Digital Integrated Circuits (83-313) Lecture 1: Introduction

18 March 2020

Emerging Nanoscaled Integrated Circuits and Systems Labs Bar-Ilan University אוניברסיטת בר-אילן

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email <u>adam.teman@biu.ac.il</u> and I will address this as soon as possible.

Lecture Overview

1 The World of Chip Born a Chip is Born born a Chip is Born born a Chip besign born born a chip is Born born a chip besign born a chip is Born born a chip besign born a chip born a chip besign born a chip besign born a chip bo	The World	2 World of Chip Design Of Chip Design
Encrypte Nersacaled Tresported Clicales and Systems Latus	Bar-Ilan University אוניברסיטת בר-אילן Bar-Ilan University אוניברסיטת בר-אילן Trespeted Grads and Systems Labs	Bar-Ilan University אוניברסיטת בר-אילן
1 2 3 How a Chip is Born Intro to the intro Design How a Chip is Born How a Chip is Born Born Born	Bar-Ilan University אוניברסיטת בר-איל	

© Adam Teman, 2020

What will we do in this Course?

- In *Digital Electronic Circuits* (83-308), we learned the basics of building a digital gate.
- In this course we will step up a level, including:
 - Learning about designing actual digital gates for use in a full digital abstracted implementation flow.
 - Deepening our understanding of the trade-offs in VLSI design.
 - Learning how to design bigger and more complex components, such as arithmetic circuits and memories.
 - Learning about parasitics that are inherent to integrated circuit design.
 - Learning about technology scaling, how this affects us at the process, modeling and design levels, and study basic methods to deal with the resulting effects.
 - Learning about designing in the nanoscale era (i.e., what's going on today).
 - Starting to learn how to "put-it-all-together" towards compiling a VLSI chip.

There's No Free Lunch!

 The basic motto of this course (and engineering in general) is to understand, design and optimize the *trade-offs* between:

Course Syllabus

• Part 1: How transistors actually come to this world

- Short Introduction
- Manufacturing Process
- MOSFET Models
- Process Variations

Part 2: Honey, I Shrunk the Transistors

- Abstraction in VLSI Design
- Design Metrics
- Process Scaling
- The NanoScaled Transistor
- Interconnect

Part 3: Let's go out to play

- Sequential Logic
- Arithmetic Circuits
- Memory Design
- FinFETs and additional subjects

Faculty of Engineering, Bar-Ilan University (BIU)

© Adam Teman, 2020

Who are we?

EnICS – Emerging Nanoscaled Integrated Circuits and Systems Labs

The World of Chip Design

Primer: What is inside a computer?

Primer: What is an IC Chip?

Example: SoC2 (Negev)

© Adam Teman, 2020

CMOS Technology

Source: techspot.com

VLSI Design Styles

- Due to time and cost constraints, very few teams and/or companies develop products from device level through to system level.
- Various Design Styles are available to shorten the time-to-market and development cost.
- Trade-offs are taken into consideration, as abstractions are usually designed generically and therefore come with some overhead.
- In the following slides, we will briefly discuss:
 - Full custom design
 - Standard Cell based ASIC design
 - Field-Programmable Gate Array (FPGA) design
 - Microprocessor (Software)

VLSI Design Styles – Full Custom

Full Custom Design

- The original design style.
- Everything is done at transistor level
- Rarely used in digital design
- High cost
- But, gives significant gain in performance.
- Analog designs mostly

VLSI Design Styles – Standard Cells

- ASICs (Application Specific Integrated Circuits) are usually built with Standard Cells.
 - A library of standard cells enables digital implementation of Boolean functions.
 - HDLs are mapped to Libraries
 - Standard cell layouts meet placement guidelines for easy physical implementation.

VLSI Design Styles - FPGA

• FPGA – Field Programmable Gate Array

- Array of configurable logic blocks, and programmable interconnect structures
- Fast prototyping, cost effective for low volume production
- HDL (hardware description language) is used

Source: breadboardgremlins.wordpress.com/

Source: wikipedia

© Adam Teman, 2020

Design Styles – Pros and Cons

• Full Custom Design:

- Customization for optimized power, performance, area.
- High complexity = cost, time-to-market, high risk.
- Standard Cell:
 - Simple, fast, reliable.
 - Only Digital designs. Excess power, wirelength, etc.
- FPGA:
 - Post silicon configurability, very inexpensive.
 - High percentage of overhead. High cost per chip.

Microcontroller (Software)

- Programmable, very inexpensive
- Very slow compared to hardware implementation.

The Computer Hall of Fame

• The parents of all computers:

The Difference Engine The Analytical Engine

- Developed by Charles Babbage in 1822 & 1837
- The Difference Engine never built due to a lack of funding (until 1991).
- The Analytical Engine featured an ALU, basic flow control, punch cards and integrated memory.
- Only a portion was built in 1910, after Babbage's death.

source. wikipedia

Physical Design Flow

© Adam Teman, 2020

Circuit (Custom) Design Flow

A Little Bit About Transistor Level CAD

Schematics

- Graphical tool for drawing electrical circuits.
- Uses an abstract representation for:
 - Devices
 - Sources
 - Wires
 - All wires are ideal $\rightarrow R = C = 0$
- Directly translates into a netlist:
 - SPICE netlist
 - Spectre netlist

Simulation

• Define your testbench and the results you'd like to measure.

- Create "tests" that run simulations on a "top-level" netlist.
- Main types of tests:
 - DC Operating Point
 - DC Sweep
 - Transient Analysis
 - AC Analysis
- Define "outputs" to be printed or plotted.
- Define "variables" to enable parametric sweeps.
- Directly translates into a spice netlist or script (e.g., Ocean) that runs the simulations and displays the outputs.
- .dc V1 0 24 1 .print dc v(1) v(2,3) .tran .05 1 .print tran v(1,2)

Simulation

• Several simulators can be used in your simulation:

- SPICE (Spectre)
- FastSpice (UltraSim)
- APS
- AMS (XPS)

Various models can be used to describe devices.

- Corner simulation changes models to simulate global process variations.
- Monte Carlo simulations use statistical distributions to simulation local process variations.

Layout

- After reaching optimal circuit topology, the layout editor is enacted to produce a physical representation of the circuit.
- The process "techfile" describes the various design layers and design rules.
- In order to assist the layout designer in circuit compilation, use connectivity between the layout and schematic:
 - Utilize "p-cells" of the schematic devices.
 - Net names connect between the schematic and layout.
 - Fly-lines and Wires automatically connect nodes on the same net.
 - Pin layers are used to describe schematic ports/pins.

Layout Verification – DRC/LVS/Extraction

- Design Rule Check (DRC) ensures that the layout meets the design rule requirements.
- Layout Vs Schematics (LVS) ensures that the layout truly represents the circuit.
- Parasitic Extraction (RCX or PEX) extracts the parasitic resistance, capacitance and inductance of the layout.
- The most common tools for performing layout verification are:
 - Cadence PVS/QRC/Pegasus
 - Mentor Graphics Calibre
 - Synopsys StarXT

- DRC can be applied interactively in the Layout editor (DRD)
- The DRC checker tests complex geometric patterns for each layer as described in the PDK's rule file.
- DRC warnings include:
 - Circuit level rules
 - Chip level rules
 - Recommended Rules (For DFM)

LVS

LVS uses a greedy algorithm to compare netlists.

- The "Source" netlist is the schematic (already in netlist format).
- The "Target" netlist is the layout as compiled by an extractor that finds devices and connects them.
- The starting point for the LVS checker is the interface (pins/ports). If these are incorrect, you will get "strange" errors.
- LVS also checks various design requirements such as bulk connections.
 - These are also known as ERC (Electrical Rules Check)

- The parasitic extraction tool creates a netlist that includes the non-idealities of the layout.
 - Actual device sizes, such as Ldiff.
 - Resistance and Capacitance of wires.
 - Coupling Capacitance
- In order to run extraction, you must FIRST run LVS.
- The output of is a list of net parasitics and a netlist that can be plugged back into the circuit simulator for comparison to pre layout results.
- Extraction tools include Cadence QRC, Mentor Graphics Calibre, and Synopsys Star-XT.

Post Layout Simulation

- Pre-layout simulation is done according to generic models with average device parameters and ideal wires.
- After creating a layout of your design, it is essential to re-simulate your design with the actual parasitics – for better or for worse.
- Your circuit will now have a new "view" in addition to its "schematic" view. This view is called "extraction" or "calibre" or something similar.
- The common way to tell the simulator to use this view is by invoking the *Hierarchy Editor*.

Important Concepts From This Lecture

- Abstraction
- Scaling
- Flavors
- Foundry
- Interconnect
- Schematics
- Simulator
- Layout
- Parasitics
- Extraction

- Interface
- Instantiate
- Hierarchy
- Verification
- Standards & Protocols
- Design Styles
- Trade-offs
- Full Custom Design
- Standard Cell Design
- Libraries

Important Concepts From This Lecture

- Gate Array
- Sign Off
- Tapeout
- Synthesis
- Floorplan
- Place and Route
- Static Timing
- Post Layout Simulation
- Corners
- Monte Carlo
- Ocean Script

- Virtuoso
- Calibre
- Assura
- SPICE
- Netlist
- Testbench
- DC Operating Point
- Transient Analysis
- DC Sweep
- AC Sweep
- Process Variations

"Three Letter Words"

- PDK Process Design Kit
- HDL Hardware Description Language
- EDA Electronic Design Automation
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- IP Intellectual Property
- DRC Design Rule Check
- LVS Layout Vs. Schematics
- RCX Resistance/Capacitance Extraction
- ADE Analog Design Environment

Further Reading

- J. Rabaey, "Digital Integrated Circuits" 2003, Chapter 1.3
- E. Alon, Berkeley EE-141, Lecture 2 (Fall 2009)

http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/

• ...a number of years of experience!