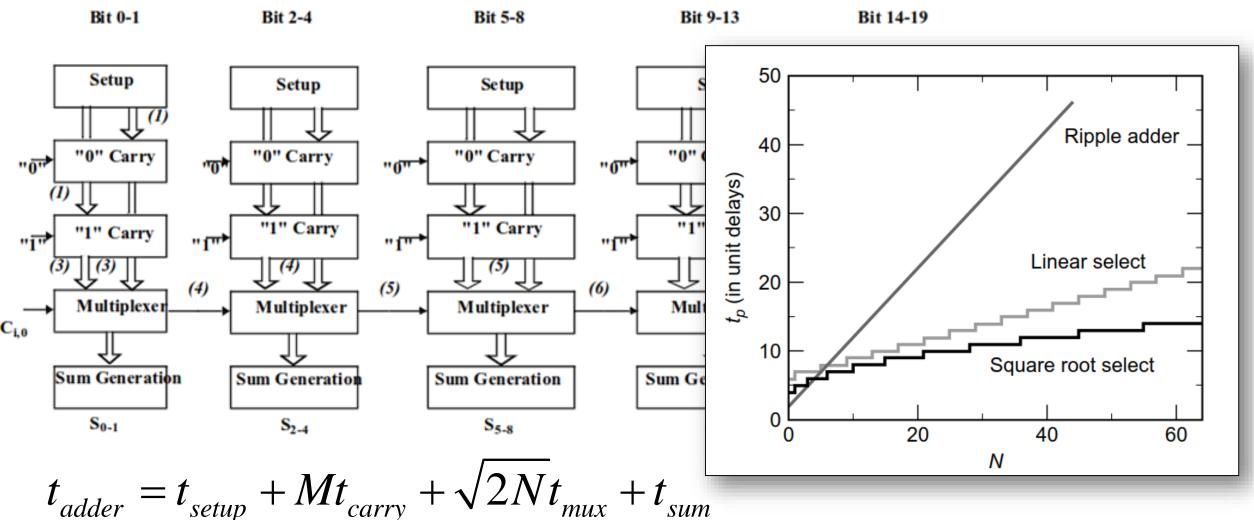
Let's guess the answer for each value of the carry.



N-bit input with M CSA blocks

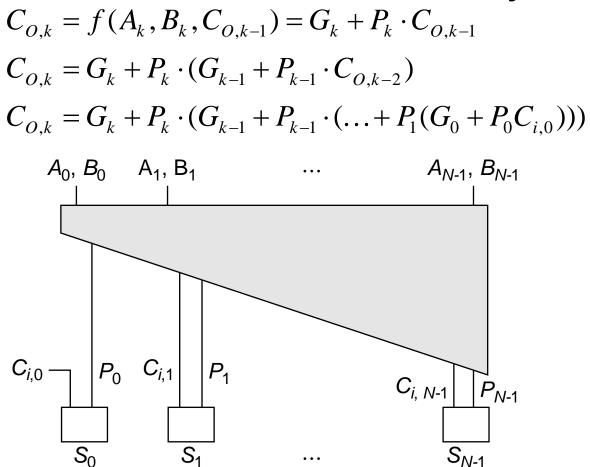
$$t_{adder} = t_{setup} + \frac{N}{M}t_{carry} + M \cdot t_{mux} + t_{sum}$$

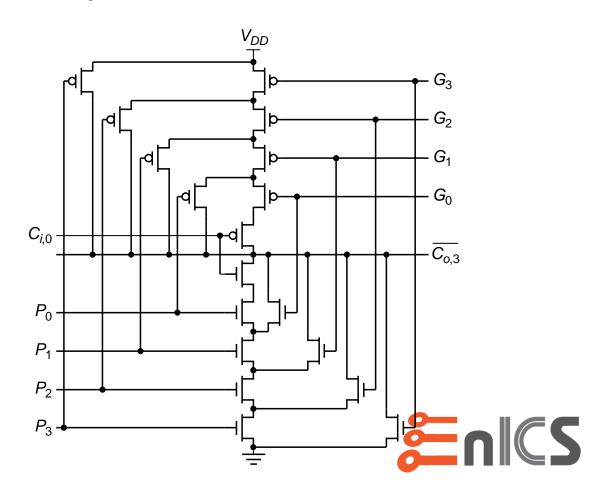
Square Root Carry Select



Carry Lookahead Adder – Basic Idea

- Problem $C_{o,k}$ takes approximately k gate delays to ripple.
- Question can we calculate the carry without any ripple?





Logarithmic CLA (Tree Adder)

• Can we reduce the complexity of calculating P_i , G_i ?

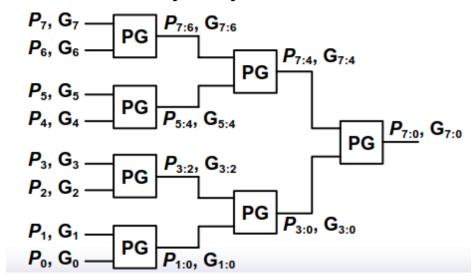
$$P_{1:0} = P_1 \cdot P_0 \quad G_{1:0} = G_1 + P_1 \cdot G_0$$

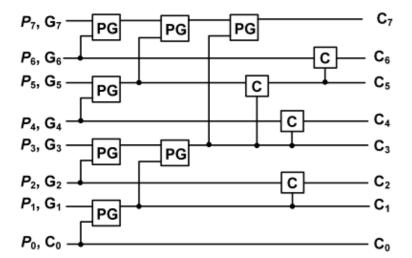
$$\Rightarrow C_{out,1} = G_{1:0} + P_{1:0}C_{in,0}$$

$$P_{3:2} = P_3 \cdot P_2 \quad G_{3:2} = G_3 + P_3 \cdot G_2$$

 $\Rightarrow C_{out,3} = G_{3:2} + P_{3:2}C_{in,2}$

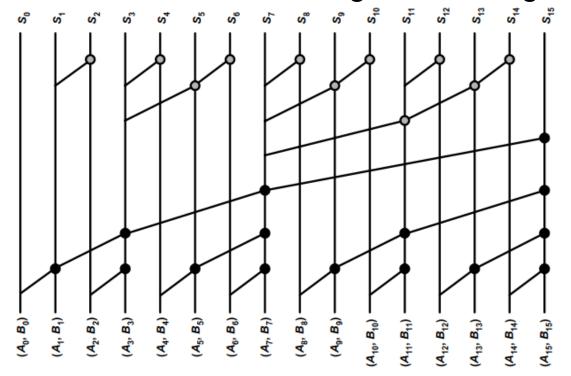
$$P_{3:0} = P_{3:2} \cdot P_{1:0}$$
 $G_{3:0} = G_{3:2} + P_{3:2} \cdot G_{1:0}$
 $\Rightarrow C_{out,3} = G_{3:0} + P_{3:0}C_{in,0}$

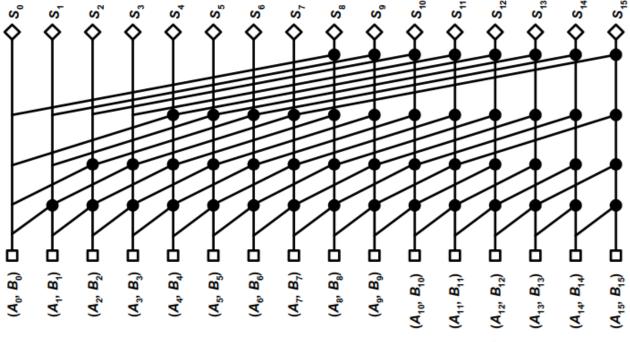




Logarithmic CLA (Tree Adder)

- Many ways to construct these CLA or tree adders, based on:
 - Radix: How many bits combined in each gate
 - Tree Depth: How many stages of logic to the final carry ($>=log_{radix}N$)
 - Fanout: Maximal logic branching in tree





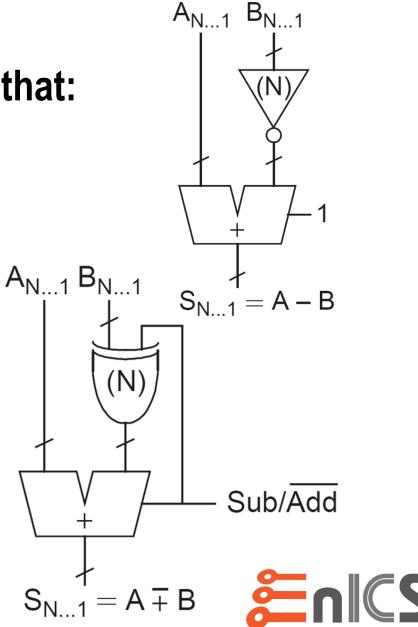
Subtraction

To subtract two's complement, just remember that:

$$-x = \overline{x} + 1$$

$$-x = \overline{x} + 1$$
 \longrightarrow $A - B = A + \overline{B} + 1$

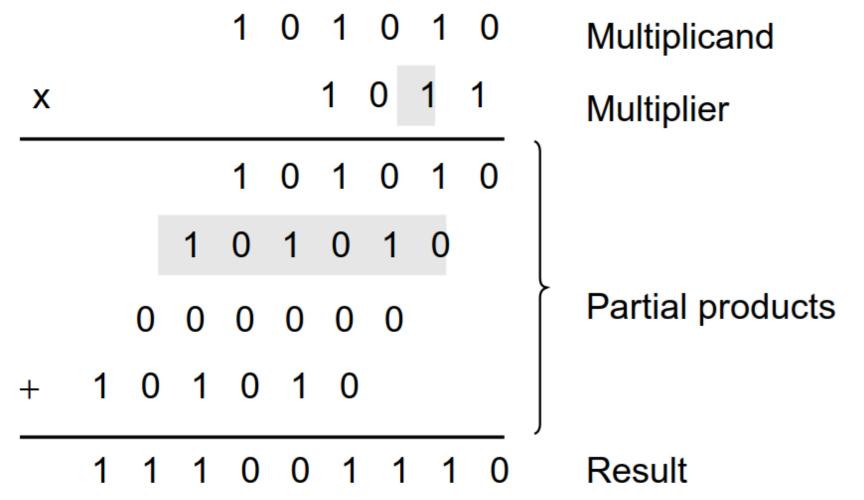
- So to subtract:
 - Invert one of the operands.
 - Add a carry in to the first bit.
- Therefore, to provide an adder/subtractor:
 - Add an XOR gate to the B-input
 - Use the sub/add selector to the XOR and carry in.



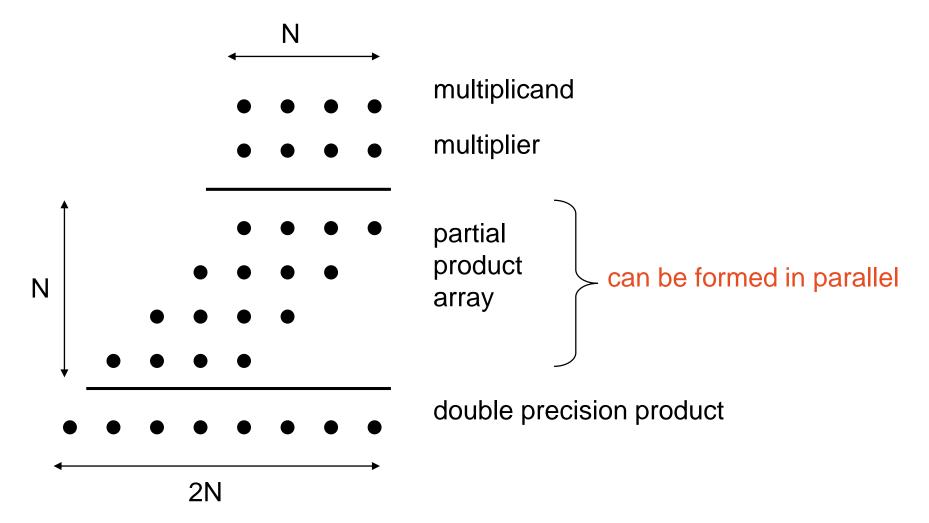
Multipliers

Grade School Multiplication

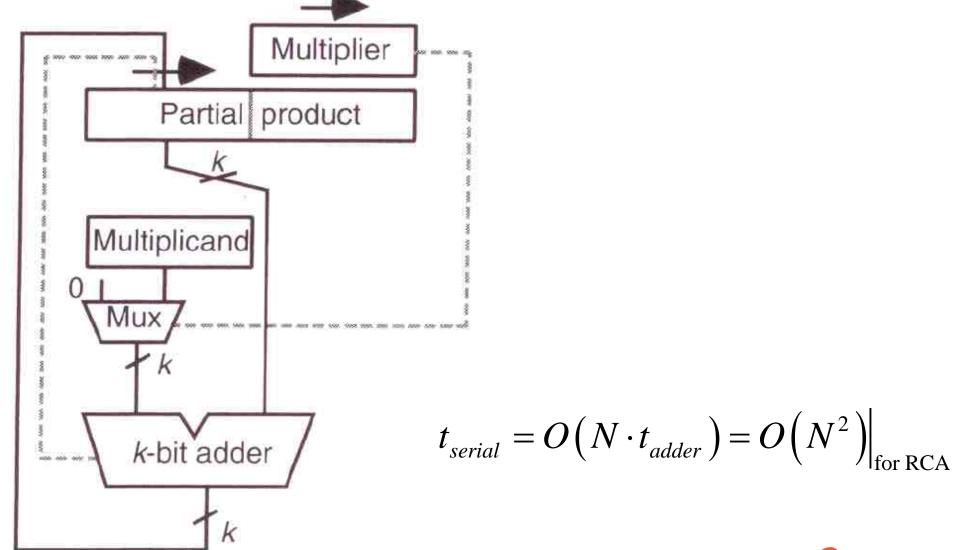
Multiplication using serial addition



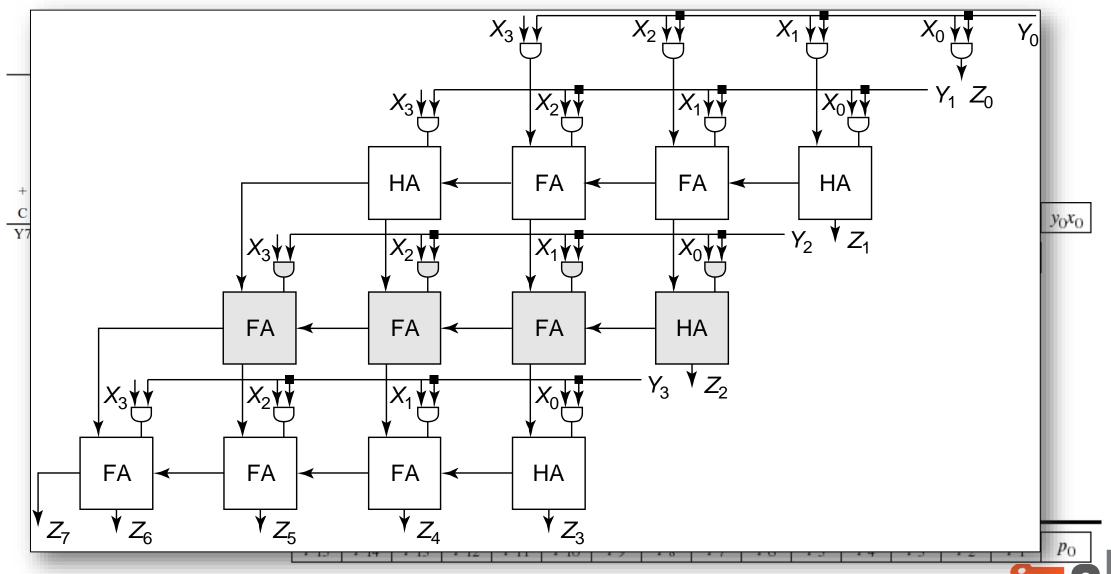
Binary Multiplication



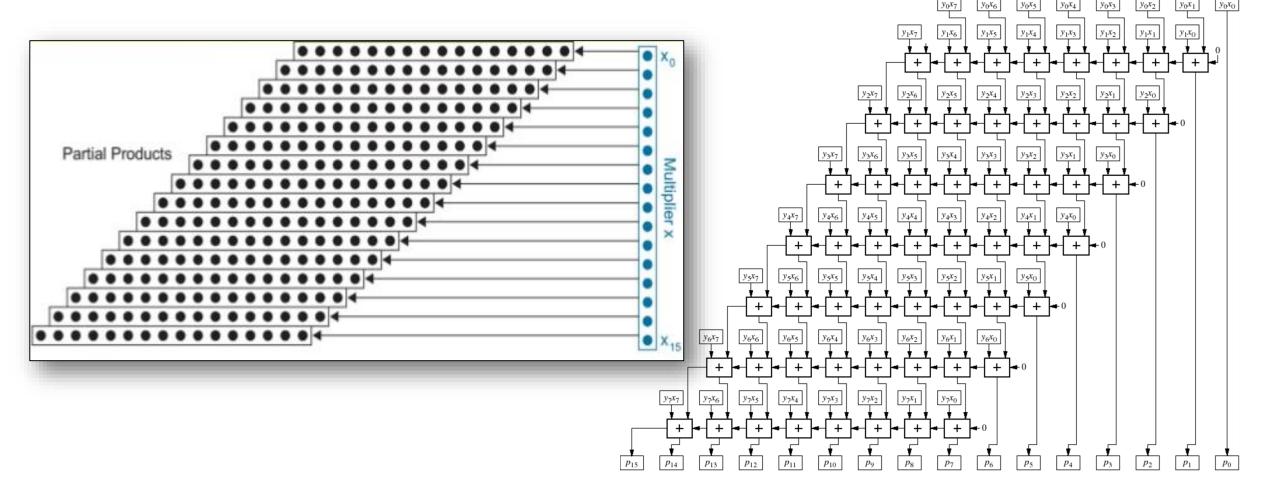
Serial Shift and Add



Array Multiplier

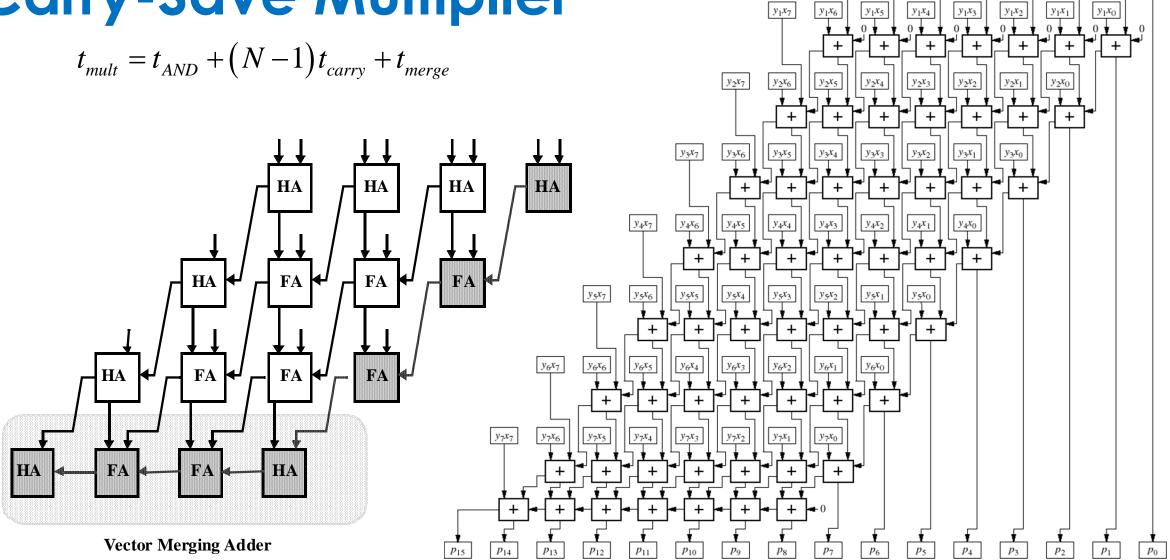


Many Critical Paths

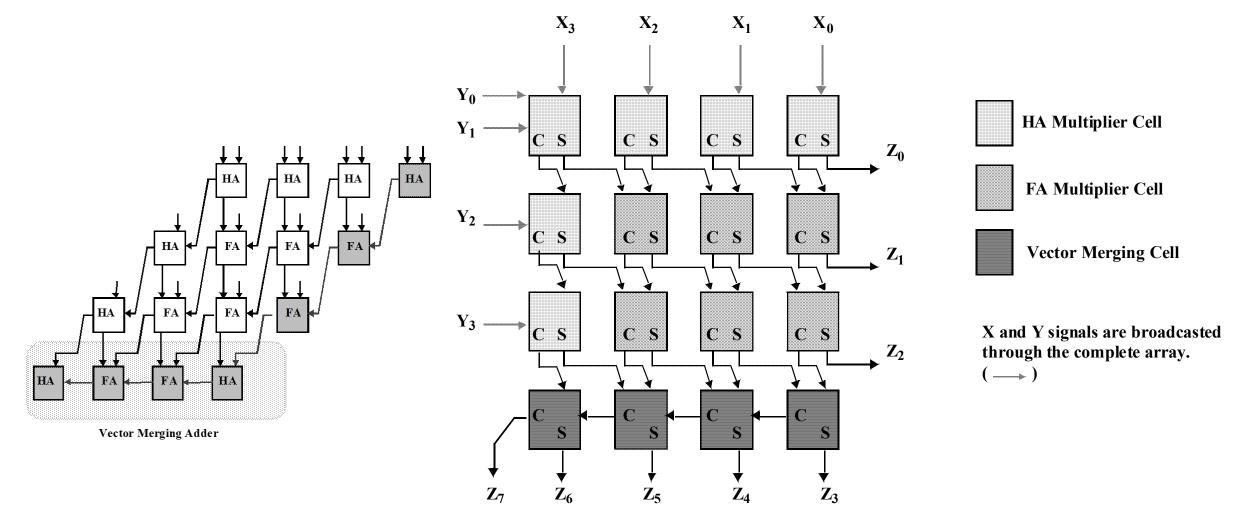


$$t_{mult} \approx t_{AND} + \left[\left(M - 1 \right) + \left(N - 2 \right) \right] t_{carry} + \left(N - 1 \right) t_{sum}$$

Carry-Save Multiplier



Multiplier Floorplan



Booth Recoding

- Multiplying by '0' is redundant.
- Can we reduce the number of partial products?

$$\sum_{i=0}^{n-1} 2^i = 2^n - 1$$

Based on the observation that

$$\begin{array}{r}
1000 (8) \\
-0001 (1) \\
\hline
0111 (7)
\end{array}$$

$$\begin{array}{r} 01000000 & (64) \\ -00001000 & (8) \\ \hline 00111000 & (56) \end{array}$$

- We can turn sequences of 1's into sequences of 0's. For example: 0111=1000-0001
- So we can introduce a '-1' bit and recode the multiplier:
 - For example, the number 56

Radix-2 Booth Recoding

- Parse multiplier from left to right
 - For each change from 0 to 1, encode a '1'
 - For each change from 1 to 0, encode a '-1'
 - For bit 0, assume bit i=-1 is a 0
- Example: $0011 \ 0111 \ 0011 = Ox373$

Modified (Radix-4) Booth Recoding

Radix-2 Booth Recoding doesn't work for parallel hardware implementations:

- A worst case (010101010101010) doesn't reduce the number of partial products.
- Variable length recoders (according to the length of '1' strings) cannot be implemented efficiently.
- Instead, just assume a constant length recoder.
 - First apply standard booth recoding.
 - Next encode each pair of bits:
 - 1. Within a sequence:

2. Begin of a 1's-sequence:

3. End of a 1's-sequence:

• This can be summarized in a truth table:

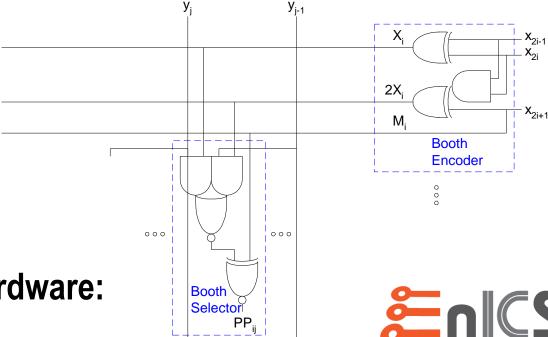
Partial Product Selection Table			
Multiplier Bits	Recorded Bits		
000	0		
001	+ Multiplicand		
010	+ Multiplicand		
011	+2 × Multiplicand		
100	-2 × multiplicand		
101	- Multiplicand		
110	- Multiplicand		
111	0		

Modified (Radix-4) Booth Recoding

- For example, let's take our previous example:
 - $0011\ 0111\ 0011 = 01\ 0-1\ 10\ 0-1\ 01\ 0-1$
 - This comes out: 1 -1 2 -1 1 -1.
- We could have done this by using the table:

Partial Product Selection Table			
Multiplier Bits	Recorded Bits		
000	0		
001	+ Multiplicand		
010	+ Multiplicand		
011	+2 × Multiplicand		
100	-2 × multiplicand		
101	- Multiplicand		
110	- Multiplicand		
111	0		

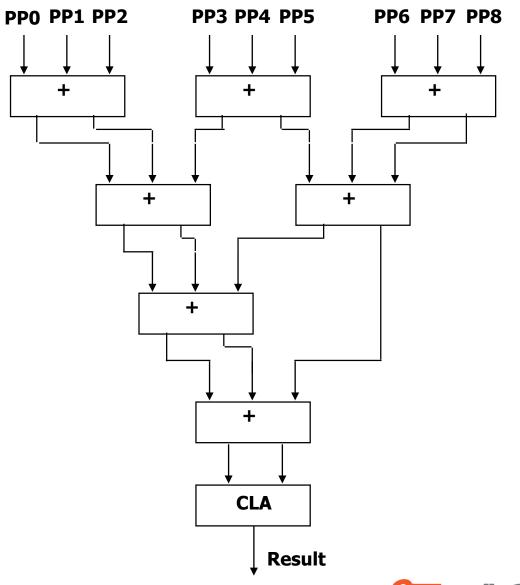
001101110011



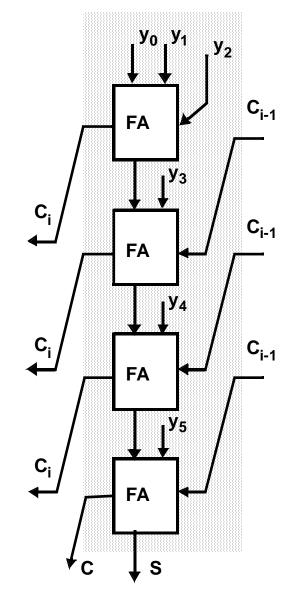
To implement this we need pretty simple hardware:

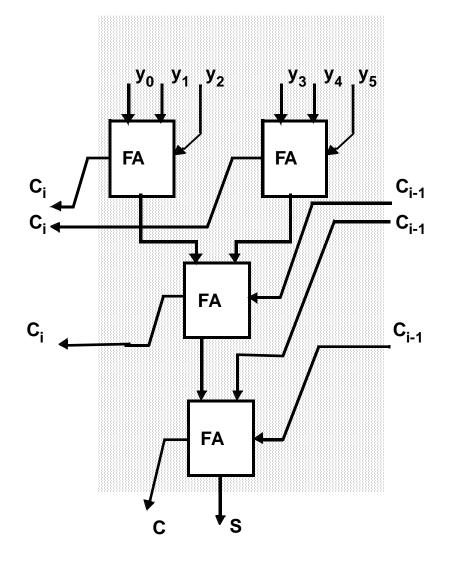
Tree Multipliers

 Can we further reduce the multiplier delay by employing logarithmic (tree) structures?

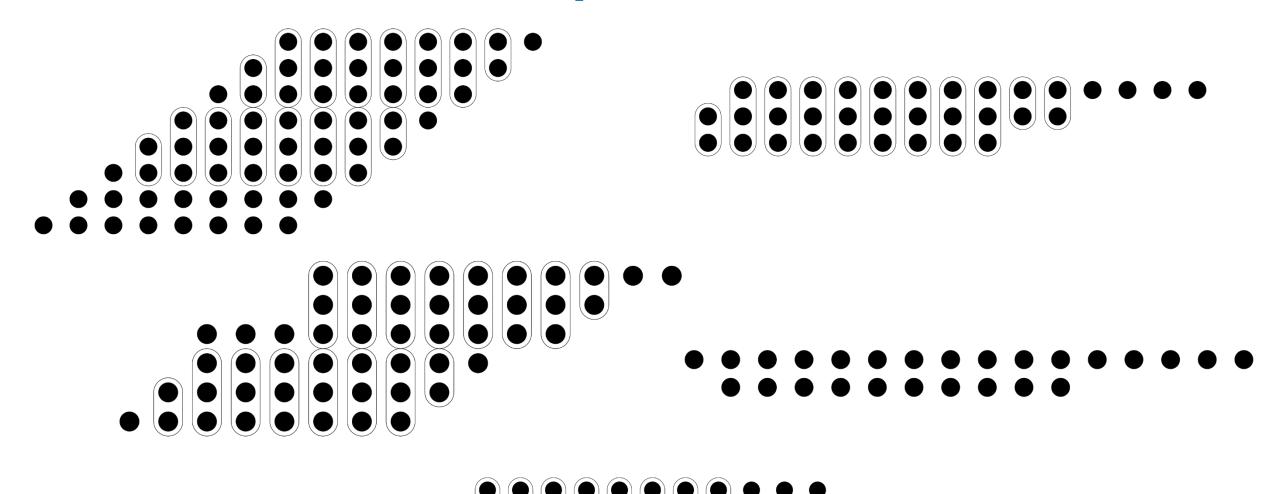


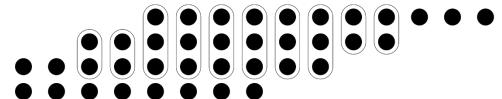
Wallace-Tree Multiplier



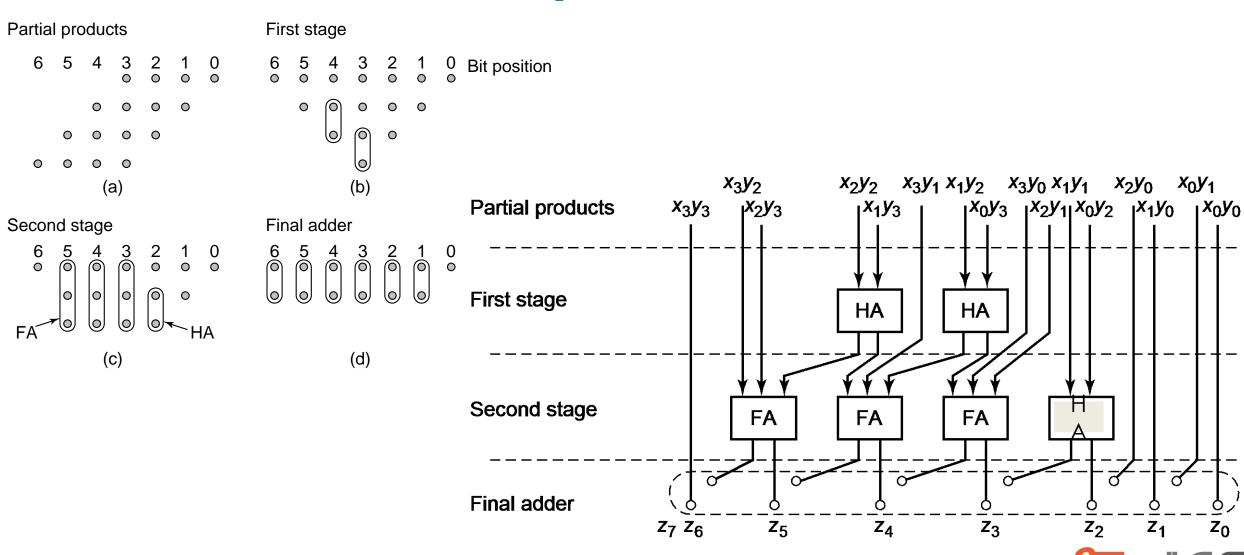


Wallace-Tree Multiplier



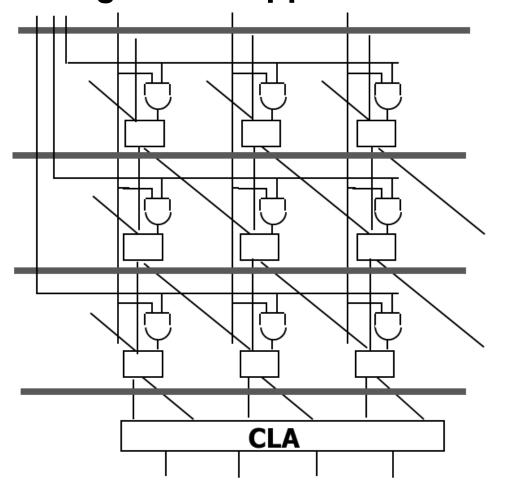


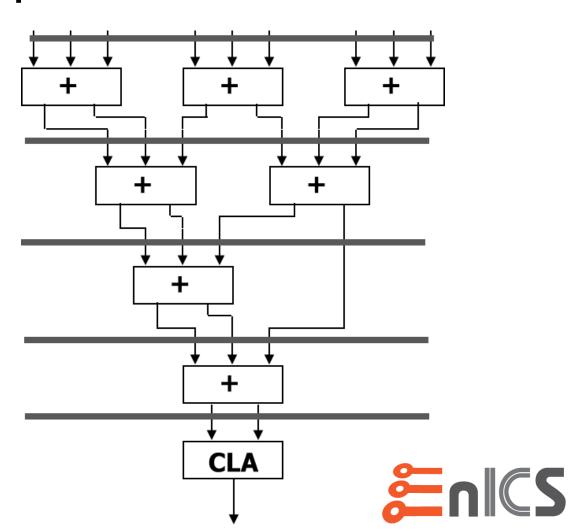
Wallace-Tree Multiplier



Pipelining Multipliers

• Pipelining can be applied to most multiplier structures:





Further Reading

- Rabaey, et al. "Digital Integrated Circuits" (2nd Edition)
- Elad Alon, Berkeley ee141 (online)
- Weste, Harris, "CMOS VLSI Design (4th Edition)"

